Физико-математические модели и численные исследования трансформации массового спектра облачных капель за высокоскоростным летательным аппаратом тема автореферата и диссертации по механике, 01.02.05 ВАК РФ

Здор, Александр Геннадьевич АВТОР
кандидата физико-математических наук УЧЕНАЯ СТЕПЕНЬ
Жуковский МЕСТО ЗАЩИТЫ
2008 ГОД ЗАЩИТЫ
   
01.02.05 КОД ВАК РФ
Диссертация по механике на тему «Физико-математические модели и численные исследования трансформации массового спектра облачных капель за высокоскоростным летательным аппаратом»
 
Автореферат диссертации на тему "Физико-математические модели и численные исследования трансформации массового спектра облачных капель за высокоскоростным летательным аппаратом"

□03462522

На правах рукописи

ЗДОР Александр Геннадьевич

ФИЗИКО-МАТЕМАТИЧЕСКИЕ МОДЕЛИ И ЧИСЛЕННЫЕ ИССЛЕДОВАНИЯ ТРАНСФОРМАЦИИ МАССОВОГО СПЕКТРА ОБЛАЧНЫХ КАПЕЛЬ ЗА ВЫСОКОСКОРОСТНЫМ ЛЕТАТЕЛЬНЫМ

АППАРАТОМ

Специальность 01.02.05 - механика жидкости, газа и плазмы

АВТОРЕФЕРАТ диссертации на соискание учёной степени кандидата физико-математических наук

2 о У'/З

Жуковский-2009

003462522

Работа выполнена в НИО-8 Центрального аэрогидродинамического института имени профессора Н.Е. Жуковского (ФГУП "ЦАГИ")

Научный руководитель:

доктор технических наук,

профессор Стасенко Альберт Леонидович

Официальные оппоненты:

Доктор физико-математических наук, профессор Кузнецов Вадим Михайлович

кандидат физико-математических наук, доцент Федоров Александр Витальевич

Ведущая организация: ВВИА им. Н.Е. Жуковского

Защита состоится « ¡Ж ¿уэ/ъЛ _

на заседании диссертационного совета Д 212.125.14 при Московском авиационном институте (государственном университете) по адресу: 125993, Москва, Волоколамское шоссе, д. 4, тел. (499) 158-58-62.

С диссертацией можно ознакомиться в библиотеке МАИ. Автореферат разослан « & е/ра -¿л

«г.

Учёный секретарь

диссертационного совета Д212.125.14

Гидаспов В.Ю.

Общая характеристика работы.

Актуальность работы. Расчёт параметров течений вблизи поверхностей летательных аппаратов и в их следах является важной для практики задачей. Атмосфера Земли имеет сложный компонентный состав и содержит помимо газовой фазы (воздуха, паров воды) жидкое и твёрдое диспергированное вещество. К последнему относят капли конденсата разного химического состава, частицы пыли, сажи, кристаллы соли, появляющиеся в результате естественных процессов и вследствие техногенной деятельности человека. Поэтому рассматриваемые течения принадлежат к классу турбулентных многофазных полидисперсных неравновесных потоков.

Среди возможных сфер приложения результатов исследований подобных течений необходимо упомянуть экологию, метеорологию, авиацию. Действительно, в засушливых странах актуальны вопросы локального регулирования климата и управления ростом облаков и выпадением осадков. В связи с активной техногенной деятельностью человека важной задачей является экологический мониторинг атмосферы, а также диагностика/предсказание динамики и химического состава аэрозольных включений. В аэрокосмической области актуален целый ряд других вопросов. Здесь стоит упомянуть слежение за траекториями летательных аппаратов, движение которых вносит возмущения в "фоновый" аэрозоль. Это может приводить к образованию следов испарения/конденсации, а также изменению его дисперсности, которые, в свою очередь, становятся заметными в определённых диапазонах длин волн. Также практический интерес представляет оценка влияния большой массовой доли конденсата на аэродинамические характеристики аппаратов (например, посадка в дождь). Особую важность имеет задача об оценке скорости обледенения самолётов при полётах во влажной атмосфере, его влиянии на аэродинамику ЛА и выработка рекомендаций по борьбе с ним.

Теория многофазных турбулентных потоков в настоящее время ещё далека от завершения. Здесь приходится сталкиваться с моделированием большого количества разнообразных физических процессов: тепломассообмена дисперсной фазы с несущим газом, дробления капель под действием аэродинамических сил, их коагуляции/дробления при взаимных столкновениях. Каждый из них является отдельной темой для исследований и определяется рядом параметров окружающего газа, дисперсной фазы, а также безразмерными критериями. Даже при условии, что многие из них детально изучены и описаны, из-за сильной неоднородности рассматриваемых течений оказывается очень сложным предсказать доминирующий процесс в данной пространственно-временной точке. Поэтому представляет интерес построение синтетических моделей динамики многофазных потоков, где все упомянутые выше явления принимаются в учёт. К сожалению, экспериментальные данные, касающиеся исследования течений этого класса, крайне скудны. Методы численного моделирования и современные мощности ЭВМ позволяют в некоторой степени улучшать ситуацию и получать данные о поведении многофазных потоков.

Цель работы: Построение синтетической физико-математической модели эволюции полидисперсного двухфазного течения, создание численного кода и теоретические и методические численные исследования изменения дисперсности

и динамики капель водного конденсата при обтекании модельной конфигурации ЛА высокоскоростным потоком.

Главными задачами работы являлись:

¡.Анализ современного состояния исследований многофазных полидисперсных потоков.

2. Выбор математических моделей для описания физических явлений, происходящих с частицей конденсата: фазовых переходов, теплообмена, обмена импульсом с несущим газом.

