Эффекты послестолкновительного взаимодействия в процессах возбуждения автоионизационных состояний атомов тема автореферата и диссертации по физике, 01.04.04 ВАК РФ

Шейнерман, Сергей Абрамович АВТОР
доктора физико-математических наук УЧЕНАЯ СТЕПЕНЬ
Санкт-Петербург МЕСТО ЗАЩИТЫ
1995 ГОД ЗАЩИТЫ
   
01.04.04 КОД ВАК РФ
Автореферат по физике на тему «Эффекты послестолкновительного взаимодействия в процессах возбуждения автоионизационных состояний атомов»
 
Автореферат диссертации на тему "Эффекты послестолкновительного взаимодействия в процессах возбуждения автоионизационных состояний атомов"

РОССИЙСКАЯ АКАДЕМИЯ НАУК ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ им.А.Ф.ИОФФЕ

'■};[ На правах рукописи

.■ ■ и

ШЕЙНЕРМАН СЕРГЕЙ АБРАМОВИЧ

ЭФФЕКТЫ ПОСЛЕСТОЛКНОВИТЕЛЬНОГО ВЗАИМОДЕЙСТВИЯ В ПРОЦЕССАХ ВОЗБУЖДЕНИЯ АВТОИОНИЗАЦИОННЫХ СОСТОЯНИЙ АТОМОВ

01.04.04 - физическая электроника

АВТОРЕФЕРАТ диссертации на соискание ученой степени доктора физико-математических наук

Санкт-Петербург 1995

Работа выполнена на кафедре физики Санкт-Петербургского государственного аграрного университета

Официальные оппоненты:

доктор физ.-мат.наук, профессор Н.М.Кабачник,

доктор физ.-мат.наук, профессор А.З.Девдариани,

д.октор физ.-мат.наук, ведущий научный сотрудник Г.Н.Огурцов.

Ведущая организация:

Санкт-Петербургский государственный университет

Защита состоится ¿У » к? _ 1995г. в /3 часов на заседании диссертационного Совета Д 003.23.01 при Физико-техническом институт им.А.Ф.Иоффе РАН по адресу: 194021 Санкт-Петербург, ул. Политехническая,д.26.

С диссертацией можно ознакомиться в библиотеке Физико-технического институт; им.А.Ф.Иоффе.

Автореферат разослан "_}]_" & 9_1995г.

Ученый секретарь диссертационного Совета кандидат физ.-мат. наук

А.Л.Орбели

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Диссертация посвящена теоретическому изучению и разработке аналитических и численных методов, позволяющих исследовать эффекты послестолк-новительного взаимодействия (ПСВ) в атомных процессах. Чтобы пояснить вто,на первый взгляд,необычное, но общепринятое в литературе наименование, рассмотрим один из простейших процессов, в котором можно наблюдать аффекты ПСВ. Пусть происходит фотоионизация внутренней атомной оболочки, приводящая к образованию фотоэлектрона и атома с вакансией во внутрен ней оболочке А+'. Оже-распад этой вакансии А+* —> /12+ + с? приводит к образованию трех заряженных частиц в конечном состоянии процесса:

Кулоновское взаимодействие частиц ь промежуточном и конечном состояниях процесса (1) и получило в литературе название "послестолкновительного". Реакция (1) протекает в две стадии: фотоионизация внутренней оболочки и оже-распад образовавшейся вакансии. Можно привести и другие примеры реакций, протекающих в две стадии. Это возбуждение автоионизационных состояний (АИС) атомов ионным либо электронным ударом с последующим автоиониза-'ционным распадом.

Общая схема таких процессов имеет вид:

где в результате столкновения двух произвольных атомных частиц А' и К образуются две другие атомные частицы А и й. При »том частица V находится в возбужденном квазистационарном состоянии и распадается с образованием частиц В и С. Кулоновское взаимодействие частиц А, В, С в конечном состоянии процесса (2) и обусловливает круг явлений, относящихся к после-сголкновительноиу взаимодействию. Иначе говоря, ПСВ-это взаимодействие нескольких заряженных частиц в конечном состоянии в том случае, когда реакция протекает в две стадии, через промежуточный резонанс. В дальнейшем мы будем называть такие процессы резонансными.

Предположим на время, что кулоновское взаимодействие частиц не играет заметной роли. Это может быть, например, когда скорость частицы Л велика, и она быстро покидает зону реакции, не успевая провзаимодейс-твовать с другими частицами. В этом случае реакция (2) действительно протекает в две независимые стадии: неупругое столкновение X + У —» А + /) и рагп;>д

в ки + А —► е, + Л+* —> е, + е2 + Л2+.

(1)

Х+У —+ —+ А + Д + С,

(2)

О В + С. Тогда в энергетическом спектре частиц В, С при фиксированной энергии столкновений имеется лоренцовскал лх-н-'Я, обусловленная квазистационарностью материнской частицы О. Ширина линии есть полная ширина квазистационарного состояния.

Однако, если относительные скорости разлета частиц А, В, С в реакции (2) НеЬеЛйкк, меньше или порядка боровской скорости, то их кулоновское взаимодействие существенно. Оно сильно сказывается на сечении процесса, изменяет энергетическое и угловое распределение частиц. Линия в спектре частиц В, С искажается. Прежде всего она сдвигается. Это значит, что пара В, С обменивается анергией с третьей частицей А. Кроме того, линия меняет свою форму: она уширяется и становится асимметричной. В атом случае реакцию (2) нельзя рассматривать протекающей в две независимые стадии. Это единый процесс, в котором необходимо учитывать ПСВ. Изучение влияния ПСВ на характеристики резонансных процессов (2), а также более сложных реакций,и проводится в представленной работе.

АКТУАЛЬНОСТЬ ПРОБЛЕМЫ. Изучение спектров автоионизационных электронов и Оже-электронов играет важную роль в физике электронных и атомных столкновений, оптике, физике атмосферы, химической физике. Изучение таких спектров, главным образом, в прикладных целях проводится также в оже-спектроскопии и диагностике поверхности. Влияние ПСВ на форму линий в электронных спектрах интенсивно исследуется в течение последних десятилетий (см., например, обзоры [1,2]). Интерес исследователей к проблеме объясняется несколькими причинами. Во-первых, ПСВ существенно искажает энергетические и угловые распределения продуктов реакции. Поэтому профили электронных линий в спектрах смещаются и деформируются. Анализ спектров, не учитывающий ПСВ, может приводить к неверной информации об энергиях и ширинах квазистационарных атомных состояний. Многие линии в автоионизационных- (АИ) и оже-спектрах используются исследователями как калибровочные или релерные. Поэтому прегиэионное определение энергий и ширин таких уровней является весьма желательной и актуальной задачей.

Далее, исследование эффектов ПСВ позволяет судить о динамике возбуждения !' распада квазистациснаркых атомных состояний и способствует лучшему пониманию структуры атомов и процессов взаимодействия атомов с электронами, фоторами и ионами.

В-третьих, разработка численных и аналитических методов учета ПСВ позволяет рассчитывать счения резонансных процессов. Отмстим, что знание сечений элементарных процессов необходимо для анализа спектров при исследовании атмосферы и межзвездного пространства, при иссле довании поверхно-

стей с помощью методов оке-спектроскопии. Такие сечения используются как константы в физике и оптике атмосферы, химической физике, астрономии.

Наконец, исследования эффектов ПСВ интересны с теоретической точки зрения. Исследуемая проблема представляет собой частный случай задачи о взаимодействии нескольких тел. Квантово-механическое решение этой задачи остается весьма актуальным до настоящего времени. Разработка различных приближений и подходов, позволяющих решить проблему в той или иной кинематической области, интересна с двух точек зрения. Во-первых, представляет интерес само по себе развитие квантово- механических подходов для описания проблемы многих тел. Во-вторых, интенсивное развитие численных методов, появление мощных и быстродействующих компьютеров и кх доступность для пользователей позволяют применять разрабатываемые аналитические методы для конкретных реакций, проводить сложные квантово-механическиё расчеты численно и получать в результате сечения тех или иных конкретных процессов.

К началу выполнения диссертационной работы ПСВ рассматривалось как околопороговый эффект. При этом для его описания применялись классические и квазиклассические методы. Поэтому представлялось весьма актуальным^ первую очередь, развить численные методы, основанные на квантово-механическом подходе, которые бы позволили учитывать влияние ПСВ при расчете не только относительной, но и абсолютной величины сечений резонансных процессов. Расчеты абсолютной величины сечений конкретных процессов, включающие ПСВ наряду с другими многоэлектронными корреляциями, позволяют провести сравнение с экспериментальными данными и выделить вклад тех или иных многоэлектронных процессов.

Последующее развитие теории ПСВ привело к осознанию того, что ПСВ является существенно многочастичным эффектом и проявляется не только в околопороговой области, но и в более широких кинематических областях. Решение проблемы учета ПСВ было получено в замкнутом аналитическом виде для процессов с тремя заряженными частицами в конечном состоянии. Достигнутый прогресс стимулирует попытки расширить существующие теоретические подходы для описания более сложных реакций и выявить проявления ПСВ в автоионизационных яектрах таких реакций.

ЦЕЛЬЮ РАБОТЫ > .ляется, во-первых, разработка численных и аналитических методов для списания эффектов ПСВ в различных кинематических областях. Во-вторых, задачей работы являлось развитие существующих подходов в теории ПСВ и их применение для описания более сложных реакций - процессор с четырьмя заряженными частицами в конечном состоянии. В работе изучаются два различных вида таких процессов: каскадные оже-процессы н процессы

ионизации внутренних атомных оболочек электронным ударом. В-третьих, существующие и развитые в работе методы были применены для расчета сечений конкретных реакций, что позволило провести анализ существующих экспериментальных данных и предсказать новые эффекты в спектрах, которые могут быть обнаружены на эксперименте по мере совершенствования методики эксперимента.

НАУЧНАЯ НОВИЗНА работы заключается в том, что в ней в рамках единого квантово-механического подхода развиты численные и аналитические методы описания эффектов ПСВ, проявляющихся в разных кинематических областях и в различных резонансных процессах. Все перечисленные ниже результаты впервые получены в настоящей диссертации.

• В околопороговой области резонансных процессов развиты численные методы, позволяющие вычислять абсолютные величины сечений фотоионизации и неупругого рассеяния электронов с учетом эффектов послестолк-новительного взаимодействия.

• Получены аналитические соотношения, позволяющие рассчитывать искажение, оказываемое ПСВ, на угловые распределения продуктов резонансных процессов.

• Методы учета ПСВ, развитые ранее в рамках вйконального подхода и вне его для описания трехчастичных эффектов, применены для описания процессов ионизации внутренних оболочек атома электронным ударом. Полученные соотношения позволили описать эффекты ПСВ в различных совпаденческих и нессвпаденческих экспериментах в реакциях с четырьмя заряженными частицами в конечном состоянии.

• Изучено влияние ПСВ в каскадных оже-процессах. В рамках эйкональ-ного подхода получены соотношения, позволяющие выявить многочастичные эффекты в спектрах фото- и оже-электронов.

• Получены амплитуда и сечения образования связанного состояния пары: АИ электрон - рассеянная положительная частица в процессах возбуждения А И состояний атомов позитронным, либо ионным ударом.

Для исследования эффектов, рассматриваемых в работе, были развиты но- . вые численные методы на базе существующих моделей ПСВ (околопороговая область реакций), либо существующие подходы были применены к исследованию новых типов реакций (ионизация внутренних атомных оболочек электронным ударом, каскадные оже-процссгы). "дппо были развиты новые подходы

С

для описания эффектов ПСВ (искажение углового распределения ЛИ или оже-электронов, образование связанных состояний быстрой рассеянной частицы и АИ электрона).

НАУЧНАЯ ЗНАЧИМОСТЬ И ПРАКТИЧЕСКАЯ ЦЕННОСТЬ. Проведенное в диссертации исследование позволило в рамках единого квантово- механического подхода описать целый ряд эффектов ПСВ в спектрах резонансных процессов. Численные и аналитические методы, развитые в диссертации, позволили рассчитать сечения конкретных резонансных процессов и дать количественное описание эффектов, наблюдаемых на эксперименте. Исследование, проведенное в диссертации, способствовало созданию основ теории послестолкно-вительного взаимодействия - частного случая квантово-механической задачи несколыйих тел, приложенной к резонансным процессам. Разработанные в диссертации модели У методы расчетов, а также расчеты конкретных эффектов представляют интерес в прикладной части физики атомных столкновений, диагностике плазмы, спектроскопии, оже-спектроскопии и диагностике поверхности. Проведенные в диссертации исследования могут быть отнесены к теоретическим основам этих прикладных дисциплин.

НА ЗАЩИТУ ВЫНОСЯТСЯ СЛЕДУЮЩИЕ ПОЛОЖЕНИЯ:

1. Вывод соотношений, определяющих влияние ПСВ на угловое распределение АИ или оже-электронов. Обнаружение существенного искажения углового распределения АИ электронов, регистрируемых в совпаденческих экспериментах, в области малых относительных углов разлета АИ и рассеянного электронов.

2. Применение методов эйконального приближения для описания влияния ПСВ на энергетические и угловые распределения электронов в процессах с четырьмя заряженными частицами в конечном состоянии, т.е. в реакциях ионизации внутренних оболочек атомов электронным либо ионным ударом. Учет ПСВ в рамках эйконального подхода и вне его в совпаденческих и несовпаден-ческих экспериментах. Вычисление сдвига линий оже-электронов, вызванного ПСВ, в процессах ионизации внутренних оболочек атомов благородных газов быстрыми электронами. Приложение развитых методов к изучению эффектов ПСВ в спектрах Ьз — М^М, оже-электронов атомов аргона.

3. Развитие методов эйконального приближения для описания эффектов ПСВ в каскадных оже-процессах. Обнаружение осцилляционной структуры на профилях линий фотоэлектронов в определенных кинематических областях.

4. Исследование эффектов ПСВ в процессах образования связанного состояния пары: АИ электрон - положительная заряженная частица в случае возбуждения АИ состояния атомов позитронами либо положительными иона-

ми. Получение аналитических выражений для амплитуды и сечений процесса. Анализ и расчет сечений для конкретных реакций е+ + Не и р + Ar .

5. Развитие численных методов, основанных на квантово-механическом подходе и позволяющих рассчитывать абсолютную величину сечений резонансных процессов с учетом ПСВ в околопороговой области энергий. Расчет профилей линий в спектрах медленных рассеянных, либо АИ электронов, их сдвига и уширения в процессах фотоионизации внутренних тэболочек атомов благородных газов и возбуждения АИ состояний электронным ударом.

АПРОБАЦИЯ РАБОТЫ Результаты работы докладывались и обсуждались на следующих конференциях, совещаниях и семинарах.

6,12,14 Международные конференции по атомной физике (ЮАР) (Riga, USSR, 1978, Ann Arbor, Michigan, USA, 1990, Boulder, Colorado, USA, 1994); 15,16 Международные конференции по рентгеновскому излучению и процессам во внутренних оболочках (X-Ray) (Knoxville, Tennessee, USA, 1990, Debrecen, Hungary, 1993); 17,18 Международные конференции по физике электронных и атомных столкновений (ICPEAC) (Brisbane, Australia, 1991, Aarhus, Denmark, 1993); 7,10 Всесоюзные конференции по физике электронных и атомных столкновений (ВК-ЭАС) (Петрозаводск, 1978, Ужгород, 1988); 9,10 Всесоюзные конференции по теории атомов и атомных спектров (Ужгород, 1985, Томск, 1989); 3,4 Научные семинары "Автоионизационные явления в атомах" (Москва, 1985, 1990); 22 Европейская конференция ло атомной спектроскопии (EGAS) (Uppsala, Sweden, 1990); Всесоюзный семинар по атомной спектроскопии (Ростов-Великий, 1990); Международное совещание "Сегодня и завтра в фотоионизации" (Ленинград, 1990).

Результаты диссертации докладывались и обсуждались на научных семинарах отделов и групп кафедры квантовой механики Ленинградского государственного университета, кафедры физики С. - Петербургского государственного технического университета, НИИЯФ Московского государственного университета (Москва), Физико-технического института им. А.Ф.Иоффе РАН (Скт,-Петербург), кафедры физики Государственного аграрного университета (Скт.-Петербург), University of Freiburg (Freiburg, Germany), University of Kaiserslautern (Kaiserslautern, Germany), University of Notre Dame (Notre Dame, Indiana, USA), Argonne National Laboratory (Argonne, Illinois, USA), University of Nebraska (Lincoln, Nebraska, USA), University of Pittsburgh (Pittsburgh, Pennsylvania, USA).

ПУБЛИКАЦИИ По теме диссертации опубликованы 32 научных работы. Список ключевы.ь работ приведен в конце автореферата.

СТРУКТУРА H ОБЪЕМ ДИССЕРТАЦИИ Диссертация состоит из введения. пяти глав, зпьлючения и списка литературы, насчитывающего 155 на-

именований. Общий объем диссертации 233 страницы, в том чксле 33 рисунка и 1 таблица.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении ставятся цели диссертации, очерчивается круг рассматриваемых в работе проблем, конкретизируются исследуемые резонансные процессы. Кроме того, во введении излагается краткое содержание работы.

Глава 1. Послестодкновительное взаимодействие в околопороговой области энергий. Глава состоит из пяти параграфов, первый из которых представляет собой введение в проблему и обзор моделей, существующих для описания ЛСВ в околопороговой области энергий ¡3-6). В этой области ПСВ сводится к учету взаимодействия медленной рассеянной частицы ( или фотоэлектрона ) с полем иояа-мишени, меняющемся в процессе распада квазистационарного состояния. Амплитуда процесса при этом определяется интегралом перекрытия волновых функций медленного электрона, рассчитанных в поле конечного состряния и в поле промежуточного состояния атома-мишени. В качестве базового выражения для амплитуды процессов используется формула, полученная ранее М.Кучиевым [7] и имеющая вид:

А(ш,к)= [А„(и,к) <к\к> ¿к, (3)

где Л0(ш, к) - амплитуда процесса, не учитывающая влияние измененного поля на медленный элс, трон; {(; >, |/с > - волновые функции электрон. , движущегося в поле иона, который находится в возбужденном и основном (после распада) с о стояниях (со о тв етсгв еггко. Вычисление амплитуды (3) и ее частного случая, интеграла перекрытия < к\к >, даже в рамках грубых моделей [4-С] позволяет описать, хотя бы качественно, основные черты, свойственные ПСВ. Передаваемая атому анергия под влиянием ПСВ перераспределяется между образующимися в реакции медленным и быстрым оже-распадным электронами. Это приводит к сдвигу линии, соответствующей оже-электрону, в электронном спектре, уширению ее контура, появлению характерной асимметрии. Успех гой или иной модели, претендующей на количественное описание эффекта, связал <• более точным численным или аналитическим вычислением интеграла перекрытии.

При вычислении амплитуд и сечений конкретных процессов им базе формулы (3) наметились два подхода. В одном из них непосредственно вычисляются

интегралы перекрытия волновых функций < к\к > и затем проводится интегрирование по промежуточным состояниям непрерывного и дискретного спектра, т.е. осуществляется прямое интегрирование выражения (3). Такой метод расчета реализован во втором параграфе настоящей главы. В этом параграфе рассматриваются два конкретных процесса.. Один из них - это околопорого-вал ионизация 2)1'- подоболочки аргона быстрыми электронами. Рассматривается случай, когда удаляемый из атома р-электрон имеет очень малую энергию. ПСЕ приводит к обмену энергией между медленным удаляемым из атома электроном и быстрым оже-электроном, причем происходит замедление "медленного" и ускорение "быстрого" электрона. Замедление удаляемого из 2р6-подоболочки электрона может быть столь большим, что он может захватиться в состояние дискретного спектра иона с вакансией в М-оболочке. Это ведет в конечном счете к образованию однократных ионов у порога 2рб- подоболочки.

Другой процесс, изучаемый в этом параграфе, это возбуждение и распад АИ состояний при столкновении медленных электронов с атомами. Конкретно рассчитывается сечение ионизации Аг медленными электронами у порога триплетного автоионизационного возбуждения Зл4р( 3Р). В этом процессе медленный рассеянный электрон остается в сплошном спектре, но его анергия сдвигается благодаря влиянию ПСВ. В качестве волновых функций электронов в промежуточном и конечном состояниях в расчете использовались волновые функции самосогласованного поля Хартри-Фока. После отделения угловых частей были получены выражения, позволяющие определить сечения исследуемых процессоз методом численного интегрирования. При рассмотрении первого процесса вычислялась плотность обобщенных сил осцилляторов, характеризующая сечение процесса. После отделения угловых частей в волновых функциях, проведения необходимых интегрирований и суммирования по проекциям спина выражение для плотности ОСО рассматриваемого процесса принимает вид:

г-ЬД?)^. ,«-а(2< + 1)(2/,+1) ( Н I, IV

ди ^ ' 2р+ 1 ^ 0 0 0 /

Здесь А есть одночас.тичный матричный елемент от оператора е'чг между состояниями |2р > и | Л',; >; 1,р - орбитальные моменты, передаваемые налетающим электроном атому и в ож^-распаду соответственно; < Ур > - матричный элемент оже-распада; < м5/51| ее/5 > - интеграл перекрытия радиальных X артри-

(4)

фоковских функций частиц, находящихся в разных самосогласованных полях; суммирование по ее подразумевает интегрирование по всевозможным реальным и виртуальным промежуточным состояниям. Результаты расчета находятся в разумном согласии с данными опыта Ван-дер-Вилл [S] и представлены на рис.1. В случае второго процесса рассчитывался сдвиг анергии вылетающего медленного электрона в зависимости от избытка энергии налетающего электрона над порогом возбуждения. Результаты расчета, который проводился по формулам, аналогичным выражению (4), приемлемо согласуются с экспериментальными данными.

Другой подход к вычислению амплитуды (3) развит в третьем параграфе данной главы. В этом подходе амплитуда (3) находится как интеграл перекрытия < А\к > волновой функции конечного состояния медленного электрона |к > и амплитуды |А >, являющейся решением неоднородного дифференциального уравнения. В случае фотоионизации внутренней оболочки это уравнение имеет вид:

. (и + Ei + ¿Г/2 - Й,) Д(и,г) = г) < Кес > . (5)

Здесь Н\ - гамильтониан однократного иона с вакансией во внутренней оболочке г; ф{(г) - волновая функция этой вакансии с энергией Г - ее полная ширина, d - оператор взаимодействия фотона с атомным электроном, Q - проекционный оператор на состояния выше уровня Ферми. Матричный элемент < Vdtс > представляет собой матричный элемент оже-распада и выступает в качестве нормировочной константы в амплитуде А(и>, г). Для решения уравнения (5) выделяются парциальные составляющие амплитуды А[и>, г), радиальные части которых удовлетворяют следующим граничным условиям:

awi(r) —> А r'+I , г —» О,

аш/(г) —t В exp ji ^fc0r + In (2 fco г)

где импульс fco представляет импульс промежуточного электрона в поле кваэи-стационарного состояния иона-мишени, а А и В - комплексные константы. Решение поставленной граничной задачи сводится к решению системы неоднородных дифференциальных ypaBi ний первого порядка для комплексных волновых функций aui(r). В качестве гамильтонианов, описывающих состояние атома в промежуточном и конечном состояниях, используются гамильтонианы Хартри-Фока; содержащие нелокальные члены. Поэтому при решении системы такие нелокальные обменные члены рассматриваются как неизвестные величины, удовлетворяющие однородным дифференциальным уравнениям второго

»■ —» оо ,■

(б)

О. IS

0.10

00 О О

0.0S

о.ес

17. БЗ 18.СО 18.S0 19.0ß 19.Е0 CüCRy) Рис.1.

d««E.<re/R» Ar La-MaaM^CSo)

Pue .2.

Ar Lj-MajM^'S»)

- our caloul.

---itmlolaegle.

'•'»' exper.U-UßiMöf.Sa)

«рег.Ц-НпМпС D>)

~i i i i 11 i|— 1(1

—i i M 11

vjc . J .

порядка с соответствующими граничными условиями. В конечном счете решение задачи сводится к решению расширенной системы дифференциальных уравнений с граничными условиями. Описывается нептератипный метод решения такой системы и способ реализации алгоритма при расчетах с помощью компьютера.

Такой подход был использован в работе для расчета сечения фотоионизации внутренних оболочек атомов Аг, Л'е.. Результаты расчетов формы линий, их сдвига, ширины приведены в параграфе 4. Показано, что ПСВ существенно искажает лоренцовскую форму линий, сдвигает и уширяет их. Результаты расчета показывают разумное согласие с экспериментальными данными по сдвигу линий. В качестве примера на рис.2 показана рассчитанная форма линий фотоэлектронного спектра для Ьз — МпМзз переходов в Дг для избытка энергии фотона над порогом ионизации Е\ — 0.8 еК На рисунке 3 показана зависимость энергетического сдвига линии Д В от избытка энергии падающего фотона над порогом. Расчеты демонстрируют хорошее согласие между рассчитанными и измеренными значениями Д Е. В пятом параграфе сформулированы основные результаты исследования околопороговых эффектов ПСВ, полученные в первой главе.

Глава 2. Послестолкновительное взаимодействие в области проявления трехчастичкых аффектов. В этой главе обсуждаются аффекты ПСВ, которые .обусловлены взаимодействием всех трех заряженных частиц в процессах (2). Они проявляются ярче всего, когда скорости разлетающихся частиц оказываются сравнимыми по величине ~ Уд ~ Улв- В первом параграфе данной главы описывается физическая картина разлета частиц, приводятся различные модели, используемые для учета трехчастичных эффектов в ПСВ. Чрезвычайно плодотворным и полезным для дальнейших приложений оказывается эйкональный подход, идея и развитие которого принадлежат М.Кучиеву [9]. Это приближение основывается на предположении о том, что ширина атомных квазистационарных состояний Г мала, Г 1 аг.ед. Поэтому при не очень малой энергии частицы А, ~ 1, ока находится далеко от атома в момент распада квазистационарного состояния. Главный вклад в ПСВ при этом вносит взаимодействие частиц на больших расстояниях, где потенциальная энергия их взаимодействия мала по сравнению с кинетической. В этом случае амплитуда и сечение процессов, учитывающие ПСВ, могут быть представлены п простом аналитическом виде. Эти выражения используются в данной главе для анализа различных эффектов ПСВ.

Во втором параграфе изучается влияние ПСВ на околопороптые спектры постоянной энергии детектируемых частиц. Такие спектры были недавно пз-

мерены с прецизионной точностью Зубеком и Кингом в процессах возбуждения электронным ударом 2 (2 Аз/а)6Р1/2 (| 5)2 состояния атома ртути и после-

дующего распада этого автоионизационного состояния [10]. Измерялись спектры постоянной энергии остаточного электрона. При этом анализатор собирал электроны, испущенные в определенном направлении по отношению к налетающим электронам. Энергия анализатора Ец оставалась постояноой, в то время как энергия налетающих электронов варьировалась в диапазоне до 0.5 эВ. Эти спектры, измеренные в несовпаденческих экспериментах, оказываются существенно искаженными вследствие ПСВ. Ранее эти спектры анализировались с помощью модели, учитывающей эффекты ПСВ в околопороговой области, когда рассматривалось только взаимодействие медленного рассеянного электрона с полем атома-мишени. Поскольку энергия А И электрона в данном случае оказывается сраБНИМой с. энергией рассеянного электрона, их взаимодействие также вносит вклад в ПСВ. Для учета взаимодействия всех трех частиц в данной работе был использован эйкональный подход. С помощью формул этого подхода были проанализированы спектры при энергиях рассеянного электрона, равных 0.11 эВ и 0.44 эВ.

Полное сечение стд, определяемое в эксперименте, является суммой выражений, описывающих вклад в сечение рассеянных электронов с, и автоионизационных электронов <тй. В соответствии с формулами эйкональной теории эти выражения имеют вид:

^ , г, „ч ГАЕа,П.)

О, =

. = (7)

<1Еа ЛИ,

- - жк - я^тФк(8)

Здесь а. '£',, и,} есть сечение возбуждения АИС, при котором электрон с энергией Е, рассеивается под углом О,; Г^Еа,Па) есть сечение распада АИС, при котором электрон с энергией Еа вылетает под углом Яа; V, и V, - скорости рассеянного и АИ электронов, е - отклонение энергии АИ электрона от ее несмещенного значения Е°: е = Е° - фактор Щ, () учитывает влияние ПСВ на сечение:

= (9)

его величина определяется шириной АИ состояния Г и безразмерным параметром

При проведении расчетов по формулам (/), (8) угловое распределение медленного рассеянного электрона предполагалось изотропным, а для А И электрона в соответствии с расчетами [11] использовалось модельное распределение:

где 8 - относительная фаза между / и р - волнами. Эта «раза наряду с шириной Г рассматривалась как свободный параметр расчета. В результате проведенного анализа удалось установить параметры рассматриваемого АИ состояния. Именно его ширина оказалось равной Г = 9.9 мэВ. Кроме того,анализ позволил определить относительную фазу между / и р волнами в волновой функции АИ электрона: 6 = 2.892, Рассчитанный таким образом спектр остаточных электронов представлен на рисунке 4 для двух различных значений ширины Г. Сравнение с экспериментом показывает, что учет ПСВ в рамках эйконально-го подхода позволил успешно описать экспериментальное сечение и оценить параметры изучаемого АИ состояния.

Третий параграф данной главы посвящен изучению влияния ПСВ на угловое распределение выле-гющих из атома электронов. Главный вклад в искажение углового распределения вносит непосредственное взаимодействие частиц А и В. Однако, учет этого взаимодействия в рамках эйконального подхода не приводит к искажению траекторий разлетающихся от атома частиц. Этот факт согласуется с физическими основами эйконального подхода, в котором, по предположению, частицы движутся почти равномерно и прямолинейно. В случае близких скоростей и малых углов разлета траектория частиц может сильно искажаться, что не учитывается эйкональным приближением. Для выхода за его рамки ранее в работе [12] был развит подход, в котором сильное взаимодействие частиц А и Я между собой учитывается точно, а влияние т_ етьей частицы С, находящейся на значительном удалении от пары А,В, рассматривается в айкональном приближении. Полученная в таком подходе амплитуда используется в диссертации для вывода формул, учитывающих влияния ПСВ на угловое распределение частиц. Такие соотношения получены в данном параграфе в общем виде. В случае фотоионизации внутренней оболочки интенсивность линии, учитывающей влияние ПСВ, имеет вид:

ГД0) ~ 10.8944 Яз (соя 0) + е'4 0.4472 Г\(сов 0)|2 ,

/(Пд,ад = <г0-~ Л^„(ПдД2в) =

"о тг

«т{-26н "ЫГ - <<''')} х

где величины его, IV Г определены выше, параметр дается соотношением (10), а величина G определяется импульсами относительного движения пары A, D в конечном к ad и промежуточном к состояниях:

G = bsJi + kABvAD. (13)

p-ad

Проведенный анализ показывает, что и (лучае возбуждения АИС ионным ударом наблюдается усиление интенсивности вылетающих АИ электронов под нулевым углом, т.е. так называемая "кулоповская фокусировка". В случае возбуждения АИС электронным ударом или фотоионизации внутренней оболочки ПСВ приводит к "расталкиванию" электронов, разлетающихся под малыми углами, т.е. к ослаблению интенсивности АИ электронов. Как пример, искажающий фактор рассчитан для JV5 — ОцОгз оже-электронов в А'е, измеренных в совпаденческих и несовпаденческих экспериментах. Результаты расчета приведены на рисунке 5. Расчеты показывают, что искажение проявляется в области малых углов, меньших, чем 20 градусов. С уменьшением угла разлета искажающая роль ПСВ становится более существенной. Таким образом, анализ углового распределения АИ или оже-электронов при малых углах эжекции обязательно должен учитывать искажающее влияние, вызванное ПСВ. Анализ показывает также, что эффекты ПСВ в угловом распределении проявляются только в совпаденческих экспериментах, где оба АИ и рассеянный электрон регистрируются на совпадение. В несовпаденческих экспериментах величина искажающего фактора Na,, оказывается Слизкой к единице.

В четвертом параграфе главы рассматриваются эффекты ПСВ, связанные с интерференцией амплитуд резонансного процесса (2) и нерезонансного когерентного процесса X + У —» А + В -f- С. Интерференция прямого и резонансного процессов, учитывающих ПСВ, приводит к осцилляционной структуре в сечении, что было выявлено при рассмотрении ПСВ в околопороговой области анергий в ранних работах Моргенштерня с соавторами [13].

В данном параграфе рассматривается случай близких по значению скоростей рассеянной частицы и АИ электрона. Изучаются процессы захвата АИ электрона в состояние континуума рассеянным ионом при возбуждении А И С ионным ударом. Сечение прямого процесса обнаруживает характерный "cusp" в области скоростей V'ab —»0. В этой же области энергий ПСВ существенно влияет на фазу резонансного процесса (?). Тогда характерный "cusp" в сечении прямого npi 4<?сса искажаетгя осцилляционной структурой, возникающей в результате интерференции с резонансным процессом (2). Эта структура при учете ПСВ имеет более сложный вид, чем так называемые профили Фано.

S J36s* 6p

1- f^i.J^.V

Рис.4.

Xe ^s-oi3ot3 Ef^2?eV t Ея = 30 tV

Рис.5.

Возможность ее наблюдения существенно зависит от условий эксперимента. В совпаденческих экспериментах осцилляции можно наблюдать при достаточно высоком угловом и энергетическом разрешениях детектора. В несовпаденче-ских экспериментах важно учитывать неопределенность угла, рассеяния иона ядерным полем атома-мишени. Эта неопределенность приводит к полному замазыванию интерференционной, картины при малых углах вылета электрона. В качестве примера в диссертации рассчитано сечение реакции возбуждения (1я2.52) 15 АИС лития протонами и захвата АИ электрона протоном в состояние континуума. Проведенные расчеты сечения, измеряемого в несовпяденческих экспериментах, показали, что осцилляционная структура может наблюдаться при углах вылета АИ электрона ~ 5°, но полностью исчезает при углах ~ 1°. Разумеется, экспериментальное наблюдение этих эффектов требует достаточно высокого разрешения детектора.

Пятый параграф главы суммирует результаты исследования трехчастичных эффектов ПСВ, полученные в данной главе.

Глава 3. Послестолкновительное взаимодействие в процессах ионизации внутренних оболочек атомов электронным ударом. В этой главе рассматриваются реакции, в которых внутренние оболочки атомов ионизуются электронным ударом. После оже-распада внутренней вакансии в конечном состоянии реакции рождаются четыре заряженные частицы: рассеянный, выбитый из атома, оже-электроны и ион мшпени. ПСВ в таких процессах сводится к взаимодействию рассеянного и выбитого из атома электронов с полем иона-мишени и с оже-электроном. В первом параграфе обсуждаются особенности рассматриваемой реакции и модели, существующие для учета ПСВ в таких реакциях. Обсуждаются возможности использовать для решения задачи эйкональный подход и подход, учитывающий сильное взаимодействие частиц при ма.:ых относительных скоростях. Во втором параграфе выводятся формулы для амплитуды и сечения, измеряемого в тройных совпаденческих экспериментах. Рассматриваются различные кинематические области реакции. При больших относительных углах разлета для вывода амплитуды применяется эйкональный подход, использованный ранее М.Кучиевым в процессах с тремя заряженными частицами в конечном состоянии. При малых относительных углах разлета какой-либо пары частиц, например рассеянного и оже-электрона е.з, их взаимодействие учитывается точно, а взаимодействие с. остальными частицами - в приближении эйконала. В этом »-лучае сечение процесса описывается выражение:,!:

¡етж = 1 *>' (14)

где

Я = е-'</3Г(1 + . ¿п) Г(1 -И' (£ - 6з))(< + > Г/2Г«-<"> ,Г,(а, Ь, 1, г). (15)

Здесь параметры ( и определены соотношением: С = + + Ы + 6А = г}---

1 1

1

(1С)

13 м

а параметры а, Ь и аргумент г гипергеометрической функции имеют вид:

Выражение для сечения (14) справедливо в области малых относительных углов 013 < 1. Для больших углов, где выполняются условия справедливости эйконального приближения, множитель |Я|2 в сечении (14) сводится к эйко-нальному фактору (9), причем безразмерный параметр £ определяется соотношением (16) и учитывает взаимодействие четырех заряженных частиц в промежуточном и конечном состояниях реакции. Также выводятся формулы, описывающие влияние ПСВ на угловое распределение электронов, удаляющихся от атома. В качестве примера рассчитываются сечения, учитывающие эффекты ПСВ, для процесса возбуждения Л оболочки атомов аргона с последующим оже-распадом Хз — А/23М23. Как показывают расчеты, ПСВ существенно искажает форму линии, уширяет ее и сдвигает ее максимум. Кроме того, ПСВ существенно искажает угловое распределение оже-электронов, в области малых относительных углов разлета.

В третьем параграфе изучаются сечения, измеряемые в двойных совпаден-ческих экспериментах.' В таких экспериментах регистрируются на совпадение оже-электрон и один из двух оставшихся электронов: рассеянный или выбитый из атома. Предложен подход, позволяющий рассчитывать сечения таких процессов на основе соотношений (14)-(16) с привлечением методов численного интегрирования. Проведенные расчеты для ¿3 — А/23Л/23 оже-переходов аргона сравниваются с имеющимися экспериментальными данными. ПСВ искажает форму линий в электронном спектре и в таких процессах. При этом наблюдается разумное согласие рассчитанных сечений с экспериментом.

В четвертом параграфе рассматриваются сечения процессов в случае несо-впаденческих экспериментов, когда в конечном состоянии регистрируется толь ко один оже-электрон. Рассчитана форма линии М11XI23 оже-спеитра аргона и исследовано влияние на него ПСВ в зависимости от энергии налетающего электрона. Результаты расчета приведены на рис.6. Как показыяают рясчс;ы,

а = ~»£п

Ь = ! + •'«-(и),

2 =

(А'п к/;<1р) + К1зУю е-И'Г/2

(IV)

E„[eVj= 2GO/275/2E)0/320/350/<l 25/500/75 0/1 ООО

с/Г

Рис.6.

Кг M 1 s ■и Vi /VÍí

Рис.7.

искажение, вносимое ПСВ, наиболее существенно при малых избытках анергии над порогом ионизации.

В этом же параграфе рассматривается влияние ПСВ на сдвиг линии оже-электрона. Получено уравнение, позволяющее рассчитывать этот сдвиг с для различных энергий налетающего электрона:

_ 2£ = Х,е°Л/£, 1<Ш, ,Шг(<т0Ь((-,() Г Н^^тоЩЛ)

Численное решение этого уравнения проведено для ряда юже-переходов из внутренних оболочек атомов благородных газов. При этом использовались модельные представления о распределении энергии, переданной атому, между рассеянным и выбитым из атома электронами, а именно, распределение бинарного приближения теории столкновений [14]. Полученные результаты в общем удовлетворительно согласуются с имеющимися экспериментальными данными. В качестве примера на рис.7 показан сдвиг линии Л/23 — Л/45 — N23 оже-перехода в атоме Кг как функция энергии налетающего электрона.

В пятом параграфе исследуется сдвиг оже-линий, наблюдаемых в несовпа-денческих экспериментах при больших избытках энергии налетающего электрона над порогом возбуждения. Оказывается, что величина сдвига при возрастании энергии налетающего электрона стремится к постоянному ненулевому значению [15]. Этот факт имеет простое физическое объяснение: выбитый из атома электрон с большой вероятностью оказывается малоэнергетичным даже для больших энергий налетающего электрона. Взаимодействие такого медленного электрона с полем иона-мишени и с оже-электроном вносит основной вклад в ПСВ и приводит к ненулевому значению сдвига линии оже-электрона. Выводятся соотношения, позволяющие рассчитывать этот сдвиг. Эти соотношения основываются на уравнении (18) и используют приближение Бете для сечения ионизации атомов быстрыми электронами. Проведен расчет для ряда оже-переходов атомов благородных газов. Результаты расчетов показаны в таблице 1.

