Новые методы модификации стероидов с помощью реакций кросс-сочетания тема автореферата и диссертации по химии, 02.00.03 ВАК РФ
Латышев, Геннадий Владимирович
АВТОР
|
||||
кандидата химических наук
УЧЕНАЯ СТЕПЕНЬ
|
||||
Москва
МЕСТО ЗАЩИТЫ
|
||||
2006
ГОД ЗАЩИТЫ
|
|
02.00.03
КОД ВАК РФ
|
||
|
московский ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М.В. ЛОМОНОСОВА
ХИМИЧЕСКИЙ ФАКУЛЬТЕТ Кафедра Органической Химии
На правах рукописи
УДК 542.971.2+547.558.4+547.254.7
ЛАТЫШЕВ ГЕННАДИЙ ВЛАДИМИРОВИЧ
НОВЫЕ МЕТОДЫ МОДИФИКАЦИИ СТЕРОИДОВ С ПОМОЩЬЮ РЕАКЦИЙ
КРОСС-СОЧЕТАНИЯ.
02.00.03 - органическая химия
02.00.08 - химия злементоорганических соединений
АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата химических наук
Москва - 2006
Работа выполнена в лаборатории элементоорганических соединений на кафедре органической химии Химического факультета МГУ им М.В, Ломоносова.
Научные руководители:
доктор химических наук, профессор Лукашев Николай Вадимович
академик РАН, профессор Белецкая Ирина Петровна
Официальные оппоненты:
доктор химических наук,профессор Краюшкин Михаил Михайлович
доктор химических наук, в,н.с. Козлов Владимир Андреевич
Ведущая организация: Российский университет дружбы народов, медицинский факультет
Защита состоится "22" ноября 2006 года в II00 на заседании Диссертационного Совета Д.501.001.69 по химическим наукам при Московском Государственном Университете им. М.В. Ломоносова по адресу: Москва, В-234, Ленинские Горы, МГУ, Химический факультет, аудитория 337.
С диссертацией можно ознакомиться в библиотеке Химического факультета
МГУ.
Автореферат разослан сутн*$ 2006 года.
Ученый секретарь Диссертационного Совета, доктор химических наук
Т.В. Магдесиева
Актуальность проблемы.
Разработка новых лекарственных препаратов путем модификация природных биологически активных веществ является одним из наиболее эффективных подходов к синтезу новых селективных терапевтических агентов. Среди многообразия доступных субстратов стероиды занимают особое положение, во многом связанное с их высокой активностью и участием в важнейших процессах, протекающих в организме. Общность структур основных стероидных гормонов и, в то же время, высокая зависимость их биологической активности от положения и природы заместителей делают стероидные субстраты идеальными предшественниками для синтеза соединений, гарантированно обладающих биологической активностью.
В целом ряде клинических ситуаций избыточные (или даже нормальные) количества продуцируемых организмом стероидных гормонов играют значительную роль в патогенезе гормон-зависимых заболеваний. Поэтому подавление биосинтеза этих гормонов путем ингибирования соответствующих ферментов является одним из путей достижения прогресса в клинике таких распространенных заболеваний как рак молочной железы, яичников, простаты и некоторых других. За последние 10-15 лет были синтезированы различные производные стероидов, проявляющие ингибирующее действие по отношению к ароматазе и 5-а-редуктазе, ответственных за накопление эстрогенов и андрогенов в организме человека. Для синтеза таких производных были широко использованы методы классической органической химии. Сравнительно недавно в химии стероидов начал использоваться новый, предоставляющий широкие синтетические возможности метод модификации стероидного скелета, основанный на реакциях кросс-сочетания. Однако круг используемых в таких реакциях стероидных субстратов был крайне ограничен. В первую очередь это связано с использованием в качестве субстратов трифлэтов енолов соответствующих кетостероидов, что практически не позволяло вводить заместители в положения стероида, отличные от 3-его и 17-го. В связи с этим, разработка новых методов модификации стероидов, основанных на использовании реакций кросс-сочетания галогенстероидов, катализируемых комплексами переходных металлов, с целью синтеза соединений, обладающих потенциальной фармакологической активностью, является актуальной и практически важной задачей. Цель работы
Разработка новых каталитических способов синтеза арил-, бензил- и алкинилзамещенных стероидов на основе реакций кросс-сочетания галогенстероидов с бори цинкорганическими соединениями, а* также с терминальными ацетиленами.
Научная новизна и практическая ценность работы
Разработан эффективный метод синтеза широкого круга ранее неизвестных б-арил-3-кето-Д4,*-стероидов ряда андростана и прегнана с помощью Р<1-катализируемой реакции
Сузуки, позволяющий получать продукты кросс-сочетания с высокими выходами. На примере хлормадинонацетата впервые показано, что данный метод применим к коммерчески доступным хлорпроиз водным стероидов. Показано, что для активации инертных винилхлоридов & реакции Сузуки-Мийауры необходимо использование в качестве катализаторов комплексов палладия с бидентатными лигандами.
Предложен простой н удобный способ синтеза б-арил-З-кето-Д'-стероидов, содержащих арильную группу, связанную с 5р3-гибридизованным атомом углерода, основанный на реакции Сузуки-Мийауры енолэфиров 6-бром-З-кетостероцдов с арнлборными кислотами. Данный метод позволяет избежать использования в реакциях кросс-сочетания малостабильных б-бром-Д4-стероидов, а также является значительно более эффективным и универсальным, чем известные некаталитические методы синтеза подобных соединений.
Впервые показано, что арилирование по Сузуки легкодоступных 4-бромстероидов приводит с высокими выходами к ранее неизвестным 4-арилпроизводным ряда андростана и прегнана.
Оптимизированы условия проведения реакции Сузуки 17-иодандроста-4, 1 б-диен-3 -она и разработан метод, позволяющий значительно улучшить имеющиеся методики арнлирования иодстероидов. Разработанный протокол использован для арилирования 3-иодандроста-3,5-диен-17-ола различными (гет)арилборными кислотами.
Разработан эффективный метод синтеза 6-алкин и лзам ещенных производных андростана с помощью Р(3-катализируемой реакции Соногаширы-Хагихары, позволяющий получать продукты кросс-сочетания с высокими выходами. Впервые показано, что использование в качестве сокатализатора AgCl в присутствии пиперидина и воды позволяет значительно увеличить активность каталитической системы.
Изучена возможность использования бензилщшкорганических соединений для введения бензильной группы в галогенстероиды. Данный метод позволяет в исключительно мягких условиях получать 3- и б-бензилзамещенные стероиды с высокими выходами. Реакция галогенстерокдов с трим ети лс ил илмети лци н кхлори д ом приводит к ранее неизвестным стероидным аллилсилаиам.
Публикации
По теме диссертации опубликовано 4 статьи и 4 тезиса докладов. Апробация работы
Материалы диссертации доложены на международной конференции студентов я аспирантов по фундаментальным наукам "Ломоносов-2004" (Москва, 2004), на конференции "Фундаментальные науки - медицине" (Москва, 2004), на 3-м московском международном
конгрессе "Биотехнология: состояние и перспективы развития" (Москва, 2005), на 21 конференции по изопреноидам, (Польша, 2005).
Объем и структура работы
Диссертационная работа изложена на'Страницах машинописного текста н состоит из введения, литературного обзора, обсуждения результатов, экспериментальной части и выводов, содержит^ таблиц? список цитируемой литературы включает НИ наименований. Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант № 04-03-32995) и Российской академии наук (программа Ю-ОХН).
Основное содержание работы
1. Арилирование хлор- и бром- А4-3-кетостероидоз
Арилирование хлормадинонацетата
В последние годы использование в реакции Сузуки соединений со связью С(зр2)-С1, в частности дешевых и доступных арилхлоридов, привлекает повышенный интерес. Поэтому, коммерчески доступный стероид, содержащий связь С(5р2)-С1 - синтетический прогестин хлормадинонацетат (1), является особенно привлекательным субстратом. Использование винилхлоридов в качестве субстратов в реакции Сузуки в литературе описано весьма скудно. Несколько работ посвящено арилированию высоко активированных субстратов, таких как р-хлоркетоны, вступающих в реакцию в мягких условиях, однако неактивированные субстраты остались практически неисследованными.
Поскольку комплексы никеля широко и успешно использовали для активации связи С-С1 в арилхлорндах, нами было исследовано - никель-катализируемое сочетание хлормадинонацетата 1 с 4-анизилборной кислотой.
1 2а
Наилучшие результаты были получены при использовании №(<1рре)С1г (Табл. 1, № 2) в абс, диоксане с КзРО* в качестве основания. Использование стерически затрудненного и электронодонорного СузР в качестве лиганда оказалось менее эффективным. По-видимому, основным фактором, влияющим на активность никелевого катализатора является "угол укуса" соответствующего лиганда, поскольку электронные эффекты практически не
изменяются в ряду исследованных лигандов (Табл. 1, № 1,2, 4, 5).
Табл. I. Выход продукта аршшрования 1 анизилборной кислотой при катализе комплексами никеля.1 ____________ ___
м Катализатор Выход, %* М Катализатор Выход, % *
I №(с1рр1П)С1г 32 4 ККРЬ2РМе):С1г 38
2 №(фре)СЬ 60 5 №(с1ррЬ)СЬ 31
3 №(Су3Р)гСЬ 26
1 10% [№], К1РО4 (3 экв), 4-МеОС6Н.В(ОН)3 (1.3 экв.);" По данным ЯМР 'Н.
Наиболее эффективно кросс-сочетание протекает в диоксане. В толуоле при катализе Щс1рре)СЬ выход продукта гораздо ниже (21%), в ДМФА и ацетонитриле образуется много неидентифицированных примесей и выход также невысок. Сравнимым с КзРО* по эффективности основанием является КгСО} - выход продукта аршшрования в этом случае составил 53% (Табл. 2, Кэ 6), При использовании других оснований образование продукта не происходит.
Табл. 2. Влияние природы основания на выход продукта арилирования 1 4-апнзнлборной кислотой.* ___
Л® Основание Выход, % Лг Основание Выход, %
1 №ОАс 0 5 СЙ^СОЗ 0
2 ЕЬИ 0 6 К;СОз 53
3 1-ВиОК 0 7 КЗР04 60
4 •и2со3 0
* 10% ЫМрреЮа, К] Р04, диоксан, 100"С, 48 часов.
В целом комплексы никеля оказались не слишком эффективными катализаторами, и достигнуть высокой конверсия исходного хлор стероида 1 не удалось.
Нами было исследовано катализируемое Р<3(РРЬ>2СЬ кросс-сочетание I с 4-анизилборной кислотой в диоксане в присутствии К2СО3. Однако в этих условиях в реакционной смеси отсутствуют даже следы продукта арилирования 2а. Катализируемое комплексами палладия кросс-сочетание по методу Сузуки часто приводит к высоким выходам продуктов при использовании водно-органических смесей в качестве растворителя. Однако проведение реакции в этих условиях может приводить к гидролизу ацетатной группы в I. Действительно, каггализируемое Р^РРИ^СЬ кросс-сочетание 1 с 4-анизилборной кислотой в водном диоксане в присутствии КгСО* приводит к смеси продуктов, содержащей арнлированный продукт 2а наряду с исходным соединением и смесью соответствующих деацетилированпых производных.
В то же время, использование в качестве катализаторов комплексов палладия с бидентастными или стерически затрудненными электронодонорными лигандами в абс. диоксане с К.;СОз как основанием приводит к выходам арилированного продукта 2л от умеренных до количественного (Табл. 3). Наивысшую активность показали комплексы Р<И с бидентатными лигандамн Р(1(ЛррЬ)СЬ и Рс^ррОСЬ.
1 2а
Табл. 3. Влияние палладиевого катализатора на арилирование 1 4- анкзилборной кислотой.*
Катализатор Выход, %" Катализатор Выход, %ь
Р^РЬЬСЬ 0 Р<КСу3Р)2СЬ 69
¡МСМеСЭДСЬ/фре 55 ра^рр^сь 92
Р(1(аррЬ)С12 100 раьсье 65
* 5% [РсЦ, 2 экв. КгССЬ, диоксан, 1004;, 24 ч;" по данным ЯМР 'Н;' Ь-2-МеОС(Л1Р(ВиОРг'
Для того чтобы выявить наиболее активную каталитическую систему, нами было исследовано катализируемое Рд((1ррЪ)СЬ сочетание 1 с 4-анизилборной кислотой при неполной конверсии исходного соединения. Лучшие выходы 2а были получены при использовании в качестве растворителя толуола (74%) (Табл. 4). Реакции в ацетонитриле, диоксане и ТГФ проходят медленнее, а в ацетоне и ДМФА не было зафиксировано даже следов 2а.
Табл. 4. Влияние природы растворителя на выход продукта арилирования 1 анизилборной кислотой." ____ _'
Растворитель Выход,% Растворитель Выход,%
МегСО 0 ТГФ 31
ДМФА 0 МеО* 43
Диоксан 30 Толуол 76
* 5% Рс1(аррЬ)С12, КдСО| (3 экв.), 4 часа, 100°С
Наиболее быстро реакция проходит при использовании в качестве основания К;ССЬ (Табл. 5). В то же время, реакция в присутствии других карбонатов щелочных металлов (Иа, Сэ) не идет. Умеренный выход продукта наблюдается при использовании фосфата калия (41%).
Табл. 5. Влияние природы основания на выход продукта арилирования 1 анизилборной кислотой. * _
Основание Выход, % Основание Выход, %
N3200) 0 КаОАс 8
СзгСОз 1 К3РО4 41
ЕЬИ 1 КгССЬ 74
' 5% Р<1(с1ррЬ>С12» РЬМе, 4 часа, ЮСС
В найденных оптимальных условиях нами было изучено арилнрование 1 различными
арилборными кислотами (Табл. 6):
Аг-В(ОН)2
5 % Рс1(с(ррЬ)С12
кгсо3
100°С о"
С1
1 2а-(
Табл. б. Выходы продуктов арилирования 1 различными арилборными кислотами.' Лг Продукт Растворитель Время, ч. Выход, % *
X?
МеО
х?
2а РЬМе 12 93
2Ь РЬМе 13 100
2с Диоксан 24 97
N_, РЬМе 91
^ 2(1 12
Он
Диоксан 11
2е Диоксан 24 43
РЬМе
2( 48 <10
Диоксан_
• АгВ{ОН)1 (1.5 экв), К2СО] (3 эк в.) " Препаративный выход.
С 4-фторфеши1борпой кислотой в толуоле реакция идёт медленнее, чем в случае с 4-метоксифенилборной кислотой, использованной для оптимизации условий. За 51 час реакция проходит на 89%, тоща как в диоксаие для завершения реакция достаточно 24 часов. В то же время, арилирование 1 3-толилборной кислотой, протекающее в толуоле с высоким выходом, проходит лишь на 11 % в дноксане за 12 часов. Использование арилборных кислот; содержащих сильные электроноакцепторные заместители приводит к значительному снижению выхода продукта кросс-сочетания. Так, реакция 1 с 3-ацетилфенилборной кислотой протекает только на 43 % в дноксане за 24 часа, а реакция с 4-карбоксифенилборной кислотой приводит лишь к следовым количествам продукта кросс-сочетания. Чрезвычайно инертной в реакции с 1 оказалась 2-тиенилборная кислота - через 46 часов выход продукта кросс-сочетания составлял <10%.
Несмотря на довольно высокие выходы продуктов арилирования 2а-д в реакции 1 с нуклеофильными арилборными кислотами, данный метод не позволяет с удовлетворительным выходом синтезировать б-арилстеронды, содержащие
гетероциклические и электроноакцепторные арильные группы. Поэтому, нами было исследовано кросс-сочетание более реакционоспособных 4- и б- бром стероидов. Арилирование 4-бромстероидов
Первоначально мы обратились к палладий катализируемой реакции Сузуки легкодоступных 4-бромстероядов. Катализируемое Рс1{РРЬз)2СЬ арилирование бромида 3 4-толилборной кислотой в абсолютном диоксане в присутствии К2СО3 в качестве основания приводит к чрезвычайно низкому выходу арилированного продукта 4а (8%). Комплекс палладия со стерически-затрудненным и электронодонорным трициклогексилфосфином является значительно более активным катализатором, однако выход продукта в данных условиях все равно остается умеренным. Оказалось, что использование в качестве растворителя толуола или ацетонитрила вместо диоксана позволяет провести реакцию с умеренными выходами (41%) даже с использованием легкодоступного Р(3{РРЬэ)гСЬ. Дальнейшая оптимизация условий проведения реакции показала, что кросс-сочетание гладко проходит в водном диоксане при катализе Рс1(РРЬз):СЬ, приведя к количественному выходу 4а.
Табл. 7. Оптимизация условий сочетания 3 с 4-толилборной кислотой._
Катализатора мольн. % Условия Выход 4а, % *
ра(ррьзьсь, 2% К2С03, диоксан, 100°С, 1.5 ч 8
ра(су3р)2сь, 2% КгСОэ, диоксан, 100°С, 1.5 ч 45
ра(ррь3)2сь, 2% КзСОз, толуол, ЮО'С, 1.5 ч 41
ра(ррьо1С12,2% КзСОз, МеСЫ, 100°С, 1.5 ч 41
Ра(РРЬз)зСЬ, 2% КгСОз, диоксан-НгО, 100°С, 1.5 ч 100
* по данным ЯМР 'Н
В этих условиях кросс-сочетание бромстероидов 3 и 5 с рядом арилборных кислот приводит к высоким выходам 4-арилированных продуктов 4а-(1 и 6а-(1 (Табл. 8).
Использование в качестве реагента 4-карбоксифенилборной кислоты требует увеличенного количества основания (3 экв.) и более продолжительного нагревания реакционной смеси.
3 Х.У - О 4а-0
5 X = Ас. У = ОН ва-а
Табл. 8. Выходы продуктов арилирования 4-бромстероидов. *
Субстрат Арипборная кислота Время, ч Продукт Выход, %
3 1.5 - 4а 95
3 МеО—В(ОН)2 1.5 4Ъ 93
3 Р—В(ОН)2 1.5 4с 90
3 но2с-^~^>-в<он)г 2.5 4(1 88 ь
5 —В(ОН)2 1.5 ба 98
5 МеО——В(ОН)2 1.5 6Ь 97
5 В(ОН)2 1.5 бс 89
5 2.5 6Л 79 ь
* 2 % Р<КРРЬ»)*СЬ, 2 з>кв. К2СО), диоксан-^О, Ю0°С
* 3 экв. К,С01
Арилирование 6-бром-Д4в-3-кетостероидов
В аналогичных условиях, арилирование 6-бромандроста-4,6-д иен - 3,17-д иона (7) различными арилборными кислотами также проходит с высокими выходами. Однако в некоторых случаях продукт реакции после хроматографирования содержит примесь окиси трифенилфосфина. Использование в качестве предшественника катализатора Рс1(с1ррОС1г вместо Р(1(РР11з)гСЬ позволяет получить не загрязненный продуктами разложения катализатора арилстероиды 8Г-Ь с достаточно высокими выходами.