3. Выбор модели эволюции ансамбля частиц дисперсной фазы, взаимодействующих с несущим газом и друг с другом.

4. Выбор, сравнительный анализ и дальнейшая разработка моделей взаимодействия дисперсной фазы с турбулентной несущей средой.

5. Построение синтетических моделей эволюции полидисперсного конденсата.

6. Создание в рамках метода «крупных частиц» численных кодов для расчёта течений газа и дисперсной фазы и отладка программ.

7. Методические численные исследования обтекания модельной конфигурации ЛА и его ближнего следа для разных режимов «на бесконечности» и разных комбинаций учитываемых эффектов.

8. Анализ численных результатов и определение диапазонов влияния параметров. Оценка важности учёта отдельных физических эффектов.

9. Оценки адекватности использованных физических моделей и результатов численного анализа.

Научная новизна работы состоит в следующем:

1. Предложена синтетическая модель эволюции полидисперсного двухфазного потока.

2. На её основе созданы численные коды для расчёта эволюции полидисперсного многофазного потока вблизи поверхности обтекаемого аппарата и в его ближнем следе.

3.В серии параметрических расчётов обтекания модельной конфигурации ЛА проведена апробация этих программ. Получены пространственные распределения экстенсивных (числовые и массовые концентрации) и интенсивных (скорости, температуры и радиусы капель) параметров состояния фракций полидисперсного конденсата в потоке.

4. Исследовано влияние угла атаки и числа Маха набегающего потока на картину обтекания модельной конфигурации ЛА двухфазным полидисперсным потоком. Рассмотрено влияние процессов коагуляции/дробления капель при взаимных столкновениях на трансформацию массового спектра конденсата вблизи поверхности тела и в следе.

5. Проведён сравнительный анализ стохастических параметров дисперсных включений в турбулентности, рассчитываемых по разным моделям. В соавторстве с И.В. Деревичем предложена замкнутая система уравнений для расчёта корреляций флуктуаций скорости частиц по траекториям и зависимости коэффициентов их диффузии от параметров турбулентности, скольжения и инерционности. В рамках диффузионной модели с учётом скоростного скольжения фракций проделаны оценки частот взаимных столкновений капель.

Достоверность результатов исследования обеспечивается тем, что все элементы предложенной синтетической модели прошли ранее серьёзную апробацию. Это касается, прежде всего, коэффициентов взаимодействия отдельных капель с несущей средой в широком диапазоне чисел Маха, Рейнольдса, Вебера, Лапласа, Нуссельта, Шервуда. Далее, это относится и к моделям кинетики сталкивающихся капель, развитых в научных школах Москвы, Киева, Томска. Наконец, это относится и к многочисленным тестам и широкому опыту использования в разных задачах избранного для численных исследований метода «крупных частиц» в режиме установления.

Практическая ценность работы состоит в том, что созданные на основе синтетической модели программы расширяют возможности численного анализа эволюции полидисперсных двухфазных течений вблизи поверхности ЛА и в его следе. Программы позволяют проводить устойчивые сквозные расчёты полей основных характеристик фракций дисперсной фазы с учётом целого ряда различных физических явлений без предварительного выделения доминирующего эффекта. Результаты вычислений могут служить входными данными для упрощённых моделей расчёта течения в дальнем следе, а также позволяют оценивать потоки массы и тепла к обтекаемой поверхности, обусловленные наличием в потоке диспергированного вещества. Кроме того, расчётные данные можно использовать для верификации более сложных численных кодов. Положения, выносимые на защиту:

• Синтетическая модель эволюции полидисперсных двухфазных течений, учитывающая ряд физических процессов: фазовые переходы, коагуляцию, дробление капель.

• Результаты верификации созданных численных кодов, позволяющих проводить исследования полидисперсных многофазных потоков в широком диапазоне параметров вблизи поверхностей тел и в следах.

• Результаты серии параметрических расчётов обтекания модельной конфигурации ЛА сверхзвуковым полидисперсным двухфазным потоком для случая частиц водного конденсата. Исследования закономерности влияния различных параметров (числа Маха набегающего потока, угла атаки, числовой концентрации дисперсной фазы в набегающем потоке) на картину течения.

• Результаты численных исследований влияния процессов коагуляции на трансформацию массового спектра капель в ударно-волновой картине обтекания ЛА.

• Предложенная (в соавторстве с И.В. Деревичем) замкнутая модель, позволяющая рассчитывать стохастические параметры инерционных частиц в однородной изотропной турбулентности в рамках подхода Лагранжа и сравнение получаемых по ней характеристик с результатами других моделей.

Апробация работы. Результаты выполненных исследований докладывались и получили положительную оценку на следующих конференциях и семинарах:

1. Научные конференции МФТИ: ХЬУ1 (2003 г.), XI.VII (2004 г.), ХЬУШ (2005 г.), ХПХ (2006 г.), Ь (2007 г.), П (2008 г.).

2. Юбилейный международный семинар по струйным, отрывным и нестационарным течениям, Санкт-Петербург, 2004 г.

3. Международная научно-техническая конференция «Фундаментальные проблемы высокоскоростных течений», Жуковский, 2004 г.

4. Академические чтения по космонавтике («Королёвские чтения»), Москва: XXIX (2005 г.), XXX (2006 г.), XXXI (2007 г.), XXXII (2008 г.), XXXIII (2009 г.).

5. Научно-техническая школа-семинар «Современные проблемы аэрокосмической науки и техники» в рамках 2-ой Международной выставки авиационно-технического творчества молодёжи «ЮниМАКС-2005» и «Вузовская наука», Жуковский, 2005 г.

6. IX Международный симпозиум «Актуальные проблемы машