Численное моделирование аккреции вещества на звезду с дипольным магнитным полем тема автореферата и диссертации по астрономии, 01.03.02 ВАК РФ
Торопина, Ольга Дмитриевна
АВТОР
|
||||
кандидата физико-математических наук
УЧЕНАЯ СТЕПЕНЬ
|
||||
Москва
МЕСТО ЗАЩИТЫ
|
||||
2003
ГОД ЗАЩИТЫ
|
|
01.03.02
КОД ВАК РФ
|
||
|
На правах рукописи
Торопина Ольга Дмитриевна
ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ АККРЕЦИИ ВЕЩЕСТВА НА ЗВЕЗДУ С ДИПОЛЬНЫМ МАГНИТНЫМ ПОЛЕМ
01.03.02 - Астрофизика и радиоастрономия
. Автореферат диссертации на соискание ученой степени кандидата физико-математических наук
Москва - 2003 г.
Работа выполнена в Институте космических исследований РАН
Научные руководители:
д.ф.-м.н., профессор Бисноватый-Коган Г. С.
к.ф.-м.н. Романова М. М.
Официальные оппоненты:
д.ф.-м.н. Колдоба А. В. д.ф.-м.н. Прохоров М. Е.
Ведущая организация: Институт астрономии РАН
Защита диссертации состоится 24.10.2003г. в 11.00 часов на заседании диссертационного совета Д 002.113.02 в Институте космических исследований РАН по адресу:
Москва, 117997, Профсоюзная 84/32, ИКИ РАН, подъезд 2, конференц-зал" С диссертацией можно ознакомиться в библиотеке 1/1КИ РАН Автореферат разослан "_"_2003г.
Ученый секретарь Совета
кандидат технических наук
Нестеров В.Е.
2оо?-А
Общая характеристика работы Актуальность темы исследований
Диссертация посвящена исследованию процессов аккреции вещества на звезды с магнитным полем. Проблема аккреции на замагниченную звезду имеет большое значение для звездной астрофизики, так как многие типы звезд - например, белые карлики, нейтронные звезды, протозвезды - имеют сильные магнитные поля. Во многих случаях наблюдаемые светимость и переменность звезды определяются процессами взаимодействия вещества с магнитным полем звезды. В различных астрофизических системах аккреция возможна либо из аккреционного диска, либо из звездного ветра, истекающего из звезды-компаньона, либо из межзвездной среды в случае одиночных звезд.
Сценарий аккреции вещества определяется соотношениями между ско1 ростью звука в окружающем веществе и скоростью движения звезды относительно него, величиной углового момента вещества относительно звезды, а также величиной ее магнитного поля. В зависимости от этих параметров может реализовываться случай квазисферической аккреции (относительная скорость движения звезды мала по сравнению со скоростью звука, V* -С угловой момент вещества мал, I « 0), цилиндрической аккреции (и* > се, I « 0) либо дисковой аккреции вещества (г>* <§С с5, I » 0). При наличии у звезды достаточно большого углового момента может возникнуть режим "пропеллера", при котором радиус коротации меньше радиуса магнитосферы, и вращающееся магнитное поле звезды отбрасывает налетающее вещество. Также может встречаться комбинация перечисленных типов течения.
Особенность рассматриваемых процессов состоит в сложности математических моделей, которые необходимо привлекать для адекватного описания исследуемых явлений. Течение замагниченной плазмы может быть описано нелинейной системой нестационарных уравнений магнитной газодинамики (МГД) с учетом гравитаций. Сложность проблемы иллюстрирует тот факт, что аналитическое решение найдено лишь для случая сферической аккреции на немагнитный центр (Бонди, 1952). Необходимость включения в рассмотрение магнитного поля и вращения звезды более усложняет проблему.
Одним из наиболее интересных для исследования случаев является аккреция на одиночные старые нейтронные звезды с магнитным полем. Количество таких объектов в нашей Галактике оценивается как 108- 109 (например, Арнетт, Шрамм и Труран, 1989; Нараян и Острайкер, 1990). Большинство из них невидимы. Ранее предполагалось, что ближайшие старые нейтронные звезды могут быть видны благодаря аккреции вещества меж- *
звездной среды на их поверхность. Такие объекты должны быть многочисленными, ~ 102 — 103 в окрестности < 100 пк (Острайкер, Рис и Силк, 1970; Шварцман, 1971; Тревис и Колпи, 1991; Блаес и Мадау, 1993; Тре- t
вис и другие, 2000; Попов и другие, 2000) и иметь небольшую светимость L ~ 1028 — 1031 эрг/с. Однако, в результате тщательных поисков, было обнаружено всего несколько объектов-кандидатов (Тревис и другие, 2000). По всей видимости, на обнаружимость и потенциальную наблюдаемость старых нейтронных звезд влияет несколько факторов.
Так, например, недавний анализ распределения скоростей пульсаров (Кор-дес и Чернов, 1998; Попов и другие, 2000) показал, что их средние скорости (v) намного больше ((и) и 180 км/с), чем предполагалось в ранних оценках ((v) и 10 км/с), поэтому гравитационный радиус Racc = 2GM/v2 ос \/v2 и темп аккреции М — nR^-pv ос 1/v3 (Бонди и Хойл, 1944) существенно уменьшаются, где М - масса звезды и р - плотность вещества межзвездной среды. Зависимость темпа аккреции от скорости весьма сильная и может являться одной из причин отсутствия наблюдений старых одиночных нейтронных звезд. Однако значительное количество нейтронных звезд все же могут иметь относительно небольшие скорости, v < 50-г 100 км/с, поэтому эффект большой усредненной скорости не исключает полностью возможности наблюдения старых нейтронных звезд.
Особенно важным представляется учет влияния магнитного поля и вращения звезды на темп аккреции и, соответственно, аккреционную светимость. В частности, если одиночная нейтронная звезда находится на эволюционной стадии "пропеллера"(радиус магнитосферы больше радиуса ко-ротации), аккреция вещества на поверхность может сильно подавляться за счет взаимодействия с быстро вращающейся магнитосферой звезды (Илларионов и Сюняев, 1975; Дэвис и Прингл, 1981; Липунов, 1992). Ливио (Ливио И другие, 1998) и Колпи (Колпи и другие, 1998) предположили, что старые нейтронные звезды могут находиться на стадии "пропеллера"в
течение космологического времени, и это может являться основной причиной их плохой наблюдаемости. Продолжительность стадии "пропедле-. ра"заеисит от темпа ослабления поля. Предполагается, что магнитное поле звезды Во ~ 1012 Гс быстро спадает за характерное время т ~ 107—10® лет до небольшого значения Вт ~ 109 — Ю10 Гс. Далее, это слабое поле спадает р в более медленной шкале времени, которая может быть порядка космологи-
ческого времени Геи (Урпин и Муслимов, 1992; Урпин и Коненков, 1997). Ливио (1998) показал, что если начальное магнитное поле спадает не слиш-% ком быстро и имеет окончательное значение Вт > 5 ■ 10®, то нейтронная
звезда может находиться на стадии "пропеллера11 в течение космологического времени. Однако для большого диапазона параметров было найдено, что продолжительность стадии ипропеллераикороче, чем Т^.