Реакция применима к широкому кругу арилборных кислот, содержащих как электронодонорные, так и электроноакцепторные заместители. Арилирование стероида 7 гетарилборными кислотами проходит с выходами от хороших до высоких, при этом использование более сильного основания КзРО< является предпочтительным.
Табл. 9. Выход продуктов арилирования 7 различными (гет)арил борными кислотами.^
Продукт Аг Выход, % * Продукт Аг Выход, % ь
8а 96 8е *Хгч 99
- 8Ь МеО-/ 87 8Г но2с-<>! 90е 8711'
8с гОн 93 оу
8<1 82 811 764е
' 2% Р<1(РРЬз)зС11, К2СО1 (2 экв,), дноксан - Н2О (3:1).
* Препаративный выход
1 -4% Р1ьРО в продукте по данным ЯМР 'Н. 4 Ра(<1ррОС1, в качестве катализатора.
* К3РО4 в качестве основания.
Катализируемое Р<3(дрр!)С12 арнлироваиие бромстероида 9 арилборными кислотами
протекает достаточно быстро (не оптимизированное время 5 ч) при нагревании в ацетонитриле в присутствии КЭР04 (Табл. 10). Реакция 7 с 2-тисншхборноЙ кислотой протекает медленнее, однако в отличие от хлорстеронда I выход продукта составляет 94% после 24 ч.
Табл. 10. Выход продукта арилирования 9 различными арилборными кислотами. * Продукт Д Выход, % * Продукт К Выход, % *
2а мес~{>| 93 2с 93
2Ь 82 2г 94
* 5% ра^ррось, 2 экв. К3РОч, МеСМ, 100°С, 5 ч. ь препаративный выход с 24 ч. Выход по данным ЯМР 'Н.
Синтез 6-арил-д4-стероидов
Каталитический синтез б-арилированных стероидов типа 10, содержащих аридьную группу, связанную с зр3-гибридизованным атомом углерода, предполагает реакцию аллильного комплекса палладия с синтетическим эквивалентом арил-аниона. Хотя аллильные комплексы палладия со стероидами хорошо известны, они были использованы только в стехиометрических реакциях с "мягкими нуклеофилами".
Попытка получения арнлкрованного продукта 10а с помощью реакции Сузуки 6-бромаидрост-4-ен-3,17-диоиа (На) с аиизилборной кислотой приводит исключительно к андроста-4,6-диен-3-17-диону (12), образующегося, по-видимому, в результате дегидробромнровшшя без участия палладиевого катализатора. Чтобы устранить возможность реакции элиминирования, б-бромстероиды 11а и lib, содержащие лабильный аллшгьный бромид, были превращены действием триметилортоформиата в метиловые эфиры соответствующих енолов. Полученные продукты, содержащие бром, связанный с 5р2-атомом углерода, могут быть введены в реакции кросс-сочетания. Последующий гидролиз позволяет получить соединения, формально являющиеся продуктами кросс-сочетания с соответствующими нестабильными аллильнымн бромидами.
11», 13а. 14a-g, 10а-д X.Y - О 11b, 13b. 14h, 10h X » Ac, Y » OAc
Енолэфиры типа 13 содержат метоксн-группу, сопряженную с атомом брома в положении 6, что обьпшо отрицательно сказывается на активности подобных субстратов в окислительном присоединении к комплексам Рс1(0). Однако реакция 13а с арилборными кислотами при кипячении в водном диоксане в присутствии 2% РсЦТРЬз^СЬ или Рс1(с1рр£)СЬ проходит с высокими выходами за 3-5 часов. Последующий гидролиз винилового эфира конц. соляной кислотой после выделения с помощью колоночной хроматографии или непосредственно в реакционной смеси после окончания реакции кросс-сочетания позволяет получить высокие выходы соответствующих продуктов 10. Данная последовательность реакций применима к различным арилборным кислотам, в том числе гетероциклическим и содержащим алектроноакцепторные заместители. Аналогичный метод может быть применен для синтеза 6-арил производных 17-ацетокси-прегн-4-ен-3,20-диона, однако при этом необходимо проводить реакцию кросс-сочетания в условиях, исключающих воду (абс. ацетонитрил, К3РО* в качестве основания).
Термодинамически наиболее стабильная а-конфигурация арильной труппы в положении б продуктов 10а-Ь была установлена на основании данных спектроскопии ЯМР 'Н. В случае соединения 10с] в спектре ЯМР 'Н наблюдаются дополнительные группы сигналов (-10 мольных %), которые можно отнести к менее устойчивому р-изомеру. Табл. 11. Выходы ба-аршьА*-стероидов 10а-Ь.___
Продукт
Аг
X, Y Катализатор Основание Время, у Выход, % *
10а
10Ь
Юс
10d
10е
10f
Хгч
ô-*
Acn^^A
U
10g
lOh
О
Pd(PPh3)2Ch
Pd(dppf)Cb
Pd(PPhj)2Cla Pd(dppf)Ch Pd(dppf)Cb
Pd(dppf)Cl2 Pd(dppf)Cb
К2СОз
К2СОз
K3CO3 KîCOj KiCOî
К2С03
K3po<
4.5
72
84
90
80
69
85
Ac, OAc Pd(dppf)Cl2 K3PO4b
83
70
"N
\
Ts
_X?_
•Препаративный выход из I4a ь Реакция в абс. MeCN
2. Алкинилирование 6-бромстероидов
Изучение влияния различшах пашгадиевых катализаторов на реакцию б-броменолэфира 13а с фенилацетнленом в присутствии Cul и Et3N в водном диоксане (реакция Соногатиры-Хагихары) показывает, что лигандное окружение палладия оказывает значительное влияние на выход продукта алкинилирования 15а (Табл. 12). Выход 15а составил 53% при использовании в качестве катализатора Pd(PPh3)4, в то время как Pd(PPh3>2Cb приводит к значительно более низкому выходу продукта. Интересно отметить, что "гетерогенная" каталитическая система Pd/C + PPfo проявляет активность, сравнимую с Pd(PPh3)2Cl2- В то же время "безлигандный" катализатор Pd(MeCN)2Cl3 не дает даже следовых количеств 15а, а палладиевые катализаторы с бидентатными лигандами оказались несколько менее эффективными, чем Pd(PPfo)2Cb.
о
О
МеО
Ph—= (1.1S экв.)
5% [Pd] 10% MX основание (2 экв.) 100°С
МеО'
\\
Вг
13а
15а PU
Табл. 12, Влияние природы катализатора на выход продукта алкинидироваиия 15а.'
Катализатор Выход, % * Катализатор Выход, %4
Pd(MeCKhCb 0 Pd/C + PPfo 21
Pd(dppb)Ch 12 Pd(PPh3)2Cli 23
Pd(dppf)Ch 21 Pd(PPh3)4 53
15% [Pd], 10% Cul, 2 экв. Et)N, диоксан-HiO (3:1), 10СГС,4 часа
1 no данным ЯМР 'H.
Следует отметить, что для всех использованных катализаторов единственным продуктом конверсии 13а является алкинилированный продукт 15а. В то же время, в данном случае нам не удалось осуществить хроматографическое разделение продукта 15а и исходного стероида 13а. Поэтому для препаративного получения 15а было необходимо найти условия для количественного протекания реакции кросс-сочетания.
Катализируемое Pd(PPhj)4 / Cul сочетание оказалось чрезвычайно чувствительным к природе растворителя и основания, используемого в реакции. Так, образование продукта 15а не наблюдается как при использовании'в качестве растворителя широко используемого для этой цели EtjN, так и относительно недавно введенного в практику реакции Соногаширы ТГФ (Табл. 13). В то же время реакция протекает с умеренными выходами как в полярном ацетонитриле (32%), так и в малополярном пиперидине (55%). Добавление в реакционную смесь h-BimNT, способствующего образованию анионных комплексов палладия, не приводит к изменению выхода продукта алкинилирования 15а. Добавление же воды, напротив, значительно увеличивает выход 15а. Наилучшие выходы продукта наблюдаются в водном пиперидине (78%) и водном дноксане (53%). Следует отметить, что оптимальная объемная доля воды существенно зависит сгг природы органического сорастворителя, и при ее повышении может происходить резкое снижение выхода 15а (с 44% до 12% для ацетоннтрила, с 78% до 30% для пиперидина). Использование в водном дноксане (3:1) поташа или аммиака в качестве основания незначительно влияет на выход продукта кросс-сочетания по сравнению с триэтиламином. В то же время, реакция в присутствии пиперидина приводит к продукту 15а с выходом 95%. Дальнейшее увеличение продолжительности реакции не позволяет достичь полной конверсии 13а в 15а. Недавно появились сообщения, что соли серебра могут быть использованы в качестве со катализаторов в реакции Соногаширы вместо иодида меди (Ï), В нашем случае замена иодида меди(1) на соли серебра (AgCl или AgBr) приводит к 100% конверсии 13а. Однако для подавления
образования побочных продуктов необходимо увеличение количества пиперидина в реакционной смеси. Выход продукта сочетания 15а после колоночной хроматографии на силикагеле составил 80%.
Растворитель /основание Выход, % * Растворитель/основание Выход, % ь
Бензол / Е13К 0 ТГФ/Е1зК 0
СНС1э / 0 Диоксан-Н:0 (19:1)/Е1зИ 10
Е13К 0 Диоксан - НгО (3:1) / Ее3И 53
МеСИ / Е1зЫ 32 Пиперидин 55
МеСМ- НгО (19:1) / 44 Пиперидин - НгО (19:1) 78
МеСМ-Н20(3:1)ШзК 12 Пиперидин - Н20 (3:1) 30
МеСИ / ВшЫ1 (2 экв.) / Е13И 31 Диоксан —Н20 (3:1) / Пиперидин 95
Диоксан - Н20 (3:1) / Шз™„. 66 Диоксан - Н30 (3:1) / К2С0з 43
* 5% Ра(РР1ъ)«, 10% Си!, 4 часа, 100°С ь По данным ЯМР 'Н
Кросс-сочетание 13а с пропаргиловым спиртом (Табл. 14) в водном диоксане (3:1) в присутствии пиперидина и каталитической системы Рс1(РРЬ3)4/Си1, в отличие от аналогичной реакции 13а с фенил ацетиленом, не приводит даже к следовым количествам продукта алкинилирования 15Ь. В то же время, использование в качестве сокатализатора АцС1 позволяет получить хороший выход продукта при некотором увеличении времени протекания реакции. Дальнейшее увеличение активности каталитической системы достигается путем добавления 40 мольных % н-ВшЫ+Вг", позволяющего достичь полной конверсии исходного галогеннда 13а.
Табл. 14. Выход продукта алкинилирования 15Ь в реакции 13а пропаргиловым спиртом.* Катализатор Время, ч. Выход, %*
Р<1(РР11з)4 / Си1 4 0
ра(арр0С12/АвС1 4 22
Р(1(РРЬз)< / AgCl 4 5!
ра(ррки/А§с1 24 78
Ра(РРЬз)4^С1 / 40% ВщИВг 24 100
* 5% Р(1(РРЬз)4, 10% Си1(АдС1), диоксан-НаО-пипериднн=2:1:1, 100°С
* По данным ЯМР 'Н
Реакция с ацетиленами, содержащими акцепторные, заместители, в системе водный диоксан - пиперидин осложняется сопряжённым присоединением амина по тройной связи. Данный процесс является единственным путем протекания реакции в случае 4-ннтрофенилацетилена. Присоединение к менее эле ктр о под ефи цнтному 4-цианофеннлацетилену проходит медленнее, и выход продукта алкниилнровапия составляет 17 % (по данным ЯМР 'Н).
Реакция Соногашнры более реакционоспособного бромстероида 7 с различными
терминальными ацетиленами а большинстве случаев проходит значительно лучше, чем с 13а (Табл. 15). Так кросс-сочетание с февилацетиленом проходит при катализе Pd(PPb)4 с сокаталнзатором Cul в водно-дноксановой системе в присутствии пиперидина как основания за 4 часа. Аналогично, реакция с пропаргиловым спиртом не требует применения AgCl в качестве сокатализагора.
О . О
Н—~ <13 экв.)
5% Pd(PPh3)4 10% MX диоксан - Н20 (2:1) пиперидин (2 экв.)
Ю0°С 16a-d
Табл. 15. Выход продукта алкинилирования 7 различными ацетиленами.' Продукт Д Сокатализапюр Время, ч. Выход, % *
1ба Ph Cul 4 100 (86)
16Ь CHjOH Cul 4 100 (72)
н-Am Cul 4 95
16с н- Am Cul 7 100
н-Am AgCl 4 100
16d CHjNMe2 Cul 4 100
* 5% Pd(PPh,K 10% Cul (AgCl), 2 экв. пиперидина, диоксашНзОЗ:!, Ю0°С k По данным ЛМР 'Н. Препаративный выход в скобках.
Продукты алкинилирования 7 фенил ацетил ен ом и пропаргиловым спиртом были
получены с выходами 86% и 72% соответственно. С гептаном-1 реакцию удалось довести до
конца в присутствии Cul при 50% избытке ацетилена и увеличении времени. При
использовании в качестве сокатализагора AgCl реакция проходит за 4 часа с 30% избытком
ацетилена. К,М-диметшгаропаргиламин реагирует с 7 со 100% конверсией в условиях
аналогичных использованным в случае фенил ацетилена или пропаргилового спирта.
3. Арилирование 3- и 17- иодстероидов
Ранее для введения арильных групп в 3- и 17-е положения стероидного скелета преимущественно использовались соответствующие трифлалы енолов кетостероидов. Сведения о реакционной способности иодстероидов крайне ограничены. По имеющимся в литературе данным реакция Сузуки с 17-иодстероидами проходит значительно медленнее, чем с соответствующими 17-трифлатами енолов. Кроме того, выходы продуктов кросс-сочетания часто неприемлемо низкие. С целью разработки надежного и простого метода арилирования иодстероидов нами была предпринята попытка оптимизации условий реакции Сузуки 17-иодандроста-4,16-диен-3-она (17) с 4-анизилборной кислотой.
Табл. 16. Выходы продукта кросс-сочетания 18 в различных растворителях.'
Содержание в конечной смеси,
Растворитель -
г 17 18 19
Толуол 33 65 2
Толуол - вода (3:1) 40 57 3
Диоксан 52 45 3
Дноксан - вода (3:1) 11 82 7
ДМФА-вода (19:1) 13 86 1
ДМФА-вода (3:1) 0 69 31
Ацетонитрил 50 45 5
Ацетоннтрнл - вода (3:1) 24 74 2
• 2% РсКРРЪзЬСЬ, КгСОз, 100°С, 3 ч.
* по данным ЯМР 'Н
Реакция протекает с умеренной конверсией за 3 часа в толуоле и приводит к смеси 17-(4-метокснфенил)андроста-4,1б-диен-3-она (18) и андроста-4,16-диен-З-она (19) (продукт протодегалогенирования). Конверсия и соотношение продуктов изменяются незначительно при использовании безводных растворителей (Табл. 16). В то же время, выход арилированного продукта 18 значительно возрастает при использовании в качестве растворителей водно-органических смесей. Наилучшие результаты были достигнуты в реакции в водном диметил формам нде (19:1). Увеличение объемной доли воды в растворителе позволяет добиться полной конверсии 17, однако при этом значительно возрастает количество продукта протодегалогенирования (31%).
Наиболее эффективными катализаторами реакции оказались комплексы Р^РРЬз^СЬ (выход 86%), Рс1((1Ьа)2 / ВШАР и Ра(РРШ)4 (72%) (Табл. 17). Использование в качестве лигандов электронодонорных стерически затрудненных фосфинов СузР и ^ВщР приводит к увеличению выхода дегалогенированного продукта.
Табл. 17, Влияние природы предшественника катализатора на выход 18*
Катализатор 17 18 19
. ра(ррь)4 26 72 2
Рс1(РРЬз)гСЬ 13 86 I
Р(1(ёрр0СЬ 42 57 1
р<1(аррЬ)С11 36 63 1
Р<1(СузР)2СЬ 11 82 7
Р(1(ТМЕОА)СЬ 52 47 1
Ра(ёЬа)! + 2[0-Ви)зРН]ВР< 57 36 7
ра(аьа)г + В1ЫАР (3%) 24 75 1
• 2% Р^РРЬ^СЬ, К,СОь ДМФА-НзО (19:1), 100°С, 3 ч.
* по данным ЯМР1Н
Мы предположили, что данный результат связан с увеличением нежелательных стерических взаимодействий между лигандом и метальной группой С18 субстрата, замедляющих процесс трансметаллирования или восстановительного элиминирования. Действительно, применение оптимизированных условий для реакции 4-метоксифенилборной кислоты с 3-иодандроста-3,5-диен-17-олом (20) приводит к полной конверсии исходного винилиодида без образования продукта протодегалогенирования. Арилированные стероиды 21а-Г были выделены с выходами от умеренных до хороших с помощью колоночной хроматографии (Табл. 18).
РН . ОН
В(ОН)2
4% Рс1(РРЬ3)2С12 К2С03, ДМФА:Н20 100°С, 4 ч
20
Продукт Аг Выход, % * Продукт Аг Выход, % *
21а 50 2Ы 77
21Ь 57 21е ЛС^Л 54
21с 70 1М О* 66
• 4% Ра(РРЬ5)1Си, КзСОз, ДМФА-ЬЬО (19; I), 100°С, 4 ч;" препаративный выход
Таким образом, использование в качестве растворителя водного диметилформамида
позволяет за относительно короткое время получать хорошие выходы 3- и 17-арилстероидов
из соответствующих иодстероидов.
4. Бензилироеание и алкилирование галогенстероидов
Из литературных данных следует, что 6-алкил и б-бензил- замещенные стероиды проявляют антиароматазную активность. Однако алкилборные кислоты являются значительно менее реакционоспособными, чем арил- и виннлборные кислоты в реакции Сузуки. Бензилборные кислоты и их эфиры достаточно дороги, кроме того, их замещенные аналоги не являются коммерчески доступными. В то же время, бензилцинкорганические соединения легко получаются из соответствующих бензилбромндов под действием активированного цинка и их использование в реакциях кросс-сочетания хорошо документировано.
Оптимизация условий проведения реакции б-бромандроста-4,б-диен-3,17-д иона 7 с с двухкратным избытком раствора бензилцинкбромида (5% "РсГ, 100°С, б ч) показала, что наиболее высокие выходы продукта бензилирования 22а наблюдаются при использовании полярных растворителей, среди которых ДМФА оказался наиболее предпочтительным (Табл. 19). Образование 22а в этих условиях сопровождается небольшим количеством
Табл. 19. Влияние растворителя на соотношение продуктов реакции кросс-сочетания 7 с бен-зилцинкбромидом.*____
Растворительь Содержание е конечной смеси, %с
7 22а 12
Диоксан 88 9 3
Толуол 75 20 5
ДМФА 14 83 3
ДМА4 50 47 3
ДМСО 44 53 3
4 5% ра(ррь5)3С!1, 100°с, 6 ч; * Содержит -5% ДМФА;
"По данным ЯМР 'Н; * диметилацетамнд.
Наиболее эффективным катализатором оказался Р^РРЬ^СЬ (Табл. 20). Довольно
высокий выход (75%) получен при использовании Р<Л/С + 2РРЬ3. Палладиевые комплексы со
стерически затрудненными электронодонорными лигандами проявили не очень высокую
активность (выходы около 50% и существенное количество дегалогенированного продукта
12), а комплексы палладия с бидентатными лигандами оказались малоэффективны.
Увеличение количества Рс1(РРЬ5)2С12 до 10 мольн. % благоприятно сказывается на
протекании реакции и позволяет добиться 100% конверсии 7 в ДМФА как при 100°С (6 ч),
так и при комнатной температуре (16 ч). При этом в качестве единственного продукта был
получен б-бензиландроста-4,6-диен-3 Д 7-дион (22а), который был выделен с выходом 88%.
Табл. 20. Влияние предшественника катализатора на соотношение продуктов реакции кросс-сочетания 7 с бензилцинкбромидом.*___
Содержание в конечной смеси, %
Катализатор
7 22а 12
ра(ррьз>4 28 68 4
Рс1(РРЬ)2СЬ 14 83 3
Рс1(Су3Р)2СЬ 47 48 5
Рс1(с1Ьа)3/ 10% 1-Ви3РН+ВР«- 51 45 4
Ра(аЬа)!/7%ВШАР 98 ' 1 1
ра/с + 2ррь3 24 75 1
ра(ёррЬ)С12 73 23 4
раслррось 85 11 4
•5% [Рс1], ДМФА, 100'С, б ч. ь По данным ЯМР 1Н.
Данная реакция была распространена и на другие бензилцинкорганическне соединения (Табл. 21). Реакция со стерически затрудненным трнметилсшгалметилцинкхло-ридом гладко протекает в найденных условиях, приводя к стероидному аллилсилаиу (22(1) с высоким выходом (94%), однако использование в реакции электроноакцепторного пентафторбензилцннкбромида оказалось безуспешным.
Табл. 21. Выходы продуктов Рс1-катализируемого анкетирования 6-бромстероидов.'
№ Я Х,У Выход, % № Л Выход,%
22а 0 88 22 Ь О 85 С1 22с —О 95 22(1 -Э!-! О 94 / 4 22е Ас,ОАс 92 С) 22Г ° 0 Р Р
4 10% РскРРЬзЮг, ДМФА, 16-24 ч.
Следует отметить неожиданно высокую чувствительность реакции к природе используемого бромсгероида: в то время как реакции с б-бромстероидами 7 и 9 протекают достаточно легко, сочетание с его винилогом - 4-6ром андро ст-4-ен-3,17-дноном (3) в оптимизированных условиях не приводит даже к следам 4-бензилированного продукта. Аналогично, бензнлирование б-бром-3-метоксиандроста-3,5-диен-17-она 13а, содержащего электронодонорную метокси-группу в диеновой системе, происходит чрезвычайно медленно (несколько суток), требует использования 10% Рс1(<1Ьа)1 / 20% г-Ви3РН+ВР«* в качестве катализатора и приводит к большому количеству протодебромированного продукта.
Обычно вннилиодиды являются более реакционоспособнымн соединениями в
реакциях кросс-сочетания по сравнению с винилбромидами. Однако также как и в реакции 17-иодстероидов с арилборнымн кислотами, кросс-сочетание 3- и 17-иодстероидов с цинкорганическими соединениями протекает неожиданно медленно. Даже после перемешивания в течение 40 часов 17 в присутствии 10 мольных % Рс1(РРЬз)2С11 и избытка бензилцшпебромида, реакционная смесь содержит 17% исходного 17 и 83% продукта кросс-сочетания.
Реакция 17 с о-хлорбензилцинкбромидом в ДМФА в тех же условиях за 64 часа проходит на 70%. Дальнейшее увеличение количества катализатора, избытка цинкорганнческого соединения или нагревание реакционной смеси не приводит к увеличению конверсии 17.
Использование в качестве субстрата 3-ацетокси-17-иодандроста-4,16-диена (24) в реакции с бензилцннкбромидом в диметилформамцде в присутствии 10 мольных % Рс1(РРЬз)2С12 приводит к 90% конверсии исходного (по данным ЯМР 'И) после перемешивания при комнатной температуре в течении 64 ч.
Тем не менее удается провести почти количественное кросс-сочетание 17 с триметилсилилметилцннкхлоридом при комнатной температуре в диметилформамиде в присутствии 10 мольных % Р^РРИз^СЬ и избытка триметнлеилилметилцннкхлорида в течение 48 часов. После выделения методом колоночной хроматографии 17-(триметилсилшгметил)андроста-4,1 б-дисн-3-он (23) был получен с выходом 98%.
Несмотря на отсутствие стернческих затруднений, кросс-сочетание 17-ацетокси-З-исдандроста-3,5-диена (25) с бензилцннкбромидом проходит чрезвычайно медленно (по сравнению с 7) в диметилформамиде при комнатной температуре в присутствии 10 мольных % Р<1(РРЬз)гСЬ (72 ч). 17-ацетокси-3-бёнзштандроста-3,5-дней (26а) был получен с выходом 80% без образования побочных продуктов. Следует отметить, что при использовании избытка щшкорганического реагента возможно ввести в реакцию субстрат, содержащий свободную гидроксильную группу.
а =РИ, Ь = 2-С1-С6Н4, с = ТМЭ
24
СЖ' ( ОЯ*
20 Н' = Н 26а-с
23 Н' * Ас
Продукт Винилиодид Я Выход, %
23с 17 -н 98
2ба 25 О* /=\ 80
26Ь 26с 25 20 <0^ а -О 85 86
5. Биологическая активность полученных соединений1
Противоопухолевая активность синтезированных соединений оценивалась с помощью ингибирования индуцированного тестостероном роста культуры клеток карциномы мешочной железы человека МСР-7. Представленные результаты (Рис. 1) (в процентах относительно холостых опытов с тестостероном и без него) позволяют сделать вывод, что из полученных соединений наиболее активными являются 6-замещенные продукты (соединения 8,10 и 16). 6-арил-Д4 (10) и 6-арнл-Д4,4 (8) производные проявляют близкую активность, В то же время, активность арилированных продуктов существенно зависит от природы заместителей в положении 17 стероидного скелета: наличие в этом положении объемных заместителей практически полностью подавляет антиароматазную активность (2 и 6). Заметная активность 17-триметилсилилметильного производного 23с может быть связана с удалением триметилсилильной группировки в процессе метаболизма. Введение заместителя в положение 4 (4с) или замена 3-карбонильной группы на арильную или бензильную (серия 21, 26с) приводит к почти полной потере активности. Соединение 21с, полностью ингибирующее индуцированный тестостероном рост клеток может показаться исключением из этого ряда. Однако по данным биологических испытаний, механизм его влияния на рост клеток может быть не связан с ингибированием ароматазы и требует дальнейшего уточнения.
1 Мы благодарим д.м.н. А.Н. Лукашева за проведенное исследование биологической активности полученных продуктов.
31а
21Ь
21 е
21(1
210
211
4с
26с
6Ь
ее
еь
8с
во
вг
89
224
16а
1вЬ
2а
2Ь
2о 2(1
10а
10Ь 10с
10«
1М
10д
ЧОЬ
23с
ОН
—I— 10%
204
30%
—,— 40%
—,—
50%
60%
70%
вон
еон
юо%
Рис. 1: Ингибирование индуцированного тестостеронам роста клеток МСР-7.
(Меньше — лучше).
Эксперименты по молекулярному докингу синтезированных соединений, проведенные в лаборатории ОС Химического ф-та МГУ" с использованием модели активного сайта ароматазы (А.О.Ра\та, А.СауаШ, М.МазеП1, А.Сагогй, М.Иесапаип!, 2004) показывает, что блокирование стероидом активного центра (гем с атомом железа) может протекать при подходе к аггому железа гетероагтомов (например, кислорода карбонильной группы) из положения 3- или 17. При этом рядом с активным центром имеется достаточно большой гидрофобный карман. Поэтому, введение гидрофобных заместителей подходящего размера в положение 6 молекулы стероида, действительно может приводить к увеличению его связывания с окружением активного центра, что может блокировать подход других стероидных молекул и способствовать проявлению антиароматазной активности синтезированных продуктов.
' Мы благодарим к.х.к., м.н.с. Беленикнна М.С. и К.Х.Н., в.их. Палюлина В.А. за проведенное моделирование взаимодействий полученных соединений с активным сайтом ароматазы.
Выводы
1. Разработан эффективный метод синтеза широкого круга ранее неизвестных 6-(гет)арил-3-кето-Д4'6-стероидов ряда андростана и прегнана с помощью Рс1-кагализируемого арилирования арилборными кислотами (реакции Сузуки-Мийауры).
2. Показано, что использование бидентатных лигандов позволяет ввести в реакцию Сузуки-Мийауры хлормадинонацетат, содержащий связь Сзрг-С1.
3. Преложен оригинальный, простой и удобный способ синтеза 6-арил-З-кето-Дч-стероидов, содержащих ар ильную группу, связанную с эр'-гибрид изо ванным атомом углерода, основанный на реакции Сузуки енолэфиров б-бром-3-кетостероидов с арилборными кислотами.
4. Разработаны эффективные методы синтеза 3- и 4-арилзамещенных стероидов.
5. Разработан эффективный метод синтеза 6-алкин ил замещенных производных андростана с помощью Р<1-катализируемой реакции Соногаширы-Хагихары. Впервые показано, что использование в качестве сокатализатора АдС1 в присутствии пиперидина и воды позволяет значительно увеличить активность каталитической системы.
6. Разработана методика, позволяющая в мягких условиях получать разнообразные бензилзамещенные стероиды с помощью Р<3-катализируемой реакции с циншрганическлми соед инениями (реакции Негиши).
Основное содержание работы изложено в следующих публикациях
1. N.V. Lukashev, G.V. Latyshev, G.A. Skryabin, I.P. Beletskaya, "Palladium- and nickel-catalyzed cross-coupling arylation in a series of 4- and 6-halogen substituted steroids" Chem. Listy, 2003, v. 97, s284.
2. N.V. Lukashev, G.V. Latyshev, P.A. Donez, G.A. Skryabin, I.P. Beletskaya "A facile synthesis of 4- and 6-arylsubstituted steroids by the Suzuki-Mi у aura cross-coupling reaction", Synthesis, 2005, pp. 1578-1580.
3. N.V Lukashev, G.V. Latyshev, P.A. Donez, G.A. Skryabin, I.P. Beletskaya "6-сЫого- and 6-bromosubstituted steroids in the Suzuki-Miyaura cross-coupling reaction. A convenient route to potential aromatase inhibitors", Synthesis, 2006, pp. 533-539.
4. N.V Lukashev, A.D. Averin, G.V. Latyshev, P.A. Donez, E.R. Ranyuk, I.P. Beletskaya "Cross-coupling Reactions for Steroid Modification: from Arylation to Macrocytic Syntheses", Polish J. Chem., 2006, v. 80, pp. 559-572.
5. П.А. Донец, Г.В. Латышев, Международная конференция студентов и аспирантов по фундаментальным наукам "Ломоносов-2004" секция химия 12-15 апреля 2004 г, Москва, стр. 51.
6. И.П. Белецкая, Г.В. Латышев, А.В. Казанцев, А.Ю. Арннбасарова, Н.В. Лукашев, "Фундаментальные науки - медицине", 2-3 декабря 2004, Москва, стр. 162-164.
7. Н.В. Лукашев, Г.В. Латышев, А.В. Казанцев, П.А. Донец, Г.А. Скрябин, И.П. Белецкая, Третий московский международный конгресс "Биотехнология: состояние и перспективы развития", 14-18 марта 2005, Москва, стр. 148.
8. N.V. Lukashev, A.D. Averin, G.V. Latyshev, P.A. Donez, E.R, Ranyuk, 21* conference on isoprenotds, 2005, September 23-29, Bialowieza, Poland, p. 40.
Подписано в печать /0. 200<5 года. Заказ N2 Формат 60х90/1б. Усл. печ. л. {/£? . Тираж /ОО экз-Отпечатано на ризографе в отделе оперативной печати и информации Химического факультета МГУ.
Список использованных в работе обозначений.
Введение.
Обзор литературы.
1. Реакция Сузуки-Мийауры: закономерности и современные варианты.
1.1. Каталитический цикл реакции Сузуки.
1 2 Закономерности реакции Сузуки
1.3. Катализаторы в реакции Сузуки
1.4. Никель - катализируемая реакция Сузуки.
2. Реакции кросс-сочетания в химии стероидов.
2.1. Реакция Сузуки.
2 2. Реакция Соногаширы.
2 3. Реакция Стилле.
2.4. Реакция Негиши
2.5. Реакция Хека.
Обсуждение результатов.
1. Синтез галогенстероидов.
1.1.4- и 6-бромпроизводные стероидов.
1.2. Синтез 3- и 17- иодстероидов.
2. Арилирование хлор- и бром- Д4-3-кетостероидов.
2.1. Арилирование хлормадинонацетата.
2.2. Арилирование 4-бромстероидов
2.3. Арилирование 6-бром-Д4 6-3-кетостероидов.
2 4. Синтез 6-арил-Д4-стероидов.
3. Алкинилирование 6-бромстероидов.
4. Арилирование 3- и 17- иодстероидов.
5. Бензилирование и алкилирование галогенстероидов.
6. Биологическая активность полученных соединений.
Экспериментальная часть.
1. Очистка растворителей.
2. Синтез исходных соединений.
2.1. Синтез 4-бром стероидов.
2 2. Синтез 6-замещенных стероидов
2 3 Синтез 3- и 17- галогенстероидов.
2 4. Синтез N-тозилиндол-З-илборной кислоты.
3. Кросс-сочетание 4- и 6-галогенстероидов с арилборными кислотами.
3.1. Арилирование 17а-ацетокси-6-хлор-прегна-4,6-диен-3,20-диона.
3.2. Арилирование 4-бромстероидов.
3.3. Арилирование 6-бром-андроста-4,6-диен-3,17-диона.
3 4. Арилирование 17а-ацетокси-6-бром-прегна-4,6-диен-3,20-диона.
3.5. Синтез 6-арил-Д4-стероидов.
4. Кросс-сочетание 6-бромстероидов с терминальными ацетиленами.
4.1. Алкинилирование 6-бром-3-метоксиандроста-3,5-диен-17-она.
4.2. Алкинилирование 6-бром-андроста-4,6-диен-3,17-диона.
5. Кросс-сочетание 3- и 17-иодстероидов с арилборными кислотами.
5.1. Арилирование 17-галогенстероидов.
5.2. Арилирование 17-гидрокси-3-иодандроста-3,5-диена.
6. Кросс-сочетание галогенстероидов с цинкорганическими соединениями.
6.1. Получение Zn-органических соединений.
6 2. Алкилирование 6-бромстероидов.
6 3. Бензилирование 3-иодстероидов.
6 4, Алкилирование 17-иодандроста-4,16-диен-3-она.
Выводы.
Разработка новых лекарственных препаратов путем модификация природных биологически активных веществ является одним из наиболее эффективных подходов к синтезу новых селективных терапевтических агентов. Среди многообразия доступных субстратов стероиды занимают особое положение, во многом связанное с их высокой активностью и участием в важнейших процессах, протекающих в организме. Общность структур основных стероидных гормонов и, в то же время, высокая зависимость их биологической активности от положения и природы заместителей, делают стероидные субстраты идеальными предшественниками для синтеза соединений, гарантированно обладающих биологической активностью.
В целом ряде клинических ситуаций избыточные (или даже нормальные) количества продуцируемых организмом стероидных гормонов играют значительную роль в патогенезе гормон-зависимых заболеваний. Поэтому подавление биосинтеза этих гормонов путем ингибирования соответствующих ферментов является одним из путей достижения прогресса в клинике таких распространенных заболеваний как рак молочной железы, яичников, простаты и некоторых других. За последние 10-15 лет были синтезированы различные производные стероидов, проявляющие ингибирующее действие по отношению к ароматазе и 5-а-редуктазе, ответственных за накопление эстрогенов и андрогенов в организме человека [1]. Для синтеза таких производных были широко использованы методы классической органической химии. Сравнительно недавно в химии стероидов начал использоваться новый, предоставляющий широкие синтетические возможности метод модификации стероидного скелета, основанный на реакциях кросс-сочетания [2]. Однако, круг используемых в таких реакциях стероидных субстратов был крайне ограничен. В первую очередь это связано с использованием в качестве субстратов трифлатов енолов соответствующих кетостероидов, что практически не позволяло вводить заместители в положения стероида, отличные от 3-его и 17-го. В связи с этим, разработка новых методов модификации стероидов, основанных на использовании реакций кросс-сочетания галогенстероидов, катализируемых комплексами переходных металлов, с целью синтеза соединений, обладающих потенциальной фармакологической активностью, является актуальной и практически важной задачей.
Целью настоящей работы является разработка новых каталитических способов синтеза арил, бензил и алкинилзамещенных стероидов на основе реакций кросс-сочетания галогенстероидов с бор- и цинкорганическими соединениями, а также с терминальными ацетиленами.
В результате проведенных исследований был разработан удобный метод синтеза ранее практически не известных 4- и 6-арилстероидов ряда андростана и прегнана с помощью Pd-катализируемой реакции Сузуки-Мийауры. В отличие от традиционных подходов к синтезу таких соединений, предложенный метод позволяет легко вводить функционально-замещенные арильные и гетарильные группы в стероиды.
Впервые показано, что коммерчески доступный неактивированный хлорстероид -хлормадинонацетат, имеющий атом хлора у sp2 атома углерода, может быть с успехом введен в реакцию Сузуки-Мийауры. Ключевым условием, позволяющим добиться высоких выходов арилстероидов является использование в качестве катализаторов комплексов палладия с бидентатными лигандами.
Впервые предложен простой и удобный способ синтеза 6-арил-3-кето-Д4-стероидов, содержащих арильную группу, связанную с зр3-гибридизованным атомом углерода, основанный на реакции Сузуки-Мийауры енолэфиров 6-бром-З-кетостероидов с арилборными кислотами. Данный метод позволяет избежать использования в реакциях кросс-сочетания малостабильных 6-бром-Д4-стероидов, имеющих атом брома в аллильном положении, а также является значительно более эффективным и универсальным, чем известные некаталитические методы синтеза подобных соединений.
Оптимизированы условия проведения реакции Сузуки-Мийауры 3- и 17-иодстероидов. Предложенный метод позволяет значительно увеличить выходы соответствующих арилированных стероидов. Найденные условия были использованы для синтеза широкого круга 3-арилстероидов.
Разработан эффективный метод синтеза 6-алкинилзамещенных производных андростана с помощью Pd-катализируемой реакции Соногаширы-Хагихары. Показано, что использование в качестве сокатализатора AgCl в присутствии пиперидина и воды позволяет значительно увеличить активность каталитической системы.
Изучена возможность использования реакции Негиши для введения бензильных и алкильных групп в стероиды. Разработанный протокол позволяет в исключительно мягких условиях получать 3-й 6-бензил- и алкилзамещенные стероиды с высокими выходами.
Литературный обзор состоит из двух частей. Первая часть посвящена реакции Сузуки-Мийауры. Особое внимание уделено современной (2000 - начало 2006 г) литературе, посвященной разработке новых высоко эффективных катализаторов реакции. Во второй части литературного обзора описаны известные случаи реаций кросс-сочетания стероидов.
Основное содержание работы изложено в публикациях [3-10]. Материалы диссертации доложены на международной конференции студентов и аспирантов по фундаментальным наукам "Ломоносов-2004" (Москва, 2004), на конференции "Фундаментальные науки - медицине" (Москва, 2004), на 3-м московском международном конгрессе "Биотехнология: состояние и перспективы развития" (Москва, 2005), на 21-й конференции по изопреноидам, (Польша, 2005).
Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант № 04-03-32995) и Российской Академии Наук (программа Ю-ОХН).
Обзор литературы
Выводы
1. Разработан эффективный метод синтеза широкого круга ранее неизвестных 6-(гет)арил-3-кето-Д46-стероидов ряда андростана и прегнана с помощью Pd-катализируемого арилирования арилборными кислотами (реакции Сузуки-Мийауры).
2. Показано, что использование бидентатных лигандов позволяет ввести в реакцию Сузуки-Мийауры хлормадинонацетат, содержащий связь Csp2-Cl.
3. Предложен оригинальный, простой и удобный способ синтеза 6-арил-З-кето-Д4-стероидов, содержащих арильную группу, связанную с зр3-гибридизованным атомом углерода, основанный на реакции Сузуки енолэфиров 6-бром-З-кетостероидов с арилборными кислотами.
4. Разработаны эффективные методы синтеза 3- и 4-арилзамещенных стероидов.
5. Разработан эффективный метод синтеза 6-алкинилзамещенных производных андростана с помощью Pd-катализируемой реакции Соногаширы-Хагихары. Впервые показано, что использование в качестве сокатализатора AgCl в присутствии пиперидина и воды позволяет значительно увеличить активность каталитической системы.
6. Разработана методика, позволяющая в мягких условиях получать разнообразные бензилзамещенные стероиды с помощью Pd-катализируемой реакции с цинкорганическими соединениями (реакции Негиши).
1. Левина И.С. Замещенные андростаны ингибиторы аромагазы. // Усп. хим. 1998. т. 67. № 11. с. 1068 (Russ. Chem. Rev. 1998. v. 67. № 11. p. 975)
2. Skoda-Foldes R., Kollar L. Transition-metal-catalyzed reactions in steroid synthesis. // Chem. Rev. 2003. v. 103. № 10. p. 4095
3. Lukashev N.V, Latyshev G.V., Skryabin G.A., Beletskaya l.R Palladium- and nickel-catalyzed cross-coupling arylation in a series of 4- and 6-halogen substituted steroids. // Chem. Listy. 2003, v. 97, s284
4. Lukashev N.V.,. Latyshev G.V, Donez P.A., Skryabin G.A., Beletskaya I.P. A facile synthesis of 4- and 6-arylsubstituted steroids by the Suzuki-Miyaura cross-coupling reaction. // Synthesis. 2005. p. 1578
5. Lukashev N.V., Latyshev G.V., Donez P.A., Skryabin G.A., Beletskaya l.P. 6-chloro- and 6-bromosubstituted steroids in the Suzuki-Miyaura cross-coupling reaction. A convenient route to potential aromatase inhibitors // Synthesis. 2006. p. 533
6. Lukashev N.V., Averin A.D., Latyshev G.V., Donez P.A., Ranyuk E.R., Beletskaya LP. Cross-coupling Reactions for Steroid Modification: from Arylation to Macrocycle Syntheses. // Polish J. Chem. 2006. v. 80. p. 559
7. Донец П.А., Латышев Г.В. // Международная конференция студентов и аспирантов по фундаментальным наукам "Ломоносов-2004" секция химия. Москва. 2004. с. 51
8. Белецкая И.П., Латышев Г.В., Казанцев А.В., Аринбасарова А.Ю., Лукашев Н.В. // "Фундаментальные науки медицине", Москва. 2004. с. 162
9. Лукашев Н.В., Латышев Г.В., Казанцев А.В., Донец П.А., Скрябин Г.А., Белецкая И.П. // Третий московский международный конгресс "Биотехнология: состояние и перспективы развития", Москва. 2005. с. 148
10. Lukashev N.V., Averin A.D., Latyshev G.V., Donez P.A., Ranyuk E.R. // 21th conference on isoprenoids. Bialowieza, Poland. 2005. p. 40
11. Miyaura N., Yamada K., Suzuki A. A new stereospecific cross-coupling by the palladium-catalyzed reaction of 1-alkenylboranes with 1-alkenyl or 1-alkynyl halides. // Tetrahedron Lett. 1979. v. 20. №36. p. 3437
12. Suzuki A. Carbon-carbon bonding made easy. // Chem. Commun. 2005. № 38. p. 4759
13. Miyaura N. Cross-coupling reaction of organoboron compounds via base-assisted transmetalation to palladium(II) complexes. // J. Organomet. Chem. 2002. v. 653. № 1-2. p. 54
14. Hassan J., Sevignon M., Gozzi C., Schulz E., Lemaire M. Aryl-Aryl Bond Formation One
15. Century after the Discovery of the Ullmann Reaction. // Chem. Rev. 2002. v. 102. № 5. p. 1359
16. Naso F., Babudri F., Farinola G.M. Organometallic chemistry directed towards the synthesis of electroactive materials: stereoselective routes to extended polyconjugated systems. // Pure Appl. Chem. 1999. v. 71. № 8. p. 1485
17. Carbonnelle A.-C., Zhu J. A Novel Synthesis of Biaryl-Containing Macrocycles by a Domino Miyaura Arylboronate Formation: Intramolecular Suzuki Reaction. // Org. Lett. 2000. v. 2. № 22. p 3477
18. Njardarson J .Т., Biswasa K., Danishefsky S.J. Application of hitherto unexplored macrocyclization strategies in the epothilone series: novel epothilone analogs by total synthesis // Chem. Commun. 2002. p. 2759
19. Lobregat V., Alcaraz G., Bienayme H., Vaultier M. Application of the "resin-capture-release" methodology to macrocyclisation via intramolecular Suzuki-Miyaura coupling // Chem. Commun. 2001. p. 817
20. Cammidge A.N., Crepy K.V.L. The first asymmetric Suzuki cross-coupling reaction. // Chem. Commun. 2000. № 18. p. 1723
21. Tietze L.F., Ila H., Bell H.P. Enantioselective Palladium-Catalyzed Transformations. // Chem. Rev. 2004.104. № 7. p. 3453
22. Wallace T.W. Biaryl synthesis with control of axial chirality. // Org. Biomol. Chem. 2006. v.4. p. 3197
23. Smith G.B., Dezeny G.C., Hughes D.L., King A.O., Verhoeven T.R. Mechanistic Studies of the Suzuki Cross-Coupling Reaction. // J. Org. Chem. 1994. v. 59. № 26. p. 8151
24. Ennis D.S., McManus J., Wood-Kaczmar W., Richardson J., Smith G.E., Carstairs A. Multikilogram-Scale Synthesis of a Biphenyl Carboxylic Acid Derivative Using a Pd/C-Mediated Suzuki Coupling Approach. // Org. Process Res. Dev. 1999. v. 3. p. 248
25. Chemler S.R., Trauner D., Danishefsky S.J. The B-Alkyl Suzuki-Miyaura Cross-Coupling Reaction: Development, Mechanistic Study, and Applications in Natural Product Synthesis. // Angew.Chem.Int.Ed. 2001. v. 40. № 24. p. 4544
26. Sugihara S., Kuroda N., Wada M., Nakashima K. Derivatization of Aryl Halides with a Newly Developed Fluorescent Arylboronic Acid. // Analyt. Sci. 2001. v. 17. p. i 1261
27. Ishiyama Т., Murata М., Miyaura N. Palladium(0)-Catalyzed Cross-Coupling Reaction of Alkoxydiboron with Haloarenes: A Direct Procedure for Arylboronic Esters. // J. Org. Chem. 1995. v. 60. №23. p. 7508
28. Ishiyama Т., Itoh Y., Kitano Т., Miyaura N. Synthesis of arylboronates via the palladium(0)-catalyzed cross-coupling reaction of tetra(alkoxo)diborons with aryl triflates. // Tetrahedron Lett. 1997. v. 38. № 19. p. 3447
29. Ishiyama Т., Ahiko T.-A., Miyaura N. A synthesis of allylboronates via the palladiums-catalyzed cross-coupling reaction of bis(pinacolato)diboron with allylic acetates. // Tetrahedron Lett. 1996. v. 37. № 38. p. 6889
30. Ahiko T.-A., Ishiyama Т., Miyaura N. A Sequence of Palladium-Catalyzed Borylation of Allyl Acetates with Bis(pinacolato)diboron and Intramolecular Allylboration for the Cyclization of Охо-2-alkenyl Acetates. // Chem. Lett. 1997. № 8. p. 811
31. Murata M., Watanabe S., Masuda Y. Novel Palladium(0)-Catalyzed Coupling Reaction of Dialkoxyborane with Aryl Halides: Convenient Synthetic Route to Arylboronates. // J. Org. Chem. 1997. v. 62. № 19. p. 6458
32. Hyslop A.G., Kellett M.A., Iovine P.M., Therien M.J. Suzuki Porphyrins: New Synthons for the Fabrication of Porphyrin-Containing Supramolecular Assemblies. // J. Am. Chem. Soc. 1998. v. 120. №48. p. 12676
33. Murata M., Oyama Т., Watanabe S., Masuda Y. Palladium-Catalyzed Borylation of Aryl Halides or Triflates with Dialkoxyborane: A Novel and Facile Synthetic Route to Arylboronates. // J. Org. Chem. 2000. v. 65. № 1. p. 164
34. Miyaura N., Suzuki A. Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds. // Chem. Rev. 1995. v. 95. № 7. p. 2457
35. Suzuki A. in "Metal-Catalyzed Cross-Coupling Reactions"; Diederich, F.; Stang, P. J., Eds.; Wiley-VCH: Weinheim, 1998. pp. 49-97
36. Suzuki A. New synthetic transformations via organoboron compounds. // Pure Appl. Chem. 1994. v. 66. №2. p. 213
37. Stanforth S. p. Catalytic cross-coupling reactions in biaryl synthesis. // Tetrahedron. 1998. v. 54. № 3-4. p. 263
38. Suzuki A. Recent advances in the cross-coupling reactions of organoboron derivatives with organic electrophiles, 1995-1998. // J. Organomet. Chem. 1999. v. 576. № 1-2. p. 147
39. Suzuki A. in "Handbook of organopalladium chemistry for organic synthesis" ed. Negishi E.-I.; Wiley: New-York. 2002. p. 249
40. Kotha S., Lahiri K., Kashinath D. Recent applications of the Suzuki-Miyaura crosscoupling reaction in organic synthesis. // Tetrahedron. 2002. v. 58. № 48. p. 9633
41. Littke A.F., Fu G.C. Palladium-Catalyzed Coupling Reactions of Aryl Chlorides. // Angew.Chem.Int.Ed. 2002. v. 41. № 22. p. 4176
42. Bellina F., Carpita A., Rossi R. Palladium Catalysts for the Suzuki Cross-Coupling Reaction: An Overview of Recent Advances. // Synthesis. 2004. №15. p. 2419
43. Beller M., Zapf A. in "Handbook of organopalladium chemistry for organic synthesis" Ed. Negishi E.-I. Wiley: New York, 2002. p. 1209
44. Franzen R. The Suzuki, the Heck, and the Stille reaction three versatile methods for the introduction of new C-C bonds on solid support. // Can. J. Chem. 2000. v. 78. № 7. p. 957
45. Brase S., Kobberling J., Griebenow N. in "Handbook of organopalladium chemistry for organic synthesis" Ed. Negishi E.-I. Wiley: New York, 2002. p. 3031
46. Brase S., KirchhofF J.H., Kobberling J. Palladium-catalysed reactions in solid phase organic synthesis. // Tetrahedron. 2003. v. 59. № 7. p. 885
47. Amatore C., Jutand A. Anionic Pd(0) and Pd(II) Intermediates in Palladium-Catalyzed Heck and Cross-Coupling Reactions. // Acc. Chem. Res. 2000. v. 33. № 5. p. 314
48. Kabalka G.W., Dong G., Venkataiah B. Rhodium-Catalyzed Cross-Coupling of Allyl Alcohols with Aryl- and Vinylboronic Acids in Ionic Liquids. // Org. Lett. 2003. v. 5. № 6. p. 893
49. Ueura K., Satoh Т., Miura M. Rhodium-Catalyzed Arylation Using Arylboron Compounds: Efficient Coupling with Aryl Halides and Unexpected Multiple Arylation of Benzonitrile. // Org. Lett. 2005. v. 7. № 11. p. 2229
50. Herrmann W.A., Bohm V.P.W., Reisinger C.-P. Application of palladacycles in Heck type reactions. // J. Organomet. Chem. 1999. v. 576. № 1-2. p. 23
51. Kozuch S., Shaik S. A Combined Kinetic-Quantum Mechanical Model for Assessment of Catalytic Cycles: Application to Cross-Coupling and Heck Reactions. // J. Am. Chem. Soc., 2006. v. 128. №10. p. 3355
52. Portnoy M., Ben-David Y., Rousso I., Milstein D. Reactions of Electron-Rich Arylpalladium Complexes with Olefins. Origin of the Chelate Effect in Vinylation Catalysis. // Organometallics. 1994. v. 13. p. 3465
53. Ahlquist M., Fristrup P., Tanner D., Norrby P.-O. Theoretical evidence for low-ligated palladium(O): Pd-L. as the active species in oxidative addition reactions. // Organometallics. 2006. v. 25. №. 8. p. 2066
54. Braga A.A.C., Morgon N.H., Ujaque G., Maseras F. Computational Characterization of the Role of the Base in the Suzuki-Miyaura Cross-Coupling Reaction. // J. Am. Chem. Soc.2005. v. 127. №25. р. 9298
55. Braga А.А.С, Ujaque G., Maseras F. A DFT Study of the Full Catalytic Cycle of the Suzuki-Miyaura Cross-Coupling on a Model System. // Organometallics. 2006. v. 25. № 15. p. 3647
56. Goossen L.J., Koley D., Hermann H.L., Thiel W. Palladium Monophosphine Intermediates in Catalytic Cross-Coupling Reactions: A DFT Study. // Organometallics. 2006. v. 25. № 1. p. 54
57. Цветков A.B. "Проблема селективности образования углерод-углеродных связей в реакциях кросс-сочетания дигалогенаренов, катализируемых комплексами переходных металлов". Дисс. канд. хим. наук. 2002. Химический ф-т МГУ
58. Schroter S., Stock С., Bach Т. Regioselective cross-coupling reactions of multiple halogenated nitrogen-, oxygen-, and sulfur-containing heterocycles. // Tetrahedron. 2005. v. 61. p. 2245
59. Nobre S.M., Monteiro A.L. Synthesis of diarylmethane derivatives from Pd-catalyzed cross-coupling reactions of benzylic halides with arylboronic acids. // Tetrahedron Lett. 2004. v. 45. p. 8225
60. Savarin C., Liebeskind L.S. Nonbasic, Room Temperature, Palladium-Catalyzed Coupling of Aryl and Alkenyl Iodides with Boronic Acids Mediated by Copper(I) Thiophene-2-carboxylate (CuTC). //Org. Lett. 2001. v. 3. № 14. p. 2149
61. Saeki Т., Son E.-C., Tamao K. Boron Trifluoride Induced Palladium-Catalyzed Cross-Coupling Reaction of 1-Aryltriazenes with Areneboronic Acids. // Org. Lett. 2004. v. 6. № 4. p. 617
62. Kabalka G.W., Venkataiah В., Dong G. Palladium-Catalyzed Cross-Coupling of Acetates of Baylis-Hillman Adducts and Potassium Organotrifluoroborates. // Org. Lett. 2003. v. 5. №21. p. 3803
63. Kabalka G.W., Al-Masum M. Microwave-Enhanced Palladium-Catalyzed Cross-Coupling Reactions of Potassium Vinyltrifluoroborates and Allyl Acetates: A New Route to 1,4-Pentadienes. // Org. Lett. 2006. v. 8. № 1. p. 11
64. Dubbaka S.R., Vogel P. Palladium-Catalyzed Suzuki-Miyaura Cross-Couplings of Sulfonyl Chlorides and Boronic Acids. // Org. Lett. 2004. v. 6. № 1. p. 95
65. Andrus M.B., Song C. Palladium-Imidazolium Carbene Catalyzed Aryl, Vinyl, and Alkyl Suzuki-Miyaura Cross Coupling. // Org. Lett. 2001. v. 3. № 23. p. 3761
66. Willis D.M., Strongin R.M. Palladium-catalyzed cross-coupling of aryldiazonium tetrafluoroborate salts with arylboronic esters. // Tetrahedron Lett. 2000. v. 41. № 33. p.6271
67. Dai М., Liang В., Wang С., Chen J., Yang Z. Synthesis of a Novel C~2-Symmetric Thiourea and Its Application in the Pd-Catalyzed Cross-Coupling Reactions with Arenediazonium Salts under Aerobic Conditions. // Org. Lett. 2004. v. 6. № 2. p. 221
68. Kim Y.M., Yu S. Palladium(0)-Catalyzed Amination, Stille Coupling, and Suzuki Coupling of Electron-Deficient Aryl Fluorides. //J. Am. Chem. Soc. 2003. v. 125. № 7. p. 1696
69. Widdowson D.A., Wilhelm R. Palladium catalysed Suzuki reactions of fluoroarenes. // Chem. Commun. 2003. № 5. p. 578
70. Wilhelm R., Widdowson D.A. Palladium Catalysed Cross-coupling of (Fluoroarene)tricarbonylchromium(O) complexes. // J. Chem. Soc., Perkin Trans. 1. 2000. p. 3808
71. Ishiyama Т., Abe S., Miyaura N., Suzuki A. Palladium-Catalyzed Alkyl-Alkyl Cross-Coupling Reaction of 9-Alkyl-9-BBN Derivatives with Iodoalkanes Possessing p-Hydrogens. // Chem. Lett. 1992. v. 21. № 4. p. 691
72. Netherton M.R., Dai C., Neuschutz K., Fu G.C. Room-Temperature Alkyl-Alkyl Suzuki Cross-Coupling of Alkyl Bromides that Possess beta Hydrogens. // J. Am. Chem. Soc. 2001. v. 123. №41. p. 10099
73. Kirchhoff J.H., Dai C., Fu G.C. A Method for Palladium-Catalyzed Cross-Couplings of Simple Alkyl Chlorides: Suzuki Reactions Catalyzed by Pd2(dba)3./PCy3. // Angew. Chem. Int. Ed. 2002. v. 41. № 11. p. 1945
74. Netherton M.R., Fu G.C. Suzuki Cross-Couplings of Alkyl Tosylates that Possess P-Hydrogen Atoms: Synthetic and Mechanistic Studies. // Angew. Chem. Int. Ed. 2002. v. 41. №20. p. 3910
75. GooBen L.J. Palladium-Catalyzed Synthesis of Arylacetic Acid Derivatives from Boronic Acids. // Chem. Commun. 2001. p. 669
76. Koehler K.A., Jackson R.C., Lienhard G.E. A Search for the Addition of Monodentate Nucleophiles to Boric and Benzeneboronic Acids in Water. // J. Org. Chem. 1972. v. 37. № 14. p. 2232
77. Feulner H., Linti G., Noth H. Beitrage zur Chemie des Bors, 206. Darstellung und strukturelle Charakterisierung der p-Formylbenzolboronsaure. // Chem. Ber. 1990. Bd. 123. №9. s. 1841
78. Watanabe Т., Miyaura N., Suzuki A. Synthesis of Sterically Hindered Biaryls via the Palladium-Catalyzed Cross-Coupling Reaction of Arylboronic Acids or their Esters with Haloarenes. // Synlett.1992. p. 207
79. Uenishi J.-I.; Beau J.-M., Armstrong R.W., Kishi Y. Dramatic Rate Enhancement of Suzuki Diene Synthesis: Its Application to Palytoxin Synthesis. // J. Am. Chem. Soc. 1987. v. 109. p.4756
80. Frank S.A., Chen H., Kunz R.K., Schnaderbeck M.J., Roush W.R. Use of Thallium(I) Ethoxide in Suzuki Cross Coupling Reactions. // Org. Lett. 2000. v. 2. № 17. p. 2691
81. Wright S., Hageman D., McClure L. Fluoride-Mediated Boronic Acid Coupling Reactions. // J. Org. Chem. 1994. v. 59. № 20. p. 6095
82. Wolfe J.P., Singer R.A., Yang B.H., Buchwald S.L. Highly Active Palladium Catalysts for Suzuki Coupling Reactions. // J. Am. Chem. Soc. 1999. v. 121. № 41. p. 9550
83. Batey R.A., Quach T.D. Synthesis and cross-coupling reactions of tetraalkylammonium organotrifluoroborate salts. // Tetrahedron Lett. 2001. v. 42. № 52. p. 9099
84. Molander G.A., Biolatto B. Efficient Ligandless Palladium-Catalyzed Suzuki Reactions of Potassium Aryltrifluoroborates. // Org. Lett. 2002. v. 4. № 11. p. 1867
85. Tyrrell E., Brookes P. The Synthesis and Applications of Heterocyclic Boronic Acids. // Synthesis. 2004. № 4. p. 469
86. Chen H., Deng M.-Z. A novel Suzuki-type cross-coupling reaction of cyclopropylboronic esters with benzyl bromides. // J. Chem. Soc., Perkin Trans. 1.2000. № 10. p. 1609
87. Molander G.A., Rivero M.R. Suzuki Cross-Coupling Reactions of Potassium Alkenyltrifluoroborates. // Org. Lett. 2002. v. 4. № 1. p. 107
88. Molander G.A., Bernardi C.R. Suzuki-Miyaura Cross-Coupling Reactions of Potassium Alkenyltrifluoroborates. // J. Org. Chem 2002. v. 67. № 24. p. 8424
89. Molander G.A., Yun C.-S., Ribagorda M., Biolatto B. B-Alkyl Suzuki-Miyaura Cross-Coupling Reactions with Air-Stable Potassium Alkyltrifluoroborates. // J. Org. Chem. 2003. v. 68. № 14. p. 5534
90. Zou G., Reddy Y.K., Falck J.R. Ag(I)-promoted Suzuki-Miyaura cross-couplings of n-alkylboronic acids. // Tetrahedron Lett. 2001. v. 42. № 41. p. 7213
91. Larhed M., Hallberg A. Microwave-Promoted Palladium-Catalyzed Coupling Reactions. // J. Org. Chem. 1996. v. 61. № 26. p. 9582
92. Leadbeater N.E., Marco M. Rapid and Amenable Suzuki Coupling Reaction in Water
93. Using Microwave and Conventional Heating. // J. Org. Chem. 2003. v. 68. № 3. p. 888
94. Arvela R.K., Leadbeater N.E. Suzuki Coupling of Aryl Chlorides with Phenylboronic Acid in Water, Using Microwave Heating with Simultaneous Cooling. // Org. Lett. 2005. 7. № 11. p. 2101
95. Dawood K.M., Kirschning A. Combining enabling techniques in organic synthesis: solid-phase-assisted catalysis under microwave conditions using a stable Pd(II)-precatalyst. // Tetrahedron. 2005. v. 61. p. 12121
96. Polakova V., Hut'ka M., Toma S. Ultrasound e Elect on Suzuki reactions. 1.Synthesis of unsymmetrical biaryls. // Ultrasonics Sonochem. 2005. v. 12. p. 99
97. Cravotto G., Beggiato M., Penoni A., Palmisano G., Tollari S., Leve que J.-M., Bonrath W. High-intensity ultrasound and microwave,alone or combined, promote Pd/C-catalyzed aryl -aryl couplings. //Tetrahedron Lett. 2005. v. 46. p. 2267
98. Ryu J.-H., Jang C.-J., Yoo Y.-S., Lim S.-G., Lee M. Supramolecular Reactor in an Aqueous Environment: Aromatic Cross Suzuki Coupling Reaction at Room Temperature. // J. Org. Chem. 2005. v. 70. № 22. p. 8956
99. Urawa Y., Miyazawa M., Ozeki N., Ogura K. A Novel Methodology for Efficient Removal of Residual Palladium from a Product of the Suzuki-Miyaura Coupling with Polymer-Supported Ethylenediamine Derivatives. // Org. Proc. Res. Dev. 2003. v. 7. № 2. p. 191
100. Gladysz J.A. Recoverable catalysts. Ultimate goals, criteria of evaluation, and the green chemistry interface. // Pure Appl. Chem. 2001. v. 73. № 8. p. 1319
101. Lohse O., Thevenin P., Waldvogel E. The Palladium Catalysed Suzuki Coupling of 2- and 4-Chloropyridines // Synlett. 1999. № 1. p. 45
102. Amatore C., Jutand A., M'Barki M.A. Evidence of the Formation of Zerovalent Palladium from Pd(OAc)2, and Triphenylphosphine. // Organometallics. 1992. v. 11. p. 3009
103. Jensen J.F., Johannsen M. New Air-Stable Planar Chiral Ferrocenyl Monophosphine Ligands: Suzuki Cross-Coupling of Aryl Chlorides and Bromides. // Org. Lett. 2003. v. 5. №17. p. 3025
104. Amatore C., Jutand A., Thuilliez A. Mechanism of the oxidative addition of Pd 0 complexes generated from Pd°(dba)2 and a phosphole ligand DBP: a special case where dba does not play any inhibiting role. // J. Organomet. Chem. 2002. v. 643-644. p. 416
105. Fairlamb U.S., Kapdi A.R., Lee A.F. t^-dba Complexes of Pd(0): The Substituent Effect in Suzuki-Miyaura Coupling. // Org. Lett. 2004. v. 6. № 24. p. 4435
106. Moreno-Manas M., Pleixats R., Villarroya S. Fluorous Phase Soluble Palladium Nanoparticles as Recoverable Catalysts for Suzuki Cross-Coupling and Heck Reactions. // Organometallics. 2001. v. 20. № 22. p. 4524
107. Scrivanti A., Beghetto V., Matteoli U., Antonaroli S., Marini A., Mandoj F., Paolesse R., Crociani B. Iminophosphine-palladium(O) complexes as highly active catalysts in the Suzuki reaction.Synthesis of undecaaryl substituted corroles. // science078
108. Andreu M.G., Zapf A., Beller M. Molecularly defined palladium(O) monophosphine complexes as catalysts for efficient cross-coupling of aryl chlorides and phenylboronic acid. // Chem. Commun. 2000. № 24. p. 2475
109. Dupont J., Consorti C.S., Spencer J. The Potential of Palladacycles: More Than Just Precatalysts. // Chem. Rev. 2005. v. 105. № 6. p. 2527
110. Bedford R.B., Cazin C.S.J. Highly active catalysts for the Suzuki coupling of aryl chlorides. // Chem. Commun. 2001. p. 1540
111. Bedford R.B., Welch S.L. Palladacyclic phosphinite complexes as extremely high activity catalysts in the Suzuki reaction. // Chem. Commun. 2001. № 1. p. 129
112. Bedford R.B., Cazin C.S.J., Hursthouse M.B., Light M.E., Pike K.J., Wimperis S. Silica-supported imine palladacycles—recyclable catalysts for the Suzuki reaction?. // J. Organomet. Chem. 2001. v. 633. p. 173
113. Shen W. Palladium catalyzed coupling of aryl chlorides with arylboronic acids. // Tetrahedron Lett. 1997. v. 38. p. 5575
114. Bedford R.B., Butts С.Р., Hurst Т.Е., Lidstrom P. The Suzuki Coupling of Aryl Chlorides under Microwave Heating. // Adv.Synth.Catal. 2004. v. 346. p. 1627
115. Gong J., Liu G., Du C., Zhu Y., Wu Y. Efficient Suzuki coupling of aryl chlorides catalyzed by tricyclohexylphosphine adducts of cyclopalladated ferrocenylimines. // J. Organomet. Chem. 2005. v. 690. p. 3963
116. Chen C.-L., Liu Y.-H., Peng S.-M., Liu S.-T. Air- and Moisture-Stable Cyclopalladated Complexes as Efficient Catalysts for Suzuki-Miyaura Coupling Reaction. // Organometallics. 2005. v. 24. № 6. p. 1075
117. Littke A F, Fu G.C. A Convenient and General Method for Pd-Catalyzed Suzuki Cross-Couplings of Aryl Chlorides and Arylboronic Acids. // Angew. Chem., Int. Ed. 1999. v. 37. № 24. p. 3387
118. Littke A.F., Dai C., Fu G.C. Versatile Catalysts for the Suzuki Cross-Coupling of Arylboronic Acids with Aryl and Vinyl Halides and Triflates under Mild Conditions. // J. Am. Chem. Soc. 2000. v. 122. № 17. p. 4020
119. Netherton M.R., Fu G.C. Air-Stable Trialkylphosphonium Salts: Simple, Practical, and Versatile Replacements for Air-Sensitive Trialkylphosphines. Applications in Stoichiometric and Catalytic Processes. // Org. Lett. 2001. v. 3. № 26. p. 4295
120. Stambuli J.P., Biihl M., Hartwig J.F. Synthesis, Characterization, and Reactivity of Monomeric, Arylpalladium Halide Complexes with a Hindered Phosphine as the Only Dative Ligand. //J. Am. Chem. Soc. 2002. v. 124. № 32. p. 9346
121. Teo S., Weng Z., Hor T.S.A. l,l'-P/0-Ferrocenyl Ligands in Palladium-Catalyzed Suzuki Coupling of Aryl Chlorides. // Organometallics. 2006. v. 25. № 5. p. 1199
122. Zapf A., Ehrentraut A., Beller M. A New Highly Efficient Catalyst System for the Coupling of Nonactivated and Deactivated Aryl Chlorides with Arylboronic Acids. // Angew. Chem. Int. Ed. 2000. v. 39. № 22. p. 4153
123. Stambuli J.R, Kuwano R., Hartwig J.F. Unparalleled Rates for the Activation of Aryl Chlorides and Bromides:Coupling with Amines and Boronic Acids in Minutes at Room Temperature. // Angew. Chem. Int. Ed. 2002. v. 41. № 24. p. 4746
124. Colacot T.J., Shea H.A. Cp2Fe(PR2)2PdCl2 (R = i-Pr, t-Bu) Complexes as Air-Stable Catalysts for Challenging Suzuki Coupling Reactions. // Org. Lett. 2004. v. 6. № 21. p. 3731
125. Kataoka N. Shelby Q., Stambuli J.P., Hartwig J.F. Air Stable, Sterically Hindered Ferrocenyl Dialkylphosphines for Palladium-Catalyzed C-C, C-N, and C-0 Bond-Forming Cross-Couplings. //J. Org. Chem. 2002. v. 67. № 16. p. 5553
126. Weng Z., Teo S., Koh L.L., Hor T.S.A. Efficient Suzuki Coupling of Aryl Chlorides Catalyzed by Palladium(O) with a P,N Heteroligand and Isolation of Unsaturated Intermediates. // Organometallics. 2004. v. 23. № 19. p. 4342
127. Planas J.G., Gladysz J.A. Highly Bulky and Electron-Rich Terminal Ruthenium Phosphido Complexes: New Donor Ligands for Palladium-Catalyzed Suzuki Cross-Couplings. //1.org. Chem. 2002. v. 41. № 26. p. 6947
128. Eichenseher S., Kromm K., Delacroix 0., Gladysz J.A. New approaches to high-activity transition-metal catalysts for carbon-carbon bond forming reactions. // Chem. Commun. 2002.p.1046
129. Wolf C., Ekoue-Kovi K. Palladium-Catalyzed Suzuki-Miyaura Cross-Coupling Using Phosphinous Acids and Dialkyl(chloro)phosphane Ligands. // Eur. J. Org. Chem. 2006. № 8. p. 1917
130. Miao G., Ye P., Yu L., Baldino C.M. Microwave-Promoted Suzuki Reactions of Aryl Chlorides in Aqueous Media. // J. Org. Chem. 2005. v. 70. № 6. p. 2332
131. Bedford R.B., Hazelwood S.L. Platinum Catalysts for Suzuki Biaryl Coupling Reactions. // Organometallics. 2002. v. 21. № 13. p. 2599
132. Tomori H., Fox J.M., Buchwald S.L. An Improved Synthesis of Functionalized Biphenyl-Based Phosphine Ligands. // J. Org. Chem. 2000. v. 65. № 17. p. 5334
133. Kaye S., Fox J.M., Hicks F.A., Buchwald S.L. The Use of Catalytic Amounts of CuCl and
134. Other Improvements in the Benzyne Route to Biphenyl-Based Phosphine Ligands. // Adv. Synth. Catal. 2001. v. 343. № 8. p. 789
135. Old D.W., Wolfe J.P., Buchwald S.L. A Highly Active Catalyst for Palladium-Catalyzed Cross-Coupling Reactions Room-Temperature Suzuki Couplings and Amination of Unactivated Aryl Chlorides. // J. Am. Chem. Soc. 1998. v. 120. № 37. p. 9722
136. Nguyen H.N., Huang X., Buchwald S.L. The First General Palladium Catalyst for the Suzuki-Miyaura and Carbonyl Enolate Coupling of Aryl Arenesulfonates. // J. Am. Chem. Soc. 2003. v. 125. №39. p. 11818
137. Yin J., Rainka M.P., Zhang X.-X., Buchwald S.L. A Highly Active Suzuki Catalyst for the Synthesis of Sterically Hindered Biaryls: Novel Ligand Coordination. // J. Am. Chem. Soc. 2002. v. 124. №7. p. 1162
138. Walker S.D., Barder Т.Е., Martinelli J.R., Buchwald S.L. A Rationally Designed Universal Catalyst for Suzuki-Miyaura Coupling Processes. // Angew. Chem. Int. Ed. 2004. v. 43. № 14. p. 1871
139. Barder Т.Е., Walker S.D., Martinelli J.R., Buchwald S.L. Catalysts for Suzuki-Miyaura Coupling Processes: Scope and Studies of the Effect of Ligand Structure. // J. Am. Chem. Soc. 2005. v. 127. № 13. p. 4685
140. Barder Т.Е., Buchwald S.L. Efficient Catalyst for the Suzuki-Miyaura Coupling of Potassium Aryl Trifluoroborates with Aryl Chlorides. // Org. Lett. 2004. v. 6. № 16. p. 2649
141. Reid S.M., Boyle R.C., Mague J.T., Fink M.J. A Dicoordinate Palladium(O) Complex with an Unusual Intramolecular ri'-Arene Coordination. // J. Am. Chem. Soc. 2003. v. 125. p. 7816
142. Miura M. Rational Ligand Design in Constructing Efficient Catalyst Systems for Suzuki-Miyaura Coupling. // Angew. Chem. Int. Ed. 2004. v. 43. № 17. p. 2201
143. Baillie C., Zhang L., Xiao J. Ferrocenyl Monophosphine Ligands: Synthesis and Applications in the Suzuki-Miyaura Coupling of Aryl Chlorides. // J. Org. Chem. 2004. v. 69. № 22. p. 7779
144. Roca F.X., Richards C.J, A ferrocene based palladacyclic precatalyst for the Suzuki cross-coupling of aryl chlorides. // Chem. Commun. 2003. p. 3002
145. Zapf A., Jackstell R., Rataboul F., Riermeier Т., Monsees A., Fuhrmann C., Shaikh N., Dingerdissenb U., Beller M. Practical synthesis of new and highly efficient ligands for the Suzuki reaction of aryl chlorides. // Chem. Commun. 2004. p. 38
146. Liu D., Gao W., Dai Q., Zhang X. Triazole-Based Monophosphines for Suzuki-Miyaura
147. Coupling and Amination Reactions of Aryl Chlorides. // Org. Lett. 2005. v. 7. № 22. p. 4907