Расчеты обнаруживают разз'мное согласие с имеющимися экспериментальными данными [17,18).

В последнем параграфе главы суммируются результаты, полученные при исследовании эффектов ПСВ в реакциях ионизации внутренних оболочек .(.томов электронным ударом.

ТгапяМоп (а) (Ь) (с) (а) (е)

- А/пМгЛ'Ат К - ¿23^2з(102) ЛГ Л'-ХгзМ'Оз) Ме Л'., - 0а0и(К%) Хе Л/5 - Л'1Л',('5'0) А" г X, - Л/.Л/.^о) Лг Мз - М45Л/23 Кг 12.6 20.6 11.5 25.5 7.7 14 ±8° 35.2 55.1 20.4 43.3 24.9 24.6 34.7 14.0 30.8 12.8 48 ±12' 5.7 8.1 5.3 0.8 1.6 3.3 115.9 219.0' 100.5 91.8

Таблица 1: Значения сдвига оже-линий (мэВ). (а) Решение уравнения (18) с использованием приближения Бете. (6) Упрощенный расчет, (с) Сдвиг усредненного сечения [16]. (<{) Усредненный сдвиг [16]. (е) Решение уравнения (18) с сечением <г<> в бинарном приближении. " Экспериментальные данные Санднера [17]. ' Экспериментальные данные Графа и др. [18].

Глава 4. Послестолкновительыое взаимодействие в каскадных оже-процессах. В данной главе изучается ПСВ в процессах с последовательным испусканием нескольких оже-электронов. Примером такого процесса может служить фотоионизация внутренней атомной оболочки. Оже-распад этой оболочки рождает вакансию в промежуточной более высокой оболочке атома. Оже-распад последней оболочки приводит к конечному состоянию системы, содержащему четыре заряженные частицы: фотоэлектрон, два оже-электрона и ион атома-мишени. Общая схема таких процессов может быть представлена в виде:

X + У - е, + В", е, + е, + Щ с, + е, + е3 + Л"+ . (19)

Здесь А' и У - произвольные атомные частицы, - возбужденные квази-

стационарные промежуточные состояния атома-мишени, имеющие ширины Г, и Г2,соответственно, - конечное состояние атома-мишени, «1 - фото или рассеянный электрон и ез, е3 - испущенные АИ или оже-электроны.

В первом параграфе главы обсуждается постановка задачи, модели, существующие для описания ПСВ в таких процессах в околопороговой области энергий [19]. Для описания явления в области энергий, где скорости разлетающихся частиц оказываются сравнимыми по величине, предлагается исполь-зопать эйконалъный подход.

Во втором параграфе данной главы выводятся формулы для амплитуды и сечения процесса, учитывающие эффекты ПСВ. Используется эйкональный под-

ход, развитый ранее для описания ПСВ в процессах (2) с тремя заряженными частицами в конечном состоянии [9]. Амплитуда процесса представляется как бесконечная сумма диаграмм, каждая из которых учитывает взаимодействие электрона С) с оже-электронами и с ионом мишени, а также взаимодействие оже-электронов между собой и с полем иона. Показано, что сумма таких диаграмм, учитывающих взаимодействие во всех порядках теории возмущений, может быть представлена в аналитической форме в виде интеграла по переменной, имеющей смысл времени. После проведения необходимых интегрирований амплитуда представляется в форме, удобной для анализа и дальнейшего использования. Сечение процесса при этом представляется в виде:

т , ро „ 1 Г,,(П2)Г,ЛП3) </£,<*£>«ИМЯ»лЬ ' " 4-(- Г?/4)(4 + ТЦ4)

+6 + 6)) I ЩиЬ,6) I2 х ехр^Мап-*^} ехр^-г^ + Ь)'«""1^} *

| (1 +1(„ -¿6, 2+¿(6 + Ь), 1 - Г^ТТТТ^) |2 • (2°)

Здесь <т0 - сечение неупругого столкновения X + К —► в] + Г,/, и Г,/, - парциальные ширины оже-распадов. Энергетические переменные = Е^ — Е[0' и «з = Ез — - энергии электронов е1 и ез, измеренные от их несмещенных значений £3°' соответственно. Безразмерные параметры зависят от скоростей и углов вылета частиц: £) = (го2 - гр,)/ V,-)- 21 гг/УЬ , 6 = (г/ - иог)/Ую2 + гг г3/У23 , £э = '1 (*/ - гп,)/У,о2 + 2з/Цз , а комплексный множитель определяется исключительно величиной параметров Анализ выражения (20) показывает, что в предельных случаях, когда время жизни одной из промежуточных вакансий стремится к нулю, полученное сечение сводится к выражению, описывающему ПСВ в реакциях (2), изученных ранее. Анализ полученных выражений также показал существенное влияние ПСВ на профили линий фотоэлектрона и оже-электронов. Как и в процессах (2), в каскадных оже-процессах линии деформируются: они уширяются, сдвигаются, становятся асимметричными. Эти эффекты зависят от скоростей и углов разлета электронов, эжектируемых из атома.

В третьем параграфе приведены результаты расчетов профилей линий дли различных кинематических областей и различных соотношении между ширинами внутренних вакансий Г1 иГ^. Наиболее часто встречающийся на практике случай Г! > Г2 приводит к картине, когда форма профилей линий фотоэлектрона Г! и оже-электрона ез оказываются не зависящими друг от друга. Эффекты ПСВ определяются в этом случае взаимодействием фотоэлектрона с поле: 1

иона и с первым оже-электроном е2, а в спектре электрона ез вклад в ПСВ вносит взаимодействие второго оже-электрона с первым и с полем иона. Другой случай сравнимых по величине ширин Г) и Г2) Г) > Г2 обнаруживает эффекты ПСВ, не встречавшиеся в ранее рассмотренных случаях. При малых углах разлета электронов на профиле линий фотоэлектрона появляется осцилляцион-ная структура. Пример рассчитанных профилей линии фотоэлектрона приведен на рис.8. Обнаруженная структура не связана с интерференцией амплитуд различных когерентных процессов. Ее появление обусловлено взаимодействием фотоэлектрона с двумя оже-электронами, появляющимися в результате последовательных оже-распадов. Наблюдение такой структуры в эксперименте было бы весьма интересным для прояснения динамики оже-распада и проверки правильности теоретических предсказаний. В последнем параграфе гл:авы суммируются результаты изучения ПСВ в каскадных оже-процессах.

Глава 5. Образование связанных состояний в процессах возбуждения АИ состояний атомов положительно заряженными частицами. В этой главе изучаются процессы возбуждения АИ состояний атомов быстрыми положительно заряженными частицами: позитронами, протонами или положительными ионами. Рассматривается случай, когда после распада АИ состояния электрон имеет скорость, близкую к скорости полонительной рассеянной частицы. Сильное взаимодействие этих частиц может приводить к образованию связанного состояния пары частиц. Рассматриваемые процессы могут быть представлены в виде:

X 4-У ->/1+ О' — А+В + С—(АВ) + С , (21)

где две сталкивающиеся частицы А' и К рождают положительно заряженную частицу А и частицу О' в квазистационарном состоянии. Ее распад О" —» В + С приводит к образованию трех заряженных частиц. Сильное кулоновское взаимодействие частиц А и В, движущихся с малой относительной скоростью Улн "С 1, связывает их в состояние дискретного спектра. В первом параграфе обсуждается возможность образования связанного состояния в процессах (21), особенности ПСВ в таких процессах, намечаются подходы к решению задачи.

Второй и третий параграфы посвящены выводу формул для амплитуды процесса. Для вывода соотношений, учитывающих взаимодействие всех трех частиц в коночном состоянии реакции, используются два различных подхода. В одном из них выводится амплитуда, учитывающая сильное взаимодействие связываемых между собой частиц А и В. Это взаимодействие вносит главный пми д в ГЮГ) п рассматриваемых процессах. Влияние третьей частицы на дви-

жение пары А В осуществляется в эйкональном приближении. Полученное выражение имеет замкнутую аналитическую форму. Другой подход к решению проблемы использует аналитическое выражение, учитывающее влияние ПСВ на движение частиц в непрерывном спектре, когда относительная скорость пары АВ мала, Уда 1. Такое выражение было ранее получено в работе [12] и использовалось для исследования процессов (2). Амплитуда интересующего нас процесса может быть получена из этой амплитуды аналитическим продолжением в плоскость комплексных значений к ав и предельным переходом на мнимую ось Кав —* ^ 1'лн/п- Оба подхода позволяют получить выражение для амплитуды процесса, имеющее вид:

М =

\иМ,<?п(Ъпл)х^ (21 + 1)(п + I)!

(21 + 1)!т»2 у *(»»-'- 1)!

Г(1 + 1 + ¿£)(41аС1/п)>

(д - ¿а/п)2]'+ч

\ «2-(<?-'о/")2/1

где М\ и М2 - амплитуды образования АИ состояния и его распада, импульс к частицы А в промежуточном состоянии равен к = тА\'А -ИТ/21^, а =| ?л~н1'лн I, а импульс отдачи в системе центра масс равен величине <3 = — Рс„, • Безразмерный параметр £ = 2\ ¿в[Уас появляется благодаря взаимодействию с ионом атома-мишени С. Анализ амплитуды показывает, что основной вклад в образование пары АВ в дискретном спектре вносит прямое взаимодействие частиц А, В. Влияние третьей частицы оказывается мало, определяется отношением £/(/ -(- 1), и его достаточно учесть в эйкональном приближении. Этот факт базируется на предположении о том, что обычно скорость АИ электронов не мала, Уав ~ 1 ат.ед., а распад АИС происходит в момент времени, когда рассеянная частица находится далеко от атома.

В четвертом параграфе главы получено парциальное сечение захвата А И электрона рассеянной частицей в состояние (п, /, т) дискретного спектра. Полученные аналитические выражения позволяют провести численные расчеты сечения и проанализировать полученные результаты. Показано, что влияние третьей частицы вносит малые поправки в сечение. Приводятся результаты расчетов образования связанного состояния с различными значениями п и / для реакции возбуждения (2л2)1.9 АИС гелия позитронным ударом, а также для возбуждения (З.ч-1 Ар) 1Р состояния аргона протонным ударом.

Пятый параграф главы посвящен изучению полного сечения захвата электрона в состояние с определенным главным квантовым числом ?г. а также

PHOTOELECTRON COINCIDENCE SPECTRUM INDUCED BY CASCADE AUGER PROCESS

r,=0.4 »V, rz=0.15 »V Vi-1.1 QUi Vz=2.83 au. Va=1.26 ou

e./r,

Puc.8.

e*+He

En.rgy of .o.U.od p..ltro» (.u)

Puo . 9. 26

полного сечения захвата электрона в любое состояние дискретного спектра. Получены аналитические выражения для таких сечений, которые позволяют проводить качественные оценки сечений и рассчитывать сечения численно для конкретных процессов Приведены примеры расчетов сечения образования позитрония в высоковозбужденных состояниях (см. рис.9). Проведенный анализ показывает, что основной вклад в такое сечение вносит захват электронов в состояния с большими квантовыми числами I ~ \/Ум/Г. Анализ полного сечения образования связанного состояния показал, что вероятность такого процесса оказывается малой по сравнению с полным сечением взаимодействия налетающей часгицы с атомом мишенью, приводящему к образованию АИС. В последнем параграфе главы суммируются результаты исследования и рассматриваются методы экспериментального наблюдения и проверки результатов, . предсказываемых расчетами.

В заключении сформулированы основные выводы диссертации, обсуждаются возможности практического применения результатов и экспериментального наблюдения рассмотренных эффектов, отмечаются перспективы дальнейших исследований.

ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ВЫВОДЫ

1. Разработаны численные методы, позволяющие рассчитывать эффекты ПСВ в околопороговой области в процессах фотоионизации внутренней оболочки и возбуждения АИ состояний атомов электронным ударом.

2. Получены формулы для сечения околопороговой ионизации внутренней оболочки с учетом ПСВ. Обнаружено, что максимум в выходе однократных ионов у порога ионизации 2рв- подоболочкк Аг связан с послестолкновительным взаимодействием. Достигнуто разумное согласие с экспериментом.

3. Получено выражение, описывающее сечение ионизации атома медленными электронами у порог а возбуждения АИ уровня с учетом ПСВ. Вычислен вызванный ПСВ сдвиг энергии медленного электрона, образующегося в процессе возбуждения и распада АИ 3.<4р(*Р) уровняв Аг.

4. Предложен и реализован метод расчета амплитуды фотоионизации внутренних оболочек атомов, учитывающий ПСВ и основанный на рршении неоднородного дифференциального уравнения с соответствующими граничными услозиями. Вычислены профили линий и искажающее влияние, оказываемое на них ПСВ, в процессах фотоионизации £3- оболочки Аг с последующим оже-распадом ¿3.—А/23Л/23 и Дг$- оболочки Хе с последующим распадом Л* — ОцОг1.

5. В рамках эйконального подхода выполнен анализ околопороговых спектров постоянной энергии детектируемого.электрона в процессах возбуждения и распада автоионизационного 5<196в 2(2Д»/2)6р1/2(§ 2)2 состояния атома ртути. Получены значения ширины АИС Г = 9.9 мэВ и параметров углового распределения вылетающих АИ электронов.

6. Получены аналитические формулы, описывающие влияние ПСВ на угловое распределение рассеянных или автоионизационных электронов. Выявлено существенное влияние ПСВ в области малых относительных углов разлета электронов, что приводит к сильному "расталкиванию" электронов в этой кинематической области. Рассчитан фактор, искажающий угловое распределение оже-электронов, в процессах фотоионизации Л^- подоболочки А'е с последующим Л,г5 — О23О2з оже-распадом.

7. Получено выражение для сечения захвата электронов в состояние континуума рассеянным ионом, учитывающее интерференцию амплитуд прямого и резонансного процессов и влияние ПСВ на эти амплитуды. Расчет, выполненный для процесса возбуждения 1-ч2.ч2 АИС лития протонами, показал наличие осцилляционной структуры на профиле линии АИ электрона. Возможность наблюдения этой структуры в несовпаденческих экспериментах решающим образом зависит от угла регистрации АИ электрона.

8. В рамках эйконального подхода и вне их получены формулы, описывающие влияние ПСВ на энергетическое и угловое распределение оже-электронов, образующихся в реакциях ионизации внутренних оболочек атомов электронным ударом. Для рйДЛ внутренних оболочек атомов благородных газов рассчитаны формы оже-линий и их сдвиги, обусловленные ПСВ, для различных видов совпаденческих и несовпаденческих экспериментов. Рассчитана величина сдвигов линий оже-электронов при больших избытках энергии налетающих электронов над порогом ионизации. Достигнуто удовлетворительное согласие с имеющимися экспериментальными данными.

9. В рамках эйконального приближения описано ПСВ в реакциях ионизации внутренних оболочек атомов с последующим каскадным оже-распадом. Получены аналитические выражения, описывающие влияние ПСВ на энергетическое распределение фотоэлектронов и оже-электронов в той кинематической области, где скорости удаляющихся от атома частиц сравнимы по величине. В области малых относительных углов разлета выявлена осцилляционная структур'! на профиле линий фотоэлектронов.

10. Исследована роль ПСВ в процессах образования связанного состояния пиры: быстрая рассеянная положительная частица - АИ электрон. Получены НМЛ11ГИЧ1ТШГ выражения для амплитуды и сечения процесса, учитывающие

взаимодействие всех трех частиц в конечном состоянии процесса. Произведен расчет и анализ исследуемых сечений в реакциях возбуждения (2.ч2)15 состояния гелия позитронами и (3.ч~'4;»)1 Р состояния Аг протонным ударом.

ОСНОВНЫЕ РЕЗУЛЬТАТЫ ДИССЕРТАЦИИ ОПУБЛИКОВАНЫ В

РАБОТАХ:

1. AmusiaM.Ya., Kuchiev M.Yu., Sheinerman S.A., Sheftel S.I. Inter-shell correlations in the formation of singly charged ions near the At L-shell ionization threshold. -J.Phys.B, 1977, v.10, L535-9.

2. Амусья М.Я., Кучиев М.Ю., Шейнерман C.A. Околопороговые эффекты в процессах ионизации атомов (взаимодействие после столкновения). -ЖЭТФ, 1979, т.76, стр.470-481.

3. AmusiaM.Ya., Kuchiev M.Yu., Sheinerman S.A. The post-collision interaction as a manifestation of many- electron correlations. In Coherence and Correlation in Atomic Collisions. Proceedings of International Workshop, London, 1978. Eds. H.Kleinpoppen and J.F.Williams. New York. Plenum Pres. P.297-313 (1980).

4. Шейнерман C.A., Амусья М.Я., Кучиев М.Ю. Система математического обеспечения атомных расчетов " Атом".. XI. Программа вычисления сечения ионизации атомов вблизи порогов неупругих процессов (взаимодействие после столкновения). - Препринт ФТИ им.А.Ф.Иоффе, 1982, #777, Ленинград: ФТИ, 32с.

5. Kuchiev M.Yu., Sheinerman S.A. The post collision interaction in the inner-shell photoionization of Ar and Xe. - J.Phys.B, 1985, v.18 L551-L556 ,

6. Шейнерман C.A., Кучиев М.Ю. Система математического обеспечения атомных расчетов " Атом". XVI. Программа вычисления сечения фотоионизации внутренних оболочек атомов с учетом послестолкновительного взаимодействия. - Препринт ФТИ им.А.Ф.Иоффе, 1985, #977, Ленинград: ФТИ, 48с.

7. Kuchiev M.Yu., Sheinerman S.A. The calculation of the photoionization noss section allowing for the post collision interaction. - Comp.Phys.Conunim.. 19S(I, v.39, 155-ICO.

8. Кучиев М.Ю., Шейнерман С.А. Фотоэлектронные спектры Аг и Хе с учетом послестолкновительного взаимодействия. - Известия АН СССР, сер. физическая, 19S6, т.50, вып.7, стр.1300-1334.

9. Кучиев М.Ю., Шейнерман С.А. Послестолкновительное взаимодействие в ионизации внутренних оболочек атомов электронным ударом. - ЖТФ, 19S7, т.57, вып.8, с.1476-1487.

10. Кучиев М.Ю., Шейнерман С.А. Резонансные и нсрезонансные процессы при малых скоростях разлета образующихся заряженных частиц. - Письма в ЖТФ, 1987, т.13, вып. 16, с.1001-1006.

11. Кучиев М.Ю., Шейнерман С.А. Послестолкновительное взаимодействие в атомных процессах. - Успехи физических наук, 1989, том 158, вып.З, стр.353-387.

12. Kucliiev M.Yu., Sheinerman S.A. PCI influence on the atomic Auger spectrum induced by fast electron impact. - J.Phys.B, 1090, v.23, 2131-2136.

13. Kucliiev M.Yu., Sheinerman S.A. PCI manifestations in low energy autoionized electron spectra in mercury. - XVII ICPEAC, 10-16 July 1991, Brisbane, Australia. Abstracts of contributed papers. Ed. by I.E.McCartliy, W.R.MacGillivray, M.C.Standage. Griffith University. P.204,

14. Kucliiev M.Yu., Sheinerman S.A. Evaluation of parameters of Hg 5c/°G.s D3/,)0pi/2(l\)2 autoionizing state from PCI spectra. - J.Phys.B, 1991, v.24, 4775-4781.

15. Sheinerman S.A. Post-collision interaction in inelastic ion-atom scattering. Nuclear Instruments and Methods in Physical Research (NIM) B, 1994, vol.86, p.105-118.

16. Kuchiev M.Yu., Sheinerman S.A. PCI influence on angular distribution of Auger and autoionization electrons. - J.Phys.B, 1994, v.27, 2943-2951.

17. Sheinerman S.A. Coulomb final state interaction in cascade Auger processes. -J.Phys.B, 1994, v.27, L571-L578 !

18. Sheineinian S.A., W.Kulm, and W.Mehlliorn. Distortion of line shape and angular distribution of Ar £3 — MaMa Auger electrons by post-collision interaction following electron impact ionization. - J.Phys.B, 1994, v.27, 5C81-5692 .

19. Gerchikov L.G., Sheinerman S.A. Production of bound states in processes of AIS excitation by positive particles. - J.Pliys.B, 1995, v.28.

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

1. Read F.H. Displaced electron energies and the "Shake-down" effect. - Radiat.Res., 1975, v.64, p.23-36.

2. Кучиев М.Ю., Шейнерман С.А. Послестолкновительное взаимодействие в атомных процессах. - Успехи физических наук, 1989, т. 158, с.353-387.

3. Barker R.B., Berry H.W. Electron energy distributions from ionizing collisions of Helium and Neon ions with Helium. - Phys.Rev., 1966, v.151, p.14-19.

4. King G.C., Read F.H., Bradford R.C. Structure near autoionizing energies in the excitation of bound states of lielhmi, neon and argon by electron impact. -J.Phys. B, 1975, v.8, p.2210-2224.

5. Островский B.H. Возбуждение автоионизационных состояний электронами вблизи порога. - ЖЭТФ, 1977, т.72, с.20Г9-20в9.

С. Nieliaus A. Analysis of post-collision interaction in Auger processes following near-threshold inner-shell photoionization. - J.Phys. B, 1977, v\10, p.1845-1857.

7. Амусья М.Я., Кучиев М.Ю., Шейнер'.ган C.A. Околопороговые эффекты в процессах ионизации атомов (взаимодействие после столкновения). - ЖЭТФ, 1979, т.76, с.470-481.

8. Van der Wiel M.J., Wight G.R., Tol R.R. Post-collision interaction in L- shell ionization of Ar. - J.Phys. B, 1976, v.9. p.L5-L9.

9. Кучиев М.Ю., Шейнерман C.A. Резонансные процессы с тремя заряженными частицами в конечном состоянии. - ЖЭТФ, 1986, т.90, с.1680-1689.

10. Zubek М., King G.C. Near-threshold electron impact excitation of high-lying states in mercury. - J.Phys. B, 1990, v.23, p.5Gl-57fi.

11. Cowan R.D., Martin N.L.S., Wilson M. Non-metastability of the 5<^(3Ду2)0«26р1/2 J = 2 level in Hg. - J.Phys. B, 1988, v.21,p.Ll-L4.

12. Kuchiev M.Yvi., Sheinevman S.A. Resonant scattering with low-velocity outgoing charged particles. - J.Phys. Б, 19S8, v.21, p.2027-2038.

13. Morgenstem R., Niehaus A., Thiehnann U. Interference of autoionizing transitions in time-dependent fields. - J.Phys. 3, 1977, v.10, p.1039-1058.

14. Burgess A., PercivalT.C. Classical theory of atomic scattering. ■ Adv.At. and Mol.Phys., 19G8, v.4, p.109-140.

15. Sandner W. Post collision interaction at high impact energies. - J.Phys. B, 1986, v.19, p.L863-L869.

16. Sandner W., Volkel M. Auger line shapes of free atoms. - Phys.Rev.Lett., 1989, v.62, p.885-888.

17. Sandner W. PCI in particle impact ionization: the presence of threshold phenomena at any impact energy. • XV ICPEAC, Brighton, 1987, Invited papers (Amsterdam: North-Holland), p.117-128.

18. Graf D., Hink W. Post-collision interaction in inner-shell ionization and excitation of Ne K and Kr L3 by electron impact. - J.Phys. B, 1987, v.20, p.2677-2689.

19. Hayaishi T., Murakami E., Morioka Y., Shigemasa E., Yagisliita A., Koike F. Post-collision interaction effects of photoelectrons induced by Auger cascades. - J.Phys. B, 1994, v.27, P-L115-L121.

Отпечатано в типографии ПИЯФ РАН 3ак.332, тир. 100, уч.-изд.л .1,5; 14/VI-1995r. Бесплатно