После завершения стадии "пропеллера"вещество имеет тенденцию накапливаться вокруг звезды. В 70-е годы было высказано предположение, что сильное магнитное поле звезды может препятствовать аккреции в случае отсутствия неустойчивостей, которые позволяют веществу проникать сквозь силовые линии. Считалось, что вещество может проникать через магнитосферу в экваториальной области вследствие неустойчивости Релея-Тейлора (Ароне и Ли, 1976; Элснер и Лэмб, 1977), либо напрямую аккрецировать на полюса (например, Мичел, 1977). Однако до сих пор не существует общепринятой теории о том, какая часть вещества будет аккрецировать на поверхность звезды и какой механизм является основным. Для понимания проблемы требуется многомерное МГД моделирование.
Цели и задачи работы
, Основной целью настоящей работы, начатой в 1998 году, было изучение
процессов аккреции на одиночные нейтронные звезды с магнитным полем на разных стадиях эволюции. В диссертации рассматриваются три взаимосвязанные астрофизические задачи, для решения которых использовался единообразный подход с применением численного моделирования:
- изучение сферической аккреции на звезду с динамически важным ди-польным магнитным полем, исследование зависимости темпа аккреции от величины магнитного поля;
- моделирование сферической аккреции на быстро вращающуюся нейтронную звезду с магнитным полем (режим "пропеллера") и исследование зависимости темпа аккреции от величины магнитного поля и угловой скорости вращения звезды;
- исследование цилиндрической аккреции, возникающей при сверхзвуковом движении звезды с дипольным магнитным полем через межзвездную сре- * ду, и исследование процессов, происходящих при взаимодействии потока аккрецирующего вещества с магнитосферой звезды.
V
Научная новизна и практическое значение работы
Впервые проведено численное моделирование сферической аккреции на звезду с дипольным магнитным полем, найден стационарный режим аккреции. Исследована структура аккреционного течения и его трансформация от сферически симметричного вдали от магнитосферы звезды к сильно анизотропному течению с формированием полярных колонок внутри магнитосферы. Найдены зависимости темпа аккреции на звезду с дипольным магнитным полем от величины магнитного поля звезды и магнитной вязкости плазмы.
Впервые проведено численное моделирование аккреции на быстро вращающуюся звезду с магнитным полем (с параметрами, соответствующими режиму "пропеллера"). Исследована структура аккреционного течения и найдены зависимости темпа аккреции от величины магнитного поля и угловой скорости вращения звезды.
Впервые с помощью численного моделирования исследовано движение звезды с дипольным магнитным полем через межзвездную среду и взаимодействие потока аккрецирующего вещества с магнитосферой звезды. Показано, что магнитосфера звезды служит препятствием для сверхзвукового потока вещества: на магнитосфере звезды образуется коническая ударная волна. Силовые линии магнитного поля вытягиваются веществом, образуя протяженный хвост магнитосферы.
Полученные в диссертации результаты могут быть использованы для интерпретации наблюдений. Например, малое (по сравнению с предсказанным) число открытых кандидатов в одиночные старые нейтронные звезды, аккрецирующие вещество межзвездной среды, может объясняться тем, что
традиционно при порядковых оценках для темпа аккреции использовалась формула Бонди (Бонди, 1952). Проведенное численное моделирование показало, что темп аккреции на звезду с магнитным полем всегда меньше темпа аккреции на незамагниченные объекты, когда верна формула Бонди. Наличие у звезды даже слабого магнитного поля приводит к существенно-j му снижению ее акреционной светимости, что ограничивает возможность
наблюдения старых нейтронных звезд.
Образование протяженных хвостов магнитосферы с низкой плотностью / вещества позади замагниченных звезд, движущихся с большими сверхзву-
ковыми скоростями, может иметь интересные наблюдательные проявления. Например,, частицы, ускоряемые вблизи звезды, могут двигаться преимущественно вдоль хвоста и создавать объекты вытянутой формы. Возможно, с этим эффектом связана протяженная форма в виде гитары, наблюдаемая вокруг пульсара PSR 2224+65 (Кордес и другие, 1993). Кроме того, вытянутые "следы"пульсаров наблюдались в рентгеновском диапазоне (Ванг, Ли и Бегельман, 1993), что также может быть связано с вытягиванием линий магнитного поля веществом межзвездной среды.
Апробация работы
Основные результаты диссертационной работы были представлены на конференции, посвященной 95-летию Г.А.Гамова (Одесса, 1999), международной конференции по космомикрофизике Космион (Москва, 2000), семинаре в Государственном астрономическом институте им. Штернберга (Москва, 2001), 20-м Техасском симпозиуме по релятивистской астрофизике (Остин, 2000), международной конференции "Astrophysical ^5м(Афины, 2002), европейской конференции "Hyperbolic Models in Astrophysics and Cosmology" (Кембридж, 2003).
Структура диссертации
Диссертация состоит из введения, трех глав, заключения, приложения и списка литературы. Полный объем диссертации составляет 111 страниц, включая 48 рисунков. Список цитируемой литературы включает 95 источников.
Содержание работы
Во введении дается краткое описание проблем, затронутых в диссертации, ставятся цели и обосновывается актуальность работы.
В первой главе представлены результаты исследований сферической аккреции на звезду, вращением которой можно пренебречь, имеющую динамически важное дипольное магнитное полем. Подробно описывается математическая постановка задачи, приводится полная система нестационарных уравнений МГД с учетом гравитации и конечной проводимости плазмы, описывается способ ее обезразмеривания, метод включения дипольного магнитного поля звезды, определяются начальные и граничные условия.
Далее приводятся результаты расчетов. Описывается полученная структура стационарного дозвукового аккреционного течения в магнитосфере и окрестностях звезды. Установлено, что аккреция на диполь остается приблизительно сферически симметричной вдали от магнитосферы, до расстояний 2Яа, где Яд - альфвеновский радиус. На расстояниях, сравнимых и меньших альфвеновского радиуса, течение становится сильно анизотропным. Внутри альфвеновской поверхности вещество аккрецирует вдоль линий магнитного поля, формируя две полярные колонки.
Расчеты показали, что темп аккреции на замагниченную звезду существенно меньше, чем на звезду без магнитного поля. Найдена зависимость темпа аккреции на диполь М от параметров системы: магнитного момента звезды /х и величины магнитной вязкости г)т, которая отражает конечную проводимость плазмы: М/Мв ос и М ос (т)т)0,6.
В приведенном астрофизическом примере показано, что наличие у звезды даже слабого магнитного поля приводит к существенному снижению ее аккреционной светимости, что ограничивает возможность наблюдения старых нейтронных звезд.
Во второй главе диссертации наравне с магнитным полем учитывается влияние вращения звезды на процесс аккреции. Показано, что в случае медленного вращения аккреционное течение подобно аккреции на невра-щающуюся замагниченную звезду, подробно рассмотренной в первой части диссертации, с несколько меньшим значением темпа аккреции М.
Напротив, при аккреции на быстро вращающуюся звезду с дипольным полем реализуется режим "пропеллера", когда радиус коротации меньше
альфвеновского радиуса, возникает истечение в экваториальной плоскости. Исследована структура аккреционного течения в режиме "пропеллера", при котором только небольшая часть падающего вещества аккрецирует на поверхность звезды в полярных колонках. Ббльшая часть вещества отбрасывается в экваториальной плоскости вращающимся магнитным полем звезды.
Темп аккреции на поверхность звезды существенно меньше, чем в невра-щающемся случае. Найдена зависимость темпа аккреции от угловой скорости вращения звезды П«, магнитного момента звезды ц и величины магнитной вязкости т)т: М/Мв ос С1~1,0, М/Мв ос (л~2,1 и М/Мв ос (г)т)0'7.
Исследованы процессы торможения звезды в ходе аккреции. Вращение звезды замедляется в большей степени за счет взаимодействия магнитосферы звезды с аккреционным потоком, и в меньшей - за счет аккреции вещества с малым угловым моментом на ее поверхность. Установлено, что темп потери углового момента Ь пропорционален величине —где Г2„ - угловая скорость вращения звезды ид- магнитный момент звезды, и слабо зависит от значения магнитной вязкости т]т.
Приведен астрофизический пример, в котором сделан переход от безразмерных переменных, использовавшися в расчетах, к реальным физическим величинам.
В третьей главе диссертации исследуется цилиндрическая аккреция. Такая ситуация может иметь место, например, на стадии "георотатора"(Липу-нов, 1992), когда звезда с магнитным полем движется через межзвездную среду со скоростью, большей скорости звука.
Рассматривалось два случая. Первый - аккреция Бонди - Хойла на за-магниченную звезду, когда аккреционный радиус Яасс сравним с альфвенов-ским радиусом Яд и важна гравитационная фокусировка. Моделирование проводилось для разных значений магнитного поля звезды и числа Маха М. — 3. Второй - случай сильных магнитных полей, когда Яасс « Яд и магнитосфера звезды взаимодействует с межзвездной средой без какой-либо существенной гравитационной фокусировки. Моделирование проводилось для больших значений числа Маха М. = 10, 30, и 50.
В обоих случаях магнитосфера звезды служит препятствием для сверхзвукового потока вещества: на магнитосфере звезды образуется отошедшая коническая ударная волна. Силовые линии магнитного поля вытягиваются
веществом, образуя протяженный хвост магнитосферы. В хвосте наблюдается пересоединение линий магнитного поля, которое может приводить к ускорению частиц.
В режиме Дасс ~ Яд небольшая часть налетающего вещества накапливается вокруг звезды и аккрецирует на нее. Большая >ке часть набегающего потока вещества обтекает магнитосферу и улетает из области. Темп аккреции на звезду существенно меньше, чем- в отсутствие магнитного поля (решение Бонди - Хойла). Найдена зависимость темпа аккреции от величины магнитного поля на поверхности звезды В»: М ~ В~1,3. В режиме Касс « На ПРИ больших значениях числа Маха вещество не скапливается вокруг звезды. Плотность вещества в хвосте магнитосферы существенно ниже по сравнению с плотностью начального невозмущенного потока.
В приведенном астрофизическом примере опис^щаются возможные наблюдательные проявления протяженных хвостов магнитосферы. Оценивается энерговыделение в ударной волне и энергия, высвобождаемая при пересоединениях.
В приложении приводится описание используемого конечно-разностного алгоритма, основанного на методе локальных итераций (Жуков, Забродин и Феодоритова, 1993) и методе коррекции потоков (Оран и Борис, 1990; Борис и Бук, 1973).
В заключении сформулированы основные выводы диссертации.
Основные результаты диссертации
1. Проведено численное моделирование сферической аккреции на невра-щающуюся звезду с дипольным магнитным полем:
• Получена структура стационарного осесимметричного аккреционного течения. Течение является сферически-симметричным вдали от магнитосферы и обладает сильной анизотропией внутри магнитосферы. Вещество аккрецирует на звезду в полярных колонках. Исследована зависимость структуры течения от параметров системы.
• Наличие магнитного поля приводит к существенному снижению темпа аккреции в осесимметричном случае. Найдена зависимость темпа ак-
. креции на звезду М от магнитного момента звезды д: М/Мв ос ц~3.
• Найдена зависимость темпа аккреции на звезду М от величины магнитной вязкости т)т: М ос (т]т)0'6.
2. Исследована сферическая аккреция на звезду с дипольным магнитным полем, вращающуюся в режиме "пропеллера":
,f • Получена структура осесимметричного аккреционного течения. Толь-
ко небольшая часть падающего вещества аккрецирует на поверхность звезды в полярных колонках. Бблыиая часть вещества отбрасывается ^ в экваториальной плоскости вращающимся магнитным полем звезды.
• Найдена зависимость темпа аккреции на звезду М от угловой скорости вращения звезды Л»: М ос О^1'0-
• Найдена зависимость темпа аккреции на звезду М от магнитного момента звезды fi: М ос /i-2'1.
• Найдена зависимость темпа аккреции на звезду М от величины магнитной вязкости т)т: М ос (т)т)0'7-
• Темп потери углового момента L пропорционален величине —О^'3/^0*8, где П» - угловая скорость вращения звезды и ц - магнитный момент звезды, и слабо зависит от значения магнитной вязкости г]т.
3. Исследована цилиндрическая аккреция на звезду с дипольным магнитным полем.
• Получена структура течения вещества. Магнитосфера звезды служит препятствием, не пропускающим вещество. На ней формируется кони-
^ ческая ударная волна, сзади магнитосферы силовые линии магнитного
поля вытягиваются, образуя протяженный хвост с низкой плотностью вещества. В хвосте наблюдается пересоединение силовых линий маг-„ нитного поля.
• Присутствие магнитного поля существенно снижает темп аккреции вещества по сравнению с классическим случаем Бонди - Хойла. Найдена зависимость темпа аккреции М от величины магнитного поля на поверхности звезды Б»: М ~ В~1,3.
Основные результаты диссертации опубликованы в следующих работах:
1. Toropin Yu.M., Toropina O.D., Savelyev V.M., Romanova M.M., Che-, chetkin V.M., Lovelace R.V.E. Spherical Bondi Accretion onto A Magnetic Dipole. //ApJ. 1999. V.S17. P.906 - 918.
2. Toropin Yu.M., Toropina O.D. Accretion onto magnetic dipole: result of 2D numerical simulations. //Odessa Astronomical publications. 1999. V.12. P.245.
3. Romanova M.M., Toropina O.D., Toropin Yu.M., Lovelace R.V.E. Interaction of Evolved Pulsars and Magnetars With the ISM. //Relativistic Astrophysics: 20-th Texas Symposium. 2001. P.519 - 525
4. Toropina O.D., Romanova M.M., Toropin Yu.M., Lovelace R.V.E. Propagation of Magnetized Neutron Stars Through the Interstellar Medium. //Ap.J. 2001. V.561. P.964 - 979.
5. Romanova M.M., Toropina O.D., Toropin Yu.M., Lovelace R.V.E. MHD simulations of accretion to a star in the "propeller"regime. //Ap.J. 2003. V.588 P.400 - 407.
6. Toropina O.D., Romanova M.M., Toropin Yu.M., Lovelace R.V.E. Magnetic Inhibition of Accretion and Observability of Isolated Old Neutron Stars. // Ap.J. 2003. V.593 P.472 - 480.
4
Список цитируемой литературы
1. Оран Э., Борис Дж. Численное моделирование реагирующих потоков. Москва: Мир, 1990.
2. Попов С.Б., Прохоров М.Е. Астрофизика одиночных нейтронных звезд: радиотихие нейтронные звезды и магнетары. Труды ГАИШ. 2003. Т.72. 75с.
3. Arnett W.D., Schramm D.N., Truran J.W. //АрJ. 1989. V.339. L25.
4. Arons J.,' Lea S.M. //Ap.J. 1976. V.207. P.914.
5. Blaes 0., Madau P. //Ap.J. 1993. V.403. P.690.
6. Bondi H. //MNRAS. 1952. V.112. P.195.
7. Bondi H.,Hoyle F. //MNRAS. 1944 V.104. P.273.
8. Boris J.P., Book D.L. // J. Comput. Phys. 1973. V.ll P.38.
9. Colpi M., Turolla R„ Zane S„ Treves A. //Ap.J. 1998. V.501. P.252.
10. Cordes J.M., Chernoff D.F. //Ap.J. 1998. V.505. P.315.
11. Cordes J.M., Romani R.W., Lundgren S.C. //Nature. 1993. V.362. P.133.
12. Davies R.E., Pringle J.E. //MNRAS. 1981. V.196. P.209.
13. Eisner R.F., Lamb F.K. //MNRAS. 1977. V.215. P.897.
t 14. Illarionov A.F., Sunyaev R.A. //A&A. 1975. V.39. P.185.
15. Lipunov V.M. Astrophysics of Neutron Stars. Berlin Springer Verlag. 1992. , 16. Livio M., Xu С., Frank //Ap.J. 1998. V.492. P.298.
17. Michel F.C. //Ap.J. 1977. V.213. P.836.
18. Narayan R„ Ostriker J.P. //Ap.J. 1990. V.352. P.222.
19. Ostriker J.P., Rees M.J., Silk J. //Astrophys. Lett. Coramun. 1970. V.6. P.179.
20. Popov S.B., Colpi M., Treves A., Turolla R., Lipunov V.M., Prokhorov M.E. //Ap.J. 2000. V.530. P.896.
21. Shvartsman V>. //A.J. 1971. V.14. P.662.
22. Treves A.. Colpi M. //A&A. 1991. V.241. P.107.
23. Treves A., Turolla R„ Zane S., Colpi M. // PASP. 2000. V.112. P.297.
24. Urpin V.A., Muslimov A.G. //MNRAS. 1992. V.256. P.261.
25. Urpin V.A., Konenkov D„ Urpin V. //MNRAS. 1997. V.292. P.167.
26. Wang Q.D., Li Z.-Y., Begelman M.C. //Nature. 1993. V.364. P.127.
27. Zhukov V.T., Zabrodin A.V., Feodoritova O.B. //Сотр. Maths. Math. Phys. 1993. V.33. N.8. P.1099.
055(02)2 Размножено-на ротапринте ИКИ РАН
Москва, 117997, Профсоюзная, 84/32
Подписано к печати 09.09.2003 Заказ 1$9б Формат 70x108/32 Тираж 100 0,5 уч.-изд.л.
I
I' ¡
I l
i
i »
I
I
t1
Í
I
(
i
¥
IP 15 6 9 7
^ооЗ'А
Введение.
1 Сферическая аккреция на звезду с магнитным полем
1.1 Введение.
1.2 Постановка задачи.
1.2.1 Математическая модель.
1.2.2 Безразмерные параметры и переменные.
1.2.3 Граничные и начальные условия. 1.3 Результаты расчетов.
1.3.1 Течение вещества в магнитосфере звезды
1.3.2 Зависимость темпа аккреции М от величины магнитного момента звезды /х.
1.3.3 Зависимость темпа аккреции М от величины магнитной вязкости т)т.
1.3.4 Эволюция потока на больших расстояниях.
1.4 Астрофизический пример: аккреция на нейтронную звезду
1.4.1 Модифицированная аккреция Бонди.
1.4.2 Применение эмпирических зависимостей.
2.2 Физическая модель режима пропеллера .39
2.3 Постановка задачи.41
2.3.1 Математическая модель.42
2.3.2 Граничные и начальные условия.44
2.4 Результаты расчетов.45
2.4.1 Течение вещества в режиме пропеллера.45
2.4.2 Зависимость течения от угловой скорости вращения а;, и магнитного момента звезды ц.53
2.5 Астрофизический пример.56
2.6 Основные результаты и выводы.59
3 Движение звезды с магнитным полем через межзвездную среду 61
3.1 Введение.61
3.2 Физическая модель . -.63
3.3 Постановка задачи.66
3.3.1 Математическая модель.67
3.3.2 Граничные и начальные условия.69
3.4 Аккреция в случае Яд ~ /?асс и Л/1 — 3.ТО
3.4.1 Гидродинамический случай.70
3.4.2 Аккреция на звезду с магнитным полем.72
3.5 Режим георотатора (Яд >> Яасс).84
3.5.1 Хвосты магнитосферы при различных значениях М. 84
3.5.2 Влияние магнитной вязкости на течение.90
3.5.3 Зависимость темпа аккреции от т)т.92
3.6 Наблюдательные проявления.93
3.6.1 Пересоединения в хвосте магнитосферы.94
3.6.2 Энерговыделение ударной волны .96
3.6.3 Астрофизический пример.96
3.6.4 Сравнение с магнитосферой Земли.97
3.6.5 Наблюдательные проявления протяженных полых хвостов магнитосферы .98
3.7 Основные результаты и выводы.98
Заключение.100
Приложение А. Численный алгоритм.102
Литература.106
Введение
Диссертация посвящена исследованию процессов аккреции вещества на звезды с магнитным полем. Проблема аккреции на замагниченную звезду имеет большое значение для звездной астрофизики, так как многие типы звезд - например, белые карлики, нейтронные звезды, протозвезды имеют сильные магнитные поля. Во многих случаях наблюдаемые светимость и переменность звезды определяются процессами взаимодействия вещества с магнитным полем звезды. В различных астрофизических системах аккреция возможна либо из аккреционного диска, либо из звездного ветра, истекающего из звезды-компаньона, либо из межзвездной среды в случае одиночных звезд. Сценарий аккреции вещества определяется соотношениями между скоростью звука в окружающем веществе и скоростью движения звезды относительно него, величиной углового момента вещества относительно звезды, а также величиной ее магнитного поля. В зависимости от этих параметров, может реализовываться случай квазисферической аккреции (относительная скорость движения мала по сравнению со скоростью звука, <С са, угловой момент вещества мал, / « 0), цилиндрической аккреции (и* > с3,1 « 0), либо дисковой аккреции вещества (|и*| С с3, / 0). При наличии у звезды достаточно большого углового момента может возникнуть режим пропеллера. Также может встречаться комбинация перечисленных типов течения.
Особенность рассматриваемых процессов состоит в сложности математических моделей, которые необходимо привлекать для адекватного описания исследуемых явлений. В этом случае течения замагниченной плазмы могут быть описаны нелинейной системой нестационарных уравнений магнитной гидродинамики (МГД) с учетом гравитации. Сложность проблемы иллюстрирует тот факт, что аналитическое решение найдено лишь для случая сферической аккреции на немагнитный грави-тирующий центр (Бонди [14]). Необходимость включения в рассмотрение магнитного поля и вращения звезды еще более усложняет проблему.
Одним из интересных случаев для исследования является аккреция на одиночные нейтронные звезды с магнитным полем. Такие объекты в процессе своей эволюции могут проходить несколько стадий (например, Шапиро и Тьюкольский [78]; Липунов [48]). Вначале быстровращающа-яся нейтронная звезда с периодом Р < 1 с и сильным магнитным полем проявляет себя как радиопульсар. Вращение звезды замедляется благодаря магнитно-дипольному излучению и ветру релятивистских частиц из области светового цилиндра г^ (Голдрейх и Джулиан [27], Липунов [48]). Это стадия ээ/сектора, на которой аккреция невозможна. После существенного замедления нейтронной звезды, радиус светового цилиндра становится больше радиуса магнитосферы гт, на котором газовое давление внешнего вещества равно давлению магнитного поля нейтронной звезды. На этой стадии ветер релятивистских частиц подавляется налетающим веществом (Шварцман [77]). Для одиночной нейтронной звезды это вещество межзвездной среды, в двойной системе внешнее вещество может поступать из ветра от второго компонета. Аккреция на этом этапе, в принципе, возможна. Однако, если радиус магнитосферы гт больше радиуса коротации гсог, центробежная сила в экваториальной плоскости на радиусе гт превышает гравитационную силу. Вращающееся магнитное поле нейтронной звезды отбрасывает налетающее вещество. Начинается, так называемая, стадия пропеллера эволюции нейтронных звезд (Дэвидсон и Острайкер [22]; Илларионов и Сюняев [38]). При дальнейшем замедлении вращения магнитное поле перестает мешать аккреции и вещество межзвездной среды может попадать на поверхность нейтронной звезды - наступает стадия аккретора. Кроме этого, выделяют отдельную стадию георотатора (Липунов [48]), которая характерна для звезд, быстро движущихся в межзвездной среде.
В диссертации рассмотрено три астрофизических задачи, условия которых характерны для некоторых стадий эволюции одиночных нейтронных звезд. Для их решения использовался единообразный подход с применением численного моделирования. Проводились двумерные осе-симметричное магнитогазодинамическое расчёты с учетом гравитации и возможного вращения замагниченной звезды, а также конечной проводимости вещества. Рассматривался случай, когда звезда имеет дипольное магнитное поле. Магнитный момент и ось вращения звезды сонаправ-лены с осью симметрии системы. Свойства газа описываются адиабатическим уравнением состояния. Для расчетов использовалась разностная схема гибридного типа, основанная на методе локальных итераций Жукова, Забродина и Феодоритовой [95] и методе коррекции потоков Орана, Бориса и Бука [2], [16]. Применялась программа, которая является развитием оригинальной программы, разработанной В.В. Савельевым (ИПМ РАН). Для всех трёх задач (см. ниже) удалось установить структуру течения в окрестностях замагниченного гравитирующего тела (звезды) и исследовать зависимость характеристик течения от параметров системы. В каждой из частей диссертации рассмотрены конкретные астрофизические примеры.