148. Dai W.-M., Li Y., Zhang Y., Laib K.-W., Wua J. A novel class of amide-derived air-stable P,0-ligands for Suzuki cross-coupling at low catalyst loading. // Tetrahedron Lett. 2004. v. 45. p. 1999
149. Dai W.-M., Zhang Y. A family of simple amide-derived air-stable P,0-ligands for Suzuki cross-coupling of unactivated aryl chlorides. // Tetrahedron Lett. 2005. v. 46. p. 1377
150. Kwong F.Y., Lam W.H., Yeung C.H., Chan K.S., Chan A.S.C. A simple and highly efficient P,0-type ligand for Suzuki-Miyaura cross-coupling of aryl halides. // Chem. Commun. 2004. № 17. p. 1922
151. Mukheijee A., Sarkar A. Pyrazole-tethered arylphosphine ligands for Suzuki reactions of aryl chlorides: how important is chelation?. //Tetrahedron Lett. 2004. v. 45. p. 9525
152. Liu S.-Y., Choi M.J., Fu G.C. A surprisingly mild and versatile method for palladium-catalyzed Suzuki cross-couplings of aryl chlorides in the presence of a triarylphosphine. // Chem. Commun. 2001. № 23. p. 2408
153. Pickett Т.Е., Roca F.X., Richards C.J. Synthesis of Monodentate Ferrocenylphosphines and Their Application to the Palladium-Catalyzed Suzuki Reaction of Aryl Chlorides. // J. Org. Chem. 2003. v. 68. № 7. p. 2592
154. Tolman C. A. Steric effects of phosphorus ligands in organometallic chemistry and homogeneous catalysis. // Chem. Rev. 1977. v. 77. № 3. p. 313
155. Feuerstein M., Doucet H., Santelli M. Efficient coupling of heteroaryl bromides with arylboronic acids in the presence of a palladium-tetraphosphine catalyst. // Tetrahedron Lett. 2001. v. 42. №33. p. 5659
156. Peyroux E., Berthiol F., Doucet H., Santelli M. Suzuki Cross-Coupling Reactions between Alkenylboronic Acids and Aryl Bromides Catalysed by a Tetraphosphane-Palladium Catalyst. // Eur. J. Org. Chem. 2004. p. 1075
157. Feuerstein M., Laurenti D., Bougeant C., Doucet H., Santelli M. Palladium-tetraphosphine catalysed cross coupling of aryl bromides with arylboronic acids: remarkable influence of the nature of the ligand. // Chem. Commun. 2001. № 4. p. 325
158. Kondolff I., Doucet H., Santelli M. Tetraphosphine/palladium catalysed Suzuki crosscoupling reactions of aryl halides with alkylboronic acids. // Tetrahedron. 2004. v. 60. p. 3813
159. Feuerstein M., Doucet H., Santelli M. Efficient coupling of heteroaryl halides with arylboronic acids in the presence of a palladium Б tetraphosphine catalyst. // J. Organomet. Chem. 2003. v. 687. p. 327
160. Feuerstein M., Laurenti D., Doucet H., Santelli M. Palladium-Tetraphosphine Complex: An Efficient Catalyst for Allylic Substitution and Suzuki Cross-Coupling. // Synthesis. 2001. № 15. p. 2320
161. Navarro O., Oonishi Y., Kelly R.A., Stevens E.D., Briel O., Nolan S.P. General and efficient methodology for the Suzuki-Miyaura reaction in technical grade 2-propanol. // J. Organomet. Chem. 2004. v. 689. p. 3722
162. Song C., Ma Y., Chai Q., Ma C., Jiang W., Andrus M.B. Palladium catalyzed Suzuki-Miyaura coupling with aryl chlorides using a bulky phenanthryl N-heterocyclic carbene ligand. // Tetrahedron. 2005. v. 61. p. 7438
163. Arentsen K, Caddick S., Cloke F.G.N. On the efficiency of two-coordinate palladium(O) N-heterocyclic carbene complexes in amination and Suzuki-Miyaura reactions of aryl chlorides. // Tetrahedron. 2005. v. 61. p. 9710
164. Bohm V.P.W., Gstottmayr C.W.K., Weskamp Т., Herrmann W.A. N-Heterocyclic carbenes Part 26. N-Heterocyclic carbene complexes of palladium(O): synthesis and application in the Suzuki cross-coupling reaction. // J. Organomet. Chem. 2000. v. 595. p. 186
165. Leadbeater N.E., Marco M. Transition-Metal-Free Suzuki-Type Coupling Reactions. // Angew. Chem. Int. Ed. 2003. v. 42. № 12. p. 1407
166. Zhang C., Huang J., Trudell M.L., Nolan S.P. Palladium-Imidazol-2-ylidene Complexes as Catalysts for Facile and Efficient Suzuki Cross-Coupling Reactions of Aryl Chlorides with Arylboronic Acids. // J. Org. Chem. 1999. v. 64. № 11. p. 3804
167. Grasa G.A., Viciu M.S., Huang J., Zhang C., Trudell M.L., Nolan S.P. Suzuki-Miyaura Cross-Coupling Reactions Mediated by Palladium/Imidazolium Salt Systems. // Organometallics. 2002. v. 21. № 14. p. 2866
168. Hillier A.C., Grasa G.A., Viciu M.S., Lee H.M., Yang C., Nolan S.P. Catalytic cross-coupling reactions mediated by palladium/nucleophilic carbene systems. // J. Organomet.1. Chem. 2002. v. 653. p. 69
169. Arentsen К., Caddick S., Cloke F.G.N., Herring A.P., Hitchcock P.B. Suzuki-Miyaura cross-coupling of aryl and alkyl halides using palladium/imidazolium salt protocols. // Tetrahedron Lett. 2004. v. 45. p. 3511
170. Singh R., Viciu M.S., Kramareva N., Navarro O., Nolan S.P. Simple (Imidazol-2-ylidene)-Pd-Acetate Complexes as Effective Precatalysts for Sterically Hindered Suzuki-Miyaura Couplings. // Org. Lett. 2005. v. 7. № 9. p. 1829
171. Navarro O., Marion N., Oonishi Y., Kelly III R.A., Nolan S.P. Suzuki-Miyaura, -Ketone Arylation and Dehalogenation Reactions Catalyzed by a Versatile N-Heterocyclic Carbene-Palladacycle Complex. // J. Org. Chem. 2006. v. 71. № 2. p. 685
172. Hadei N., Kantchev E.A.B., O'Brien C.J., Organ M.G. Electronic Nature of N-Heterocyclic Carbene Ligands: Effect on the Suzuki Reaction. // Org. Lett. 2005. v. 7. № 10. p. 1991
173. Ozdemir I., Demir S., Yasar S., Qetinkaya B. Palladium-catalysed Suzuki reaction of aryl chlorides in aqueous media using l,3-dialkylimidazolidin-2-ylidene ligands. // Appl. Organometal. Chem. 2005. v. 19. № 1. p. 55
174. Ozdemir I., Demir S., Qetinkaya B. Use of tetrahydropyrimidinium salts for highly efficient palladium-catalyzed cross-coupling reactions of aryl bromides and chlorides. // Tetrahedron. 2005. v. 61. p. 9791
175. Lee H.M., Lu C.Y., Chen C.Y., Chen W.L., Lin H.C., Chiu P.L., Cheng P.Y. Palladium complexes with ethylene-bridged bis(N-heterocyclic carbene) for C-C coupling reactions. //Tetrahedron. 2004. v. 60. p. 5807
176. Vargas V.C., Rubio R.J., Hollis Т.К., Salcido M.E. Efficient Route to 1,3-Di-Nimidazolylbenzene. A Comparison of Monodentate vs Bidentate Carbenes in Pd-Catalyzed Cross Coupling. // Org. Lett. 2003. v. 5. № 25. p. 4847
177. Zhang C., Trudell M.L. Palladium-bisimidazol-2-ylidene complexes as catalysts for general and efficient Suzuki cross-coupling reactions of aryl chlorides with arylboronic acids. // Tetrahedron Lett. 2000. v. 41. p. 595
178. Steel P.G., Teasdale C.W.T. Polymer supported palladium N-heterocyclic carbene complexes: long lived recyclable catalysts for cross coupling reactions. // Tetrahedron Lett. 2004. v. 45. p. 8977
179. Wang A.-E., Zhong J., Xie J.-H., Li K., Zhou Q.-L. Highly Efficient Suzuki Cross-Coupling Catalyzed by Palladium/Phosphine-Imidazolium Carbene System. // Adv. Synth. Cat. 2004. v.346. № 6. p. 595
180. Moncada A.I., Khan M.A., Slaughter L.M. A palladium Chugaev carbene complex as a modular, air-stable catalyst for Suzuki-Miyaura cross-coupling reactions. // Tetrahedron Lett. 2005. v. 46. p. 1399
181. Moncada А.1., Manne S., Tanski J.M., Slaughter L.M. Imine Hydrogenation by Tribenzylphosphine Rhodium and Iridium Complexes. // Organometallics. 2006. v. 25. №2. p. 491
182. Zhao Y., Zhou Y., Ma D., Liu J., Li L., Zhang T.Y., Hongbin Zhang H. Suzuki cross-coupling mediated by tetradentate N-heterocyclic carbene (NHC)-palladium complexes in an environmentally benign solvent. // Org. Biomol. Chem. 2003. v. 1. p. 1643
183. Frank M., Maas G., Schatz J. Calix4.arene-Supported N-Heterocyclic Carbene Ligands as Catalysts for Suzuki Cross-Coupling Reactions of Chlorotoluene. // Eur. J. Org. Chem. 2004. p.607
184. Beletskaya I.P., Cheprakov A.V. in "Handbook of organopalladium chemistry for organic synthesis" Ed. Negishi E.-I. Wiley: New York, 2002. p. 2957
185. Deng Y., Gong L., Mi A., Liu H., Jiang Y. Suzuki Coupling Catalyzed by Ligand-Free Palladium(II) Species at Room Temperature and by Exposure to Air. // Synthesis. 2003. №3. p. 337
186. Zim D., Monteiro A.L., Dupont J. PdCl2(SEt2)2 and Pd(OAc)2: simple and efficient catalyst precursors for the Suzuki cross-coupling reaction. // Tetrahedron Lett. v. 41. № 43. p. 8199
187. Leadbeater N.E., Marco M. Transition-Metal-Free Suzuki-Type Coupling Reactions: Scope and Limitations of the Methodology. // J. Org. Chem. 2003. v. 68. № 14. p. 5660
188. C.-J. Li Suzuki Reaction Takes a "Naked Hot Bath": Coupling in High-Temperature Water without Transition Metals. // Angew. Chem. Int. Ed. 2003. v. 42. № 40. p. 4856
189. Arvela R.K., Leadbeater N.E, Sangi M.S., Williams V.A., Granados P., Singer R.D. // J. Org. Chem. 2005. v. 70. № 1. p. 161
190. Arvela R.K., Leadbeater N.E., Mack T.L., Kormos C.M. Microwave-promoted Suzuki coupling reactions with organotrifluoroborates in water using ultra-low catalyst loadings. // Tetrahedron Lett. 2006. v. 47. p. 217
191. Leadbeater N.E., Marco M. Ligand-Free Palladium Catalysis of the Suzuki Reaction in Water Using Microwave Heating. // Org. Lett. 2002. v. 4. № 17. p. 2973
192. Arvela R.K., Leadbeater N.E., Collins Jr M.J. Automated batch scale-up of microwave-promoted Suzuki and Heck coupling reactions in water using ultra-low metal catalyst concentrations. // Tetrahedron. 2005. v. 61. p. 9349
193. Tao В., Boykin D.W. trans-Pd(OAc)2(Cy2NH)2 catalyzed Suzuki coupling reactions and its temperature-dependent activities toward aryl bromides. // Tetrahedron Lett. 2003. v. 44. p. 7993
194. Tao В., Boykin D.W. Simple Amine/Pd(OAc)2-Catalyzed Suzuki Coupling Reactions of Aryl Bromides under Mild Aerobic Conditions. // J. Org. Chem. 2004. v. 69. № 13. p. 4330
195. Li J.-H., Liu W.-J. Dabco as an Inexpensive and Highly Efficient Ligand for Palladium-Catalyzed Suzuki-Miyaura Cross-Coupling Reaction. // Org. Lett. 2004. v. 6. № 16. p. 2809
196. Li J.-H., Liu W.-J., Xie Y.-X. // J. Org. Chem. 2005. v. 70. № 14. p. 5409
197. Najera C., Gil-Molto J., Karlstrom S., Falvello L.R. Di-2-pyridylmethylamine-Based Palladium Complexes as New Catalysts for Heck, Suzuki, and Sonogashira Reactions in Organic and Aqueous Solvents. // Org. Lett. 2003. v. 5. № 9. p. 1451
198. Najera C., Gil-Molto J., Karlstrom S. Suzuki Miyaura and Related Cross-Couplings in Aqueous Solvents Catalyzed by Di(2-pyridyl)methylamine-Palladium Dichloride Complexes. // Adv. Synth. Cat. 2004. v. 346. № 13-15. p. 1798
199. Korolev D.N., Bumagin N.A. Pd-EDTA as an efficient catalyst for Suzuki-Miyaura reactions in water. // Tetrahedron Lett. 2005. v. 46. p. 5751
200. Grasa G.A., Hillier А.С., Nolan S.P. Convenient and Efficient Suzuki-Miyaura Cross-Coupling Catalyzed by a Palladium/Diazabutadiene System. // Org. Lett. 2001. v. 3. № 7. p. 1077
201. Mino Т., Shirae Y., Sakamoto M., Fujita T. Phosphine-Free Hydrazone-Pd Complex as the Catalyst Precursor for a Suzuki-Miyaura Reaction under Mild Aerobic Conditions. // J. Org. Chem. 2005. v. 70. № 6. p. 2191
202. Weng Z., Koh L.L., Hor T.S.A. Suzuki cross-coupling in aqueous media catalyzed by a 1,10 -N-substituted ferrocenediyl Pd(II) complex. // J. Organomet. Chem. 2004. v. 689. p. 18
203. Gossage R.A., Jenkins H.A. , Yadav P.N. Application of an air stable Pd oxazoline complex for Heck, Suzuki, Sonogashira and related C-C bond-forming reactions. // Tetrahedron Lett. 2004. v. 45. p. 7689
204. Clement Mazet C., Gade L.H. Bis(oxazolinyl)pyrrole.palladium Complexes as Catalysts in Heck- and Suzuki-Type C-C Coupling Reactions. // Eur. J. Org. Chem. 2003. № 6. p. 1161
205. Tao В., Boykin D.W. Pd(OAc)2/2-aryl-2-oxazolines catalyzed Suzuki coupling reactions of aryl bromides and arylboronic acids. // Tetrahedron Lett. 2002. v. 43. p. 4955
206. Beller M., Fischer H., Herrmann W. A., Ofele K., Brossmer C. Palladacycles as Efficient Catalysts for Aryl Coupling Reactions. // Angew. Chem., Int. Ed. 1995. v. 34. № 17. p. 1848
207. Xiong Z., Wang N., Dai M., Li A., Chen J., Yang Z. Synthesis of Novel Palladacycles and Their Application in Heck and Suzuki Reactions under Aerobic Conditions. // Org. Lett. 2004. v. 6. № 19. p. 3337
208. Zim D., Gruber A.S., Ebeling G., Dupont J., Monteiro A.L. Sulfur-Containing Palladacycles: Efficient Phosphine-Free Catalyst Precursors for the Suzuki Cross-Coupling Reaction at Room Temperature. // Org. Lett. 2000. v. 2. № 18. p. 2881
209. Botella L., Najera C. A Convenient Oxime-Carbapalladacycle-Catalyzed Suzuki Cross-Coupling of Aryl Chlorides in Water. // Angew. Chem. Int. Ed. 2002. v. 41. № 1. p. 179
210. Botella L., Najera C. Cross-coupling reactions with boronic acids in water catalysed by oxime-derived palladacycles. // J. Organomet. Chem. 2002. v. 663. p. 46
211. Alacid Е., Alonso D.A, Botella L., Njera C., Pacheco M.C. Oxime Palladacycles Revisited: Stone-Stable Complexes Nonetheless Very Active Catalysts. // Chem. Record. 2006. v. 6. p. 117
212. Thakur V.V., Kumar N.S.C.R. Sudalai A. Sulfilimine palladacycles: stable and efficient catalysts for carbon-carbon coupling reactions. // Tetrahedron Lett. 2004. v. 45. p. 2915
213. Weissman H., Milstein D. Highly active Pd(ll) cyclometallated imine catalyst for the Suzuki reaction. // Chem. Commun. 1999. p. 1901
214. Astruc D., Lu F., Aranzaes J.R. Nanoparticles as Recyclable Catalysts: The Frontier between Homogeneous and Heterogeneous Catalysis. // Angew. Chem. Int. Ed. 2005. v.44. № 48. p. 7852
215. Narayanan R., El-Sayed M.A. Effect of Colloidal Nanocatalysis on the Metallic Nanoparticle Shape: The Suzuki Reaction. // Langmuir. 2005. v. 21. № 5. p. 2027
216. Reetz M.T., Breinbauer R., Wanninger K. Suzuki and Heck reactions catalyzed by preformed palladium clusters and palladium/nickel bimetallic clusters. // Tetrahedron Lett. 1996. v. 37. №26. p. 4499
217. Thathagar M.B., Beckers J., Rothenberg G. Copper-Catalyzed Suzuki Cross-Coupling Using Mixed Nanocluster Catalysts. // J. Am. Chem. Soc. 2002. v. 124. № 40. p. 11858
218. Liu Y., Khemtong C., Hu J. Synthesis and catalytic activity of a poly(N,N-dialkylcarbodiimide)/palladium nanoparticle composite: a case in the Suzuki coupling reaction using microwave and conventional heating. // Chem. Commun. 2004. p. 398
219. Narayanan R., El-Sayed M.A. Effect of Colloidal Catalysis on the Nanoparticle Size Distribution: Dendrimer-Pd vs PVP-Pd Nanoparticles Catalyzing the Suzuki Coupling Reaction. // J. Phys. Chem. B. 2004. v. 108. № 25. p. 8572
220. Calo V., Nacci A., Monopoli A., Montingelli F. Pd Nanoparticles as Efficient Catalysts for Suzuki and Stille Coupling Reactions of Aryl Halides in Ionic Liquids. // J. Org. Chem. 2005. v. 70. № 15. p. 6040
221. Wu L., Li B.-L., Huang Y.-Y., Zhou H.-F., He Y.-M., Fan Q.-H. Phosphine Dendrimer-Stabilized Palladium Nanoparticles, a Highly Active and Recyclable Catalyst for the Suzuki-Miyaura Reaction and Hydrogenation. // Org. Lett. 2006. v. 8. № 16. p. 3605