В первой части диссертации представлены результаты исследований сферической аккреции на звезду, вращением которой можно пренебречь, с динамически важным дипольным магнитным полем. Такие условия характерны для стадии аккретора эволюции одиночной нейтронной звезды. Получена структура стационарного дозвукового аккреционного течения в магнитосфере и окрестностях звезды. Установлено, что аккреция на диполь остается приблизительно сферически симметричной вдали от магнитосферы, до расстояний 2Дд, где Яд - Альфвеновский радиус (определен в Главе 1). На расстояниях, сравнимых и меньших Альф-веновского радиуса, течение становится сильно анизотропным. Внутри Альфвеновской поверхности вещество течет вдоль линий магнитного поля, формируя две полярные колонки.
Расчеты показали, что темп аккреции на замагниченную звезду существенно меньше, чем на звезду без магнитного поля. Найдена зависимость темпа аккреции на диполь М от параметров системы: магнитного момента звезды ц и величины магнитной вязкости т]т, которая отражает конечную проводимость плазмы: М/Мв ос А*-3 и М ос (т]т)0'6.
В приведенном астрофизическом примере показано, что наличие у звезды даже слабого магнитного поля приводит к существенному снижению ее аккреционной светимости, что ограничивает возможность наблюдения старых нейтронных звезд.
Во второй части диссертации наравне с магнитным полем учитывается влияние вращения звезды на процесс аккреции. Показано, что в случае медленного вращения звезды аккреционное течение подобно аккреции на невращающийся гравитирующий диполь, подробно рассмотренной в первой части диссертации, с несколько меньшим значением темпа аккреции М.
Напротив, при аккреции на быстро вращающуюся звезду с диполь-ным полем реализуется режим пропеллера, когда радиус коротации меньше Альфвеновского радиуса, и возникает истечение в экваториальной плоскости. Исследована структура аккреционного течения в режиме пропеллера. Вокруг вращающейся звезды устанавливается новый режим течения. Только небольшая часть падающего вещества аккрецирует на поверхность звезды в полярных колонках. Большая часть вещества отбрасывается в экваториальной плоскости вращающимся магнитным полем звезды.
Темп аккреции на поверхность звезды существенно меньше, чем в невращающемся случае. Найдена зависимость темпа аккреции от угловой скорости вращения звезды О,, магнитного момента звезды /х и величины магнитной вязкости Т]т: М/Мв ос ^Г1'0) М/Мв ос /х-2'1 и М/Мв ос (гут)0"7.
Исследованы процессы торможения звезды в ходе аккреции. Вращение звезды замедляется в большей степени за счет взаимодействия магнитосферы звезды с аккреционным потоком, и в меньшей - за счет аккреции вещества с малым угловым моментом на ее поверхность. Установлено, что темп потери углового момента Ь пропорционален —Г и слабо зависит от значения магнитной вязкости г]т.
Третья часть диссертации посвящена исследованию цилиндрической аккреции. Такая ситуация может иметь место, например, на стадии георотатора, когда звезда с магнитным полем движется через межзвездную среду со скоростью, большей скорости звука.
Рассматривалось два случая: (1) Случай аккреции Бонди-Хойла на замагниченную звезду, когда аккреционный радиус Яасс сравним с Аль-фвеновским радиусом Яд и важна гравитационная фокусировка. Моделирование проводилось для разных значений магнитного поля звезды В, и числа Маха М. = 3. (2) Случай сильных магнитных полей, когда Яасс « Яд и магнитосфера звезды взаимодействует с межзвездной средой без какой-либо существенной гравитационной фокусировки. Моделирование проводилось для больших значений числа Маха М. = 10, 30, и 50.
В обоих случаях магнитосфера звезды служит препятствием для сверхзвукового потока вещества: на магнитосфере звезды образуется коническая ударная волна. Силовые линии магнитного поля вытягиваются веществом, образуя протяженный хвост магнитосферы. В хвосте наблюдается пересоединение линий магнитного поля, что может приводить к ускорению частиц.
В режиме Яасс ~ Яд небольшая часть налетающего вещества накапливается вокруг звезды и аккрецирует на нее. Большая же часть набегающего потока вещества обтекает магнитосферу и улетает из области. Темп аккреции на звезду существенно меньше, чем в отсутствии магнитного поля (решение Бонди-Хойла). Найдена зависимость темпа аккреции от величины магнитного поля на поверхности звезды В,: М ~ В~13. В режиме Яасс « Яа при больших значениях числа Маха вещество не скапливается вокруг звезды. Плотность вещества в хвосте магнитосферы существенно ниже по сравнению с плотностью начального невозмущенного потока.
3.7 Основные результаты и выводы
С помощью осесимметричного магнитогидродинамического моделирования проведено детальное исследование сверхзвукового движения звезды с дипольным магнитным полем сквозь межзвездную среду. Результаты численных расчетов показали, что:
1) Магнитное поле звезды служит препятствием для потока вещества межзвездной среды; как и в гидродинамическом случае, образуется ударная волна конической формы.
2) Позади звезды формируется протяженный хвост магнитосферы, в котором наблюдается пересоединение.
3) В режиме Яа ~ Яасс некоторая часть вещества накапливается вокруг звезды, большая часть вещества отклоняется магнитным полем звезды и улетает. Темп аккреции на звезду с магнитным полем существенно меньше, чем на незамагниченную звезду.
4) В режиме мгеоротатора"Яд >> Дасс и при больших значениях числа Маха М ~ 10 — 50, вещество вокруг звезды не накапливается. Плотность вещества в хвосте чрезвычайно низкая. Незначительная часть вещества аккрецирует на передний полюс. Темп аккреции выше, чем темп аккреции Бонди-Хойла, но много меньше, чем поток налетающего вещества (М -кН2АрУ).
5) При ЯА > Я асс в хвосте магнитосферы преобладает магнитная энергия. Часть этой энергии выделяется в процессе пересоединения, однако ее мощность мала Ю21 эрг/с для типичных параметров пульсара и ~ 1024 эрг/с для магнетаров), поэтому существует возможность наблюдения только ближайших магнетаров. Для магнитных полей в хвосте порядка В ~ 10~4 — 106 Гс, вспышки или "суббури"в хвосте могут излучать в радиодиапазоне.
6) Подобная мощность, что выделяется при пересоединении магнитного поля, выделяется в ударной волне и может давать излучение в оптическом и рентгеновском диапазоне.
7) Хвосты магнитосферы могут также формироваться при движении пульсаров сквозь межзвездную среду. В этом случае, ускоряемые пульсаром частицы будут двигаться вдоль хвоста, создавая протяженные структуры.
8) Представленные расчеты и оценки могуг также применяться к другим замагниченным звездам, движущимся в межзвездной среде, таким, как белые карлики, Ар звезды, и молодые звездные объекты.
9) Движение звезд с магнитным полем может приводить к возникновению упорядоченных магнитных структур в межзвездной среде. Также такие звезды могут давать вклад в магнитное поле Галактики.
Заключение
В заключении кратко перечислим основные результаты диссертации.
I. Проведено численное моделирование сферической аккреции на невра-щающуюся звезду с дипольным магнитным полем:
1) Получена структура стационарного осесимметричного аккреционного течения. Течение является сферически-симметричным вдали от магнитосферы и обладает сильной анизотропией внутри магнитосферы. Вещество аккрецирует на звезду в полярных колонках. Исследована зависимость структуры течения от параметров системы.
2) Наличие магнитного поля приводит к существенному снижению темпа аккреции в осесимметричном случае. Найдена зависимость темпа аккреции на звезду от магнитного момента звезды ц: М/Мв ос ц~г
3) Найдена зависимость темпа аккреции на звезду от величины магнитной вязкости т]т: М ос (т]т)0'6
4) В случае медленного вращения звезды результаты сходны со случаем без вращения.
II. Исследована сферическая аккреция на звезду с дипольным магнитным полем, вращающуюся в режиме пропеллера:
1) Получена структура осесимметричного аккреционного течения. Только небольшая часть падающего вещества аккрецирует на поверхность звезды в полярных колонках. Большая часть вещества отбрасывается в экваториальной плоскости вращающимся магнитным полем звезды.
2) Найдена зависимость темпа аккреции на звезду от угловой скорости вращения звезды М ос Г^10.
3) Найдена зависимость темпа аккреции на звезду от магнитного момеита звезды р: М ос ¡л~2Л.
4) Найдена зависимость темпа аккреции на звезду от величины магнитной вязкости т]т: М ос (т]т)07.
5) Темп потери углового момента L пропорционален —fij-3^0-8 и слабо зависит от значения магнитной вязкости Т]т.
III. В случае цилиндрической аккреции на звезду с дипольным магнитным полем:
1) Получена структура течения вещества. Магнитосфера звезды служит препятствием, эффективно отражающим вещество. На ней формируется коническая ударная волна, сзади магнитосферы силовые линии магнитосферы вытягиваются, образуя протяженный хвост с низкой плотностью вещества. В хвосте наблюдается пересоединение линий магнитного поля.
2) Присутствие магнитного поля существенно снижает темп аккреции вещества по сравнению с классическим случаем Бонди-Хойла. Найдена зависимость темпа аккреции от величины магнитного поля на поверхности звезды Bt: М ~ В~из.
1. Каменецкий, В.Ф., & Семёнов, А.Ю., 1989, Сообщения по прикладной математике.
2. Оран, Э., к Борис, Дж., Численное моделирование реагирующих потоков. М.: "Мир", 1990.
3. Попов, С.Б. к Прохоров М.Е., 2003, Астрофизика одиночных нейтронных звезд: радиотихие нейтронные звезды и магнетары, Труды ГАИШ, т.72.