222. Lu F., Ruiz J., Astruc D. Palladium-dodecanethiolate nanoparticles as stable and recyclablecatalysts for the Suzuki-Miyaura reaction of aryl halides under ambient conditions. // Tetrahedron Lett. 2004. v. 45. p. 9443
223. Kim S.-W., Kim M., Lee W.Y., Hyeon T. Fabrication of Hollow Palladium Spheres and Their Successful Application to the Recyclable Heterogeneous Catalyst for Suzuki Coupling Reactions. //J. Am. Chem. Soc. 2002. v. 124. № 26. p. 7642
224. Narayanan R., El-Sayed M.A. Effect of Catalysis on the Stability of Metallic Nanoparticles: Suzuki Reaction Catalyzed by PVP-Palladium Nanoparticles. // J. Am. Chem. Soc. 2003. v. 125. № 27. p. 8340
225. Hu J., Liu Y. Pd Nanoparticle Aging and Its Implications in the Suzuki Cross-Coupling Reaction. // Langmuir. 2005. v. 21. № 6. p. 2121
226. Narayanan R., El-Sayed M.A. FTIR Study of the Mode of Binding of the Reactants on the Pd Nanoparticle Surface during the Catalysis of the Suzuki Reaction. // J. Phys. Chem. B.2005. v. 109. №10. p. 4357
227. Basheer C., Hussain F.S.J., Lee H.K., Valiyaveettil S. Design of a capillary-microreactor for efficient Suzuki coupling reactions. // Tetrahedron Lett. 2004. v. 45. p. 7297
228. Li Y., Boone E., El-Sayed M.A. Size Effects of PVP-Pd Nanoparticles on the Catalytic Suzuki Reactions in Aqueous Solution. // Langmuir. 2002. v. 18. № 12. p. 4921
229. Li Y., Hong X.M., Collard D.M., El-Sayed M.A. Suzuki Cross-Coupling Reactions Catalyzed by Palladium Nanoparticles in Aqueous Solution. // Org. Lett. 2000. v. 2. № 15. p. 2385
230. Shaughnessy K.H. Beyond TPPTS: New Approaches to the Development of Efficient Palladium-Catalyzed Aqueous-Phase Cross-Coupling Reactions. // Eur. J. Org. Chem.2006. №8. p. 1827
231. Shaughnessy K.H., Booth R.S. Sterically Demanding, Water-Soluble Alkylphosphines as Ligands for High Activity Suzuki Coupling of Aryl Bromides in Aqueous Solvents. // Org. Lett.; 2001. v. 3.№ 17. p. 2757
232. Marck G., Villiger A., Buchecker R. Aryl couplings with heterogeneous palladium catalysts. // Tetrahedron Lett. 1994. v. 35. № 20. p. 3277
233. Kabalka G.W., Namboodiri V., Wang L. Suzuki coupling with ligandless palladium and potassium fluoride. // Chem. Commun. 2001. № 8. p. 775
234. Kabalka G.W., Pagni R.M., Hair C.M. Solventless Suzuki Coupling Reactions on
235. Palladium-Doped KF/Al203. // Org. Lett. 1999. v. 1. № 9. p. 1423
236. Stepan A.F., Ramarao C., Brennan P.E., Ley S.V. Palladium-containing perovskites: recoverable and reuseable catalysts for Suzuki couplings. // Chem. Commun. 2003. p. 2652
237. Stepan A.F., Tanaka H., Ley S.V., Smith M.D. Heterogeneous or Homogeneous? A Case Study Involving Palladium-Containing Perovskites in the Suzuki Reaction. // Adv. Synth. Catal. 2005. v. 347. p. 647
238. Bulut H., Artok L., Yilmaz S. Suzuki cross-coupling reactions of aryl halides with arylboronic acids catalysed by Pd(II)-NaY zeolite. // Tetrahedron Lett. 2003. v. 44. p. 289
239. Artok L., Bulut H. Heterogeneous Suzuki reactions catalyzed by Pd(0)-Y zeolite. // Tetrahedron Lett. 2004. v. 45. p. 3881
240. Kantam M.L., Roy S., Roy M., Sreedhar В., Choudary B.M. Nanocrystalline Magnesium Oxide-Stabilized Palladium(O): An Efficient and Reusable Catalyst for Suzuki and Stille Cross-Coupling of Aryl Halides. //Adv. Synth. Catal. 2005. v. 347. p. 2002
241. Felpin F.-X., Ayad Т., Mitra S. Pd/C: An Old Catalyst for New Applications Its Use for the Suzuki-Miyaura Reaction. // Eur. J. Org. Chem. 2006. p. 2679
242. Tagata Т., Nishida M. Palladium Charcoal-Catalyzed Suzuki-Miyaura Coupling To Obtain Arylpyridines and Arylquinolines. // J. Org. Chem. 2003. v. 68. № 24. p. 9412
243. Lipshutz B.H., Tasler S., Chrisman W., Spliethoff В., Tesche B. On the Nature of the "Heterogeneous"; Catalyst: Nickel-on-Charcoal. //J. Org. Chem. 2003.68.№4. p. 1177
244. Conlon D.A., Pipik В., Ferdinand S., LeBlond C.R., Sowa Jr. J.R., Izzo В., Collins P., Ho G.-J., Williams J.M., Shi Y.-J., Sun Y. Suzuki-Miyaura Cross-Coupling With Quasi-Heterogeneous Palladium. // Adv. Synth. Catal .2003. v. 345. p. 931
245. Kabalka G.W., Wang L., Pagni R.M., Hair C.M., Namboodiri V. Solventless Suzuki Coupling Reactions On Palladium-Doped Potassium Fluoride Alumina // Synthesis. 2003. №2. p. 217
246. Lu G., Franzen R., Zhang Q., Xu Y. Palladium charcoal-catalyzed, ligandless Suzuki reaction by using tetraarylborates in water. // Tetrahedron Lett. 2005. v. 46. p. 4255
247. Zhang G. // Synthesis. 2005. № 4. p. 537
248. Dyer U.C., Shapland P.D., Tiffin P.D. Preparation of enantiopure 4-arylmandelic acids via a Pd:C catalysed Suzuki coupling of enantiopure 4-bromomandelic acid. // Tetrahedron Lett. 2001. v. 42. №9, p. 1765
249. LeBlond C.R., Andrews A.T., Sowa J.R. Jr., Sun Y. Activation of Aryl Chlorides for Suzuki Cross-Coupling by Ligandless, Heterogeneous Palladium. // Org. Lett. 2001. v. 3. № 10. p. 1555
250. Lin С.-А., Luo F.-T. Polystyrene-supported recyclable palladacycle catalyst for Heck, Suzuki and Sonogashira reactions. // Tetrahedron Lett. 2003. v. 44. p. 7565
251. Luo F.-T., Xue С., Ко S.-L., Shao Y.-D., Wu C.-Y., Kuo Y.-M. Preparation of polystyrene-supported soluble palladacycle catalyst for Heck and Suzuki reactions. // Tetrahedron. 2005. v. 61. p. 6040
252. Wang Y., Sauer D.R. Use of Polymer-Supported Pd Reagents for Rapid and Efficient Suzuki Reactions Using Microwave Heating. // Org. Lett. 2004. v. 6. № 16. p. 2793
253. Datta A., Plenio H. Nonpolar biphasic catalysis: Sonogashira and Suzuki coupling of aryl bromides and chlorides. // Chem. Commun. 2003. p. 1504
254. Lemo J., Heuze K., Astruc D. Efficient Dendritic Diphosphino Pd(II) Catalysts for the Suzuki Reaction of Chloroarenes. // Org. Lett. 2005. v. 7. № 11.2253
255. Byun J.-W., Lee Y.-S. Preparation of polymer-supported palladium/N-heterocyclic carbene complex for Suzuki cross-coupling reactions. // Tetrahedron Lett. 2004. v. 45. p. 1837
256. Kim J.-H., Jun B.-H., Byun J.-W., Lee Y.-S. N-Heterocyclic carbene-palladium complex on polystyrene resin surface as polymer-supported catalyst and its application in Suzuki cross-coupling reaction. // Tetrahedron Lett. 2004. v. 45. p. 5827
257. Kim J.-H., Kim J.-W., Shokouhimehr M., Lee Y.-S. Polymer-Supported N-Heterocyclic Carbene-Palladium Complex for Heterogeneous Suzuki Cross-Coupling Reaction. // J. Org. Chem. 2005. v. 70. № 17. p. 6714
258. Stevens P.D., Fan J., Gardimalla H.M.R., Yen M., Gao Y. Superparamagnetic Nanoparticle-Supported Catalysis of Suzuki Cross-Coupling Reactions. // Org. Lett. 2005. v. 7. № 11. p. 2085
259. Welton T. Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis. // Chem. Rev. 1999. v. 99. № 8. p. 2071
260. Dupont J., de Souza R.F., Suarez P.A.Z. Ionic Liquid (Molten Salt) Phase Organometallic Catalysis. // Chem. Rev. 2002. v. 102. № 10. p. 3667
261. Aki S.N.V.K., Brennecke J.F., Samanta A. How polar are room-temperature ionic liquids?. // Chem. Commun. 2001. № 5. p. 413
262. Revell J.D. Ganesan A. Ionic Liquid Acceleration of Solid-Phase Suzuki-Miyaura Cross-Coupling Reactions. // Org. Lett. 2002. v. 4. № 18. p. 3071
263. Rajagopal R., Jarikote D.V., Srinivasan K.V. Ultrasound promoted Suzuki cross-coupling reactions in ionic liquid at ambient conditions. // Chem. Commun. 2002. p. 616
264. Deshmukh R.R., Rajagopal R., Srinivasan K.V. Ultrasound promoted C-C bond formation: Heck reaction at ambient conditions in room temperature ionic liquids. // Chem. Commun. 2001. №17. p. 1544
265. Mathews C.J., Smith P.J, Welton T. Palladium catalysed Suzuki cross-coupling reactions in ambient temperature ionic liquids. // Chem. Commun. 2000. № 14. p. 1249
266. Xiao J.-C., Shreeve J.M. Synthesis of 2,2'-Biimidazolium-Based Ionic Liquids: Use as a New Reaction Medium and Ligand for Palladium-Catalyzed Suzuki Cross-Coupling Reactions. // J. Org. Chem. 2005. v. 70. № 8. p. 3072
267. McNulty J., Capretta A., Wilson J., Dyck J., Adjabeng G., Robertson A. Suzuki cross-coupling reactions of aryl halides in phosphonium salt ionic liquid under mild conditions. // Chem. Commin. 2003. p. 1986
268. Bedford R.B., Blake M.E., Butts C.P., Holder D. The Suzuki coupling of aryl chlorides in TBAB-water mixture. // Chem. Commun. 2003. p. 466
269. Baleizao C., Corma A., Garcia H., Leyva A. An oxime-carbapalladacycle complex covalently anchored to silica as an active and reusable heterogeneous catalyst for Suzuki cross-coupling in water. // Chem. Commun. 2003. p. 606
270. Baleizao C., Corma A., Garcia H., Leyva A. Oxime Carbapalladacycle Covalently Anchored to High Surface Area Inorganic Supports or Polymers as Heterogeneous Green Catalysts for the Suzuki Reaction in Water. // J. Org. Chem. 2004. v. 69. № 2. p. 439
271. Vassylyev O., Chen J., Panarello A.P., Khinast J.G. Catalytic properties of several supported Pd(II) complexes for Suzuki coupling reactions. // Tetrahedron Lett. 2005. v. 46. p.6865
272. Daku K.M.L., Newton R.F., Pearce S.P., Vile J., Williams J.M.J. Suzuki cross-coupling reactions using reverse-phase glass beads in aqueous media. // Tetrahedron Lett. 2003. v.44. р. 5095
273. Tzschucke С.С., Bannwarth W. Fluorous-Silica-Supported Perfluoro-Tagged Palladium Complexes Catalyze Suzuki Couplings in Water. // Helv. Chim. Acta. 2004. v. 87. p. 2882
274. Tzschucke C.C., Andrushko V., Bannwarth W. Assessment of the Reusability of Pd Complexes Supported on Fluorous Silica Gel as Catalysts for Suzuki Couplings. // Eur. J. Org. Chem. 2005. p. 5248
275. Tzschucke C.C., Markert C., Glatz H.G., Bannwarth W. Fluorous Biphasic Catalysis without Perfluorinated Solvents: Application to Pd-Mediated Suzuki and Sonogashira Couplings. // Angew. Chem. Int. Ed. 2002. v. 41. № 23. p. 4500
276. Hayashi K., Kim S., Kono Y., Tamura M., Chiba K. Microwave-promoted Suzuki-Miyaura coupling reactions in a cycloalkane-based thermomorphic biphasic system. // Tetrahedron Lett. 2006. v. 47. p. 171
277. Liu L., Zhang Y., Wang Y. Phosphine-Free Palladium Acetate Catalyzed Suzuki Reaction in Water. // J. Org. Chem. 2005. v. 70. № 15. p. 6122
278. Nobre S.M., Wolke S.I., da Rosa R.G., Monteir A.L. Simple and efficient protocol for catalyst recycling and product recovery in the Pd-catalyzed homogeneous Suzuki reaction. // Tetrahedron Lett. 2004. v. 45. p. 6527
279. Jiang N., Ragauskas A.J. Environmentally friendly synthesis of biaryls:Suzuki reaction of aryl bromides in water at low catalyst loadings. // Tetrahedron Lett. 2006. v. 47. p. 197
280. Okamoto K., Akiyama R., Kobayashi S. Suzuki-Miyaura Coupling Catalyzed by Polymer-Incarcerated Paliadium, a Highly Active, Recoverable, and Reusable Pd Catalyst. // Org. Lett. 2004. v. 6. № 12. p. 1987
281. Nishio R., Sugiura M., Kobayashi S. Novel Polymer Incarcerated Palladium with Phosphinated Polymers: Active Catalyst for Suzuki-Miyaura Coupling without External Phosphines. // Org. Lett. 2005. v. 7. № 22. p. 4831
282. Tang Z.-Y., Hu Q.-S. Room Temperature Nickel(0)-Catalyzed Suzuki-Miyaura Cross-Couplings of Activated Alkenyl Tosylates: Efficient Synthesis of 4-Substituted Coumarins and 4-Substituted 2(5H)- Furanones. // Adv. Synth. Catal. 2004. v. 346. p. 1635
283. Zim D., Lando V.R., Dupont J., Monteiro A.L. NiCb(PCy3)2: A Simple and Efficient Catalyst Precursor for the Suzuki Cross-Coupling of Aryl Tosylates and Arylboronic
284. Acids. // Org. Lett. 2001. v. 3. № 19. p. 3049
285. Satio S., Masaaki S., Miyaura N. A synthesis of biaryls via nickel(0)-catalyzed cross-coupling reaction of chloroarenes with phenylboronic acids. // Tetrahedron Lett. 1996. v. 37. №17. p. 2993
286. Satio S., Oh-tani S., Miyaura N. Synthesis of Biaryls via a Nickel(0)-Catalyzed Cross-Coupling Reaction of Chloroarenes with Arylboronic Acids. // J. Org. Chem. 1997. v. 62. № 23. p. 8024
287. Kageyama H., Miyazaki Т., Kimura Y. Nickel-Catalyzed Cross-Coupling Reaction of Aryl Halides in Pyridine. A Practical Synthesis of 4'-Methylbiphenyl-2-carbonitrile As a Key Intermediate of Angiotensine II Receptor Antagonists. // Synlett. 1994. p. 371
288. Indolese A.F. Suzuki-Type Coupling of Chloroarenes with Arylboronic Acids Catalysed by Nickel Complexes. // Tetrahedron Lett. 1997. v. 38. № 20. p. 3513
289. Firooznia F., Gude C., Chan K., Saton Y. Synthesis of 4-substituted phenylalanines by cross-coupling reactions: Extension of the methodology to aryl chlorides. // Tetrahedron Lett. 1998. v. 39. №23. p. 3985
290. Lipshutz В., Sclafani J„ Blomgren P. Biaryls via Suzuki Cross-Couplings Catalyzed by Nickel on Charcoal. // Tetrahedron. 2000. v. 56. № 15. p. 2139
291. Lipshutz B.H. Development of Nickel-on-Charcoal as a "Dirt-Cheap" Heterogeneous Catalyst: A Personal Account. // Adv. Synth. Catal. 2001. v. 343. № 4. p. 313
292. Frieman B.A., Taft B.R., Lee C.-T., Butler Т., Lipshutz B.H. Nickel-in-Charcoal (Ni/C): An Efficient Heterogeneous Catalyst for the Construction of C-C, C-N, and C-H Bonds. // Synthesis. 2005. № 17. p. 2989
293. Tang Z.-Y., Hu Q.-S. Triphenylphosphine as a Ligand for Room-Temperature Ni(0)-Catalyzed Cross-Coupling Reactions of Aryl Chlorides with Arylboronic Acids. // J. Org. Chem. 2006. v 71. №5. p. 2167
294. Galland J-C., Savignac М., Genet G-P. Cross-coupling of chloroarenes with boronic acids using a water-soluble nickel catalyst. // Tetrahedron Lett. 1999. v. 40. № 13. p. 2323
295. Zim D., Monterio A. Synthesis of novel 6,7-dihydrothiazolo3,2-b.-l,2,4-thiadiazine 1,1-dioxides. // Tetrahedron Lett. 2002. v. 43. № 22. p. 4009
296. Leadbeater N.E., Resouly S.M. Suzuki aryl couplings mediated by phosphine-free nickelcomplexes. // Tetrahedron. 1999. v.55. p. 11889
297. Zhou J., Fu G.C. Suzuki Cross-Couplings of Unactivated Secondary Alkyl Bromides and Iodides. // J. Am. Chem. Soc. 2004. v. 126. № 5. p. 1340
298. Blakey S.B., MacMillan D.W.C. The First Suzuki Cross-Couplings of Aryltrimethy 1 ammonium Salts. // J. Am. Chem. Soc. 2003. v. 125. № 20. p. 6046
299. Stang P.J., Treptow W. Single-Step Improved Synthesis of Primary and Other Vinyl Trifluoromethanesulfonates. // Synthesis. 1980. № 4. p. 283
300. Stang P.J., Fisk Т.Е. Synthesis of l-(Ethynyl)-vinyl Trifluoromethanesulfonates. // Synthesis. 1979. p. 438
301. Cacchi S., Morera E., Ortar G. Palladium-Catalyzed Reaction of Enol Triflates with 1-Alkynes. A New Route to Conjugated Enynes. // Synthesis. 1986. № 4. p. 320
302. Ciattini P.G., Morera E., Ortar G. A new pathway to alkynyl ketones via palladium-catalyzed carbonylative coupling of vinyl triflates with 1-alkynes. // Tetrahedron Lett. 1991. v. 32. №44. p. 6449
303. Skoda-Foldes R., Kollar L., Horvath J., Tuba Z. Steroidal alkenylphosphonates via palladium-catalyzed coupling reactions. // Steroids. 1995. v. 60. № 12. p. 791
304. Schweder В.; Uhlig E. Synthese von AI6-17(Trialkylstannyl)steroiden aus 17-Ketosteroiden. II. //J. Prakt. Chem. 1991. v. 333. № 2. p. 223.