4. Arnett, W.D., Schramm, D.N., к Truran, J.W. 1989, ApJ, 339, L25
5. Arons, J., к Lea, S.M. 1976a, ApJ, 207, 914
6. Arons, J., к Lea, S.M. 1976b, ApJ, 210, 792
7. Arons, J., к Lea, S.M. 1980, ApJ, 235, 1016
8. Beloborodov, A.M., к Illarionov, A.F. 2001, MNRAS, 323, 167
9. Bisnovatyi-Kogan, G.S., к Lovelace, R.V.E. 1997, ApJ, 486, L43
10. Bisnovatyi-Kogan, G.S., к Lovelace, R.V.E. 2000, ApJ, 529, 978
11. Bisnovatyi-Kogan, G.S., к Pogorelov, N.V. 1997, Astron. and Astrophys. Transactions, 12, 263
12. Blaes, О., к Madau, P. 1993, ApJ, 403, 690
13. Blaes, O., Warren О., к Madau, P. 1995, ApJ, 454, 370
14. Bondi, H. 1952, MNRAS, 112, 195
15. Bondi, H., k Hoyle, F. 1944, MNRAS, 104, 273
16. Boris, J.P., k Book, D.L., ???? // 1973, J. Comput. Phys., 11, 38.
17. Colpi, M., Turolla, R., Zane, S., k Treves, A. 1998, ApJ, 501, 252
18. Colpi, M., Geppert, U., k Page, D. 2000, ApJ,
19. Cordes, J.M., k Chernoff, D.F. 1998, ApJ, 505, 315
20. Cordes, J.M., Romani, R.W., k Lundgren, S.C. 1993, Nature, 362, 133
21. Cui, W. 1997, ApJ, 482, L163
22. Davidson, K., k Ostriker, J.P. 1973, ApJ, 179, 585
23. Davies, R.E., Fabian, A.C., k Pringle, J.E. 1979, MNRAS, 186, 779
24. Davies, R.E., k Pringle, J.E. 1981, MNRAS, 196, 209
25. Duncan, R.C., k Thompson, C. 1992, 392, L9
26. Eisner, R.F., k Lamb, F.K. 1977, ApJ, 215, 897
27. Goldreich, P., k Julian, W.H. 1969, ApJ, 157, 869
28. Goodson, A.P., Winglee, k Böhm, K.H. 1997, ApJ, 489, 199
29. Hansen, B.M.S., k Phinney, E.S. 1997, MNRAS, 291, 569
30. Hayashi, M.R., Shibata, K., k Matsumoto, R. 1996, ApJ, 468, L37
31. Havnes, O., k Conti, P.S. 1971, A&A, 14, 1
32. Havnes, O 1979, AkA, 75, 1979
33. Heyl, J.S. k Kulkarni, S.R. 1998, ApJ, 506, L61-L64
34. Hoyle, F., k Lyttleton, R.A. 1939, Proc. Cambridge Phil. Soc., 36, 323
35. Igumenshchev, I.V., k Narayan, R. 2002, ApJ, 566, 137
36. Ikhsanov, N.R., k Pustil'nik, L.A. 1996, AkA, 312, 338
37. Ikhsanov, N.R. 2002, 381, L61
38. Illarionov, A.F., k Sunyaev, R.A. 1975. AkA, 39, 185
39. Kazhdan, Ya.M., k Murzina, M. 1994, MNRAS, 270, 351
40. Kazhdan, Ya.M., k Lutskii, A.E. 1977, Astrophysics, 13, 301
41. Koldoba, A.V., Lovelace, R.V.E., Ustyugova, G.V., & Romanova, M.M. 2002, AJ, 123, 2019
42. Kouveliotou, et al. 1994, Nature, 368, 125
43. Kouveliotou, et al. 1999, ApJ, 510, L115
44. Kulkarni, S.R. k Frail, D.A. 1993, Nature, 365, 33
45. Lai, D., Chernoff, D.F., k Cordes, J.M. 2001, astro-ph/0007272
46. Lamb, F.K., Pethick, C.J., k Pines, D. 1973, ApJ, 184, 271
47. Landau, L.D. k Lifshitz, E.M. 1960, Electrodynamics of Continuous Media (Pergamon Press: New York), ch. 8
48. Lipunov, V.M. 1992, Astrophysics of Neutron Stars, (Berlin: Springer Verlag)
49. Livio, M., Xu, C., k Frank 1998, ApJ, 492, 298
50. Lovelace, R.V.E., Romanova, M.M., k Bisnovatyi-Kogan, G.S. 1995, MNRAS, 275, 244
51. Lovelace, R.V.E., Romanova, M.M., k Bisnovatyi-Kogan, G.S. 1999, ApJ, 514, 368
52. Lovelace, R.V.E., Romanova, M.M., k Bisnovatyi-Kogan, G.S. 2002, in preparation
53. Nelson, R.W., Salpeter, E.E., k Wasserman, I. 1993, ApJ, 418, 874
54. Madau, P., k Blaes, O., 1994, ApJ, 423, 748
55. Manchester, R.N. k Taylor, J.H. 1977, "Pulsars", ed. W.H. Freeman and Company, San Francisco
56. Miller, K.A. k Stone, J.M. 1997, ApJ, 489, 890
57. Matsuda, T., Sekino, N., Sawada, K., Shima, E., Livio, M., Anzer, U. k B||orner, G. 1991, Astron. Astrophys. 1991, 248, 301
58. Michel, F.C. 1977a, ApJ, 213, 836
59. Michel, F.C. 1977b, ApJ, 214, 261
60. Michel, F.C. 1977c, ApJ, 216, 833
61. Narayan, R., k Ostriker, J.P. 1990, ApJ, 352, 222
62. Nishida, A., Baker, D.N., k Cowley, S.W.H. (eds) 1998, "New Perspectives on the Earth Magnetotail", Geophysical Monograph 105, American Geophysical Union, Washington, DC
63. Ostriker, J.P., Rees, M.J., k Silk, J. 1970, Astrophys. Lett. Commun., 6, 179
64. Ostriker, J.P., McCray, R., Weaver R., k Yahil, A. 1976, ApJ, 208, L61
65. Pogorelov, N.V., Ohsugi, Y., k Matsuda, T. 2000, MNRAS, 313, 198
66. Popov, S.B., Colpi, M., Treves, A., Turolla, R., Lipunov, V.M., & Prokhorov, M.E. 2000, ApJ, 530, 896
67. Romanova, M.M., Ustyugova, G.V., Koldoba, A.V., & Lovelace, R.V.E. 2002, ApJ, 578, 420
68. Romanova, M.M., Toropina, O.D., Toropin, Yu.M., & Lovelace, R.V.E. 2003, ApJ, 588: 400-407
69. Ruffert, M. 1994a, ApJ, 427, 342
70. Ruffert, M. 1994b, Astron. Astrophys. Suppl. Ser. 1994, 106, 505
71. Rutledge, R.E. 2001, ApJ, 553, 796
72. Sakashita, S. 1974, Astrophys. Spase Sci., 26, 183
73. Sakashita, S. к Yokosawa, M. 1974, Astrophys. Spase Sci., 31, 251
74. Самарский, А.А., Теория разностных схем, M.: "Наука", 1977.
75. Savelyev, V.V., Toropin, Yu.M., к Chechetkin, V.M. 1996, Astronomy Reports, 40, 494
76. Shvartsman, V.F. 1971, Soviet Astron. AJ, 14, 662
77. Shvartsman, V.F. 1970, Radiofizika, 13, 1852
78. Shapiro, S.L., к Teukolsky, S.A. 1983, "Black Holes, White Dwarfs, and Neutron Stars", (Wiley-Interscience)
79. Stella, L., White, N.E., к Rosner, R. 1986, ApJ, 308, 669
80. Strang, J., 1968, SIAM J. Numer. Anal., 5, 506.
81. Thompson, С., к Duncan, R.C. 1995, MNRAS, 275, 255
82. Thompson, С., к Duncan, R.C. 1996, ApJ, 473, 322
83. Toropin, Yu.M., Toropina, O.D., Savelyev, V.V., Romanova, M.M., Chechetkin, V.M., к Lovelace, R.V.E. 1999, ApJ, 517, 906
84. Toropina, O.D., Romanova, M.M., Toropin, Yu.M., к Lovelace, R.V.E. 2003, ApJ, 593: 472-480
85. Treves, А., к Colpi, M. 1991, AkA, 241, 107
86. Treves, A., Turolla, R., Zane, S., к Colpi, M. 2000, PASP, 112, 297
87. Treves, A. 2000, Turolla, R., Zane, S., k Colpi, M. 2002, PASP, 112, 769
88. Urpin, V.A., k Muslimov, A.G. 1992, MNRAS, 256, 261
89. Urpin, V.A., Konenkov, D., k Urpin, V. 1997, MNRAS, 292, 167
90. Vasisht, G., k Gotthelf, E.V. 1997, ApJ, 486, L129
91. Walter, F.M., k Lattimer, J.M. 2002, ApJ, 576, L45
92. Wang, Q.D., Li, Z.-Y., k Begelman, M.C. 1993, Nature, 364, 127
93. Wang, Y.-M., k Robertson, J.A. 1985, A&A 151, 361
94. Woodward, P., k Colella, P., The numerical simulation of two-dimensional fluid flow with strong shocks // 1984, J. Comput. Phys., 54, 115 173.
95. Zhukov, V.T., Zabrodin, A.V., k Feodoritova, O.B. 1993, Comp. Maths. Math. Phys., 33, No. 8, 1099