305. Cleve A., Gunter N., Ottow E., Scholz S., Schwede. Synthesis of 14P-H antiprogestins. // Tetrahedron. 1995 v. 51. № 19. p. 5563
306. Potter G.A., Barrie S.E., Jarman M., Rowlands M.G. Novel Steroidal Inhibitors of Human Cytochrome P45017a.-Hydroxylase-C17,20-lyase): Potential Agents for the Treatment of Prostatic Cancer. //J. Med. Chem. 1995. v. 38. № 13. p. 2463
307. Oh-e Т., Miyaura N., Suzuki A. Palladium-catalyzed cross-coupling reaction of organoboron compounds with organic triflates. // J. Org Chem. 1993. v. 58. № 8. p. 2201
308. Bauer P.E., Kyler K.S., Watt D.S. A synthesis of 3p-hydroxy-5p,14a-bufa-20,22-dienolide from deoxycorticosterone. // J Org. Chem. 1983, v. 48. № 1. p. 34
309. Gravett E.C., Hilton J.P., Jones K., Romero F. A Suzuki coupling approach to bufadienolides. //Tetrahedron Lett. 2001. v. 42.№ 51. p. 9081
310. Ciattini P.G., Morera E., Ortar G. Palladium-catalyzed cross-coupling reactions of vinyland aryl triflates with tetraarylborates. // Tetrahedron Lett. 1992. v. 33. № 33. p. 4815
311. Felpin F.-X. Practical and Efficient Suzuki-Miyaura Cross-Coupling of 2-Iodocycloenones with Arylboronic Acids Catalyzed by Recyclable Pd(0)/C. // J. Org. Chem. 2005. v. 70. № 21. p. 8575
312. Chao J., Ling Y., Liu X., Luo X., Brodie A.M.H. A versatile synthesis of 17-heteroaryl androstenes via palladium-mediated Suzuki cross-coupling with heteroaryl boronic acids. // Steroids. 2006. v. 71. № 7. p. 585
313. Arcadi A., Cacchi S., Delmastro M., Marinelli F. 5-Vinyl-4-pentynoic Acids Through the Palladium-Catalyzed Reaction of 4-Pentynoic Acid with Vinyl Triflates. // Synlett. 1991. p. 409
314. Arcadi A., Cacchi S., Marinelli F. The conversion of vinyl triflates into y'-hydroxy-a,p-enones. // Tetrahedron. 1993. v. 49. № 22. p. 4955
315. Arcadi A., Cacchi S., Marinelli F. Palladium-catalysed coupling of aryl and vinyl triflates or halides with 2-ethynylaniline: An efficient route to functionalized 2-substituted indoles. // Tetrahedron Lett. 1989. v. 30. № 19. p. 2581
316. Arcadi A., Cacchi S., Fabrizi G., Marinelli F. Propargyl Ethylmalonates as Useful Building Blocks for the Preparation of Functionalized Butenolides. // Synlett. 1993. № 1. p. 65
317. Skoda-Foldes R., Kollar L., Marnelli F., Arcadi A. Direct and carbonylative vinylation of steroidal triflates in the presence of homogeneous palladium catalysts. // Steroids. 1994. v. 59. № 12. p. 691
318. Skoda-Foldes R., Csakai Z., Kollar L., Horvath J., Tuba Z. Palladium-catalyzed homogeneous coupling reactions of steroids with organostannanes. // Steroids. 1995. v. 60. №12. p. 812
319. Skoda-Foldes R., Pfeiffer P., Kollar L., Horvath J., Tuba Z. Microwave-assisted Stille-coupling of steroidal substrates. // Steroids. 2002. v. 67. № 8. p. 709
320. Liu Z., Meinwald J. 5-(Trimethylstannyl)-2H-pyran-2-one and 3-(Trimethylstannyl)-2H-pyran-2-one: New 2H-Pyran-2-one Synthons. // J. Org. Chem. 1996. v. 61. № 19. p. 6693
321. Ciattini P.G., Morera E., Ortar G. A new synthesis of the corticosteroid side chain. // Tetrahedron Lett 1990. v. 31. № 13. p. 1889
322. Djerassi C., Lenk C. a-Iodoketones (Part 3). Synthesis of 21-Iodo-A,6-20-keto Steroids by the N-Iodosuccinimide-Enol Acetate Reaction. // J. Am. Chem. Soc. 1954. v. 76. № 7. p. 1722
323. Ciattini P.G., Morera E., Ortar G. An efficient synthesis of 3-substituted indoles by palladium-catalyzed coupling reaction of 3-tributylstannylindoles with organic triflates and halides. // Tetrahedron Lett. 1994. v. 35. № 15. p. 2405
324. Scott W.J., Stille J.K. Palladium-catalyzed coupling of vinyl triflates with organostannanes. Synthetic and mechanistic studies. // J. Am. Chem. Soc. 1986. v. 108. № 11. p. 3033
325. Tuozzi A., Lo Sterzo C., Sperandio A., Bocelli G. Use of the Stille coupling to label steroids with the ethynylcyclopentadienylmanganesetricarbonyl moiety. // Tetrahedron. 1999. v. 55. №2. p. 461
326. Knochel P., Perea J.J.A., Jones P. Organozinc mediated reactions. // Tetrahedron. 1998. v. 54. № 29. p. 8275
327. Arcadi A., Burini A., Cacchi S., Delmastro M., Marinelli F., Pietroni B. The Palladium-Catalyzed Cross Coupling of Vinyl and Aryl Triflates with 2-Furylzinc Chloride: An Efficient Route to 2-Vinyl- and 2-Arylfurans. // Synlett. 1990. № 1. p. 47
328. Beletskaya, I. p., Cheprakov A.V. The Heck Reaction as a Sharpening Stone of Palladium Catalysis. // Chem. Rev. 2000. v. 100. p. 3009
329. Heck R.F. Palladium-Catalyzed Vinylation of Organic Halides. // Org. React. 1982. v. 27. p. 345
330. Kao L.C., Stakem F.G., Patel B.A., Heck R. Palladium-catalyzed reactions of vinylic bromides with allylic alcohol and amine derivatives. // J. Org. Chem. 1982. v. 47. № 7. p. 1267
331. Cacchi S., Morera E., Ortar G. Palladium-catalysed vinylation of enol triflates. //
332. Tetrahedron Lett. 1984. v. 25. № 21. p. 2271
333. Bernocchi E., Cacchi S., Ciattini P.G., Morera E., Ortar G. Palladium-catalysed vinylation of allylic alcohols with enol triflates. A convenient synthesis of conjugated dienols. // Tetrahedron Lett. 1992. v. 33. № 21. p. 3073
334. Diederich F., Stang P.J."Metal-catalyzed Cross-coupling Reactions"; Wiley-VCH, Weinheim. 1998
335. Home D., Gaudino J., Thompson W.J. A convenient method for the synthesis of a-Ketoesters from aldehydes. // Tetrahedron Lett. 1984. v. 25. № 33. p. 3529
336. Cacchi S., Ciattini P.G., Morera E., Ortar G. A novel approach to a-keto acid derivatives via palladium-catalyzed arylation and vinylation of methyl a-methoxyacrylate. // Tetrahedron Lett. 1987 v. 28. № 26. p. 3039
337. Harhisch W., Morera E., Ortar G. A novel approach to cardenolides. // J. Org. Chem. 1985. v. 50. №11. p. 1990
338. Gebbing E.A.K., Stork G.A., Jansen J.M., Groot A. Synthesis and insect antifeedant activity of 2-substituted 2,3-dihydrofuran-3-ols and butenolides (Part II). // Tetrahedron. 1999. v. 55. №36. p. 11077
339. Arcadi A., Marinelli F. The reaction of aryl iodides with hindered a,p,y,5-dienones in the presence of the Pd(OAc)2(PPh3)2.-trialkylammonium formate reagent. // J. Organometal. Chem. 1986. v. 312. №2. p. C27
340. Skoda-Foldes R., Bodnar M., Kollar L., Horvath J., Tuba Z. Heck reactions of steroidalalkenyl iodides. // Steroids. 1998. v. 63. № 2. p. 93
341. Smadja W., Ville G., Cahiez G. Phenylation d'alcools allyliques acycliques : II. Regioselectivite du transfert d'hydrogene. // Tetrahedron Lett. 1984. v. 25. № 17. p. 1793
342. Jeffrey J. Palladium-catalysed arylation of allylic alcohols: Highly selective synthesis of P-aromatic carbonyl compounds or P-aromatic a,p-unsaturated alcohols. // Tetrahedron Lett. 1991. v. 32. № 19. p. 2121
343. Kirk D.N., Patel D.K., Petrow V. J. Modified steroid hormones. Part I. Some 4-bromo-3-oxo-A4-derivatives. //J. Chem. Soc. 1956. p. 627
344. Hodson H.F., Madge D.J., Widdowson D.A. Regiospecific synthesis of 4-fluoro-A4,3-keto steroids using caesium fluoroxysulfate. // J. Chem. Soc. Perkin Trans. 1. 1995. № 23. p. 2965
345. Beard C.C. in "Organic reactions in steroid chemistry" Fried J., Edwards J.A. eds. Van Nostrand Reinhold Company: New-York, 1972. p. 265
346. Андрюшина B.A., Савинова T.C., Скрябин К.Г. // Патент RU С1 № 2163606
347. Yasuda К. Oxidation of 3-enol derivatives of 4-en-3-oxo-steroids by tert-butyl chromate. // Chem. Pharm. Bull. 1963. v.ll. p.1167
348. Els H., Englert G., Mtiller M., Furst A. On 9-beta, 10-alpha-steroids. 1. Preparation and properties of 6-halogen-9-beta,10-alpha-androstane derivatives. // Helv. Chim. Acta. 1965. v.48. № 5. p. 989
349. Nitta I., Haruyama Т., Inoue S. A process for the preparation of 4,6-dien-3-one steroids. // Патент EPO 0027192
350. Weserhof P., Hartog J. // Rec. Trav. Chim. 1967. vol.86, p.235
351. Cox P.J., Turner A.B. Synthesis, x-ray structure and molecular mechanics studies of the boar taint steroid (5a -androst-16-en-3-one). // Tetrahedroa 1984. v. 40. № 16. p. 3153
352. Boland G.M., Donnelly D.M.X., Finet J.-P., Rea M.D. Synthesis of neoflavones by Suzuki arylation of 4-substituted coumarins. // J. Chem. Soc., Perkin Trans. 1.1996. № 21. p. 2591
353. Hashim J., Glasnov T.N., Kremsner J.M., Kappe C.O. Symmetrical Bisquinolones via Metal-Catalyzed Cross-Coupling and Homocoupling Reactions. // J. Org. Chem. 2006. v. 71. №4. p. 1707
354. Hesse S., Kirsch G. A rapid access to coumarin derivatives (using Vilsmeier-Haack and Suzuki cross-coupling reactions). // Tetrahedron Lett. 2002. v. 43. № 7. p. 1213
355. Hesse S., Kirsch G. Palladium-Catalyzed C-C Bond Formation from beta-Chloroacroleins in Aqueous Media. // Synthesis. 2001. p. 755
356. Satoh N., Ishiyama Т., Miyaura N., Suzuki A. Stereoselective Synthesis of Conjugated
357. Dienones via the Palladium-Catalyzed Cross-Coupling Reaction of 1-Alkenylboronates with 3-Halo-2-alken-l-ones. // Bull. Chem. Soc. Jpn. 1987. v. 60. № 9. p. 3471
358. Chen C., Wilcoxen K., Strack N., McCarthy J.R. Synthesis of fluorinated olefins via the palladium catalyzed cross-coupling reaction of 1-fluorovinyl halides with organoboranes. // Tetrahedron Lett. 1999. v. 40. № 5. p. 827
359. Song Y.S., Kim B.T., Heo J.-N. An efficient synthesis of 2-aryl-3-methoxy-2-cycloalkenones via Suzuki-Miyaura reaction under microwave irradiation. // Tetrahedron Lett. 2005. v. 46. p. 5987
360. Tsvetkov A.V., Latyshev G.V., Tafeenko V.A., Lukashev N.V., Beletskaya I.P. // Tetrahedron Lett. 2000. v. 41. p. 3987
361. Beletskaya I.P., Tsvetkov A.V., Latyshev G.V., Tafeenko V.A., Lukashev N.V. Bis(ferrocenyl)mercury as a source of ferrocenyl moiety in Pd-catalyzed reactions of carbon-carbon bond formation. // J. Organomet. Chem. 2001. v. 637-639. p. 653
362. Jones D., Knox K. Stereochemistry of formation and reduction of я-allyl palladium chloride complexes from steroidal olefins. // Chem. Commun. 1975. № 5. p. 165
363. Collins D., Jackson R., Timms R. Stereospecific бр-functionalisation of З-охо-4-ene steroids via я-allylpalladium complexes. // Tetrahedron Lett. 1976. v. 17. № 6. p. 495
364. McQuillin, F. Mechanism of formation of 4-6л-3-охо steroid-PdCl complexes. // Chem. Commun. 1978. № l.p. 15
365. Butters Т., Handschu D., Hutter P., Winter W. Die Kristall- und Molekblstruktur des dimeren я-Allylpalladiumchlorid-Komplexes von Testosteron. // Liebigs Ann. Chem. 1982. №6. p. 1111
366. Hunt D., Quante J., Tyson R., Dashev L. Preparation and utilization of corticosteroidal (.pi.-allyl)palladium complexes. A novel entry to 6.alpha.,.beta.-(carboxymethyl)cortisol. // J. Org. Chem. 1984. v. 49. № 26. p. 5262
367. Trost В., Verhoeven T. J. Allylic alkylation: nature of the nucleophile and application to prenylation. III. Am. Chem. Soc. 1978. v. 100. № 11. p. 3435
368. Thorand S., Krause N. Improved Procedures for the Palladium-Catalyzed Coupling of Terminal Alkynes with Aryl Bromides (Sonogashira Coupling). // J. Org. Chem. 1998. v. 63. №23. p. 8551
369. Alami M., Linstrumelle G. An efficient palladium-catalyzed reaction of vinyl chlorides with terminal acetylenes. // Tetrahedron Lett. 1991. v. 32. № 43. p. 6109
370. Alami M., Crousse В., Ferri F. Weakly ligated palladium complexes PdCl2(RCN)2 inpiperidine: versatile catalysts for Sonogashira reaction of vinyl chlorides at roomtemperature. // J. Organometal. Chem. 2001. v. 624. № 1-2. p. 114
371. Bertus P., Pale P. Silver salts as new catalyst for coupling reactions; synthesis of epoxyenynes. // Tetrahedron Lett. 1996. v. 37. № 12. p. 2019
372. Bertus P., Pale P. Synthesis of enynes and epoxyenynes by coupling: use of a new set of catalysts based on Pd-Ag salts. // J. Organomet. Chem. 1998. v. 567. № 1-2. p. 173
373. Dillinger S., Bertus P., Pale P. First Evidence for the Use of Organosilver Compounds in Pd-Catalyzed Coupling Reactions; A Mechanistic Rationale for the Pd/Ag-Catalyzed Enyne Synthesis?. // Org. Lett. 2001. v. 3. p. 1661
374. Mori A., Kondo Т., Kato Т., Nishihara Y. Palladium-Catalyzed Cross-Coupling Polycondensation of Bisalkynes with Dihaloarenes Activated by Tetrabutyl-ammonium Hydroxide or Silver(I) Oxide. // Chem. Lett. 2001. № 4. p. 286
375. Okuro K., Furuune M., Miura M., Nomura M. Copper-catalyzed coupling reaction of aryl and vinyl halides with terminal alkynes. // Tetrahedron Lett. 1992. v. 33. № 37. p. 5363
376. Okuro K., Furuune M., Enna M, Miura M., Nomura M. Synthesis of Aryl- and Vinylacetylene Derivatives by Copper-Catalyzed Reaction of Aryl and Vinyl Iodides with Terminal Alkynes. // J. Org. Chem. 1993. v. 58. № 17. p. 4716
377. Bates C.G. "Copper-catalyzed cross-coupling reactions: the formation of carbon-carbon and carbon-sulfur bonds" Ph.D. dissertation. 2005. Graduate School of the University of Massachusetts Amherst
378. Gujadhur R.K., Bates C.G., Venkataraman D. Formation of Aryl-Nitrogen, Aryl-Oxygen, and Aryl-Carbon Bonds Using Weil-Defined Copper(I)-Based Catalysts. // Org. Lett. 2001. v. 3. № 26. p. 4315
379. Numazawa M., Yamaguchi S. Synthesis and structure-activity relationships of 6-phenylaliphatic-substituted C19 steroids having a 1,4-diene, 4,6-diene, or 1,4,6-triene structure as aromatase inhibitors. // Steroids. 1999. v. 64. p. 187
380. Huo S. Highly Efficient, General Procedure for the Preparation of Alkylzinc Reagents from Unactivated Alkyl Bromides and Chlorides. // Org. Lett. 2003. v. 5. № 4. p. 423
381. Recanatini M., Cavalli A., Valenti P. Nonsteroidal Aromatase Inhibitors: Recent Advances. // Med. Res. Rev. 2002. v. 22, №. 3. p. 282
382. Meunier В., de Visser S.P., Shaik S. Mechanism of Oxidation Reactions Catalyzed by Cytochrome P450 Enzymes. // Chem. Rev. 2004. v. 104. № 9. p. 3947
383. Jensen J, Kitlen J W., Briand P., Labne F, Lykkesfeldt A.E. Effect of antiestrogens and aromatase inhibitor on basal growth of the human breast cancer cell line MCF-7 in serum-free medium. // J. Steroid Biochem. Mol. Biol. 2003 v. 84. p. 469
384. Sonne-Hansen K, Lykkesfeldt A.E. Endogenous aromatization of testosterone results in growth stimulation of the human MCF-7 breast cancer cell line. // J. Steroid Biochem. Mol. Biol. 2005 v. 93 p 25
385. Syntex S A. // Brit 855800 Chem. Abstr. 1962. v. 56. p. P8806i.
386. Bosshard H.H., Zollinger H. Die Synthese von Aldehyden und Ketonen mit Amidchloriden und Vilsmeyer-Reagenzien. // Helv. Chim. Acta. 1959 v 42 № 5. p 1659
387. Жунгиету Г.И., Суворов H.H. "Новые препаративные синтезы в индольном ряду."; Штиинца, 1983
388. Youhua Y., Qi Z.Vinylation of the Indole 3-Position via Palladium-catalyzed Cross-Coupling. //Heterocycles. 1994 v 37 №3.p 1761
389. Qi Z., Youhua Y., Arnold M.R. Palladium catalyzed cross-coupling reaction between 3-indole boronic acids and tetrahydropyridine triflates // Tetrahedron Lett. 1993. v 34. № 14. p. 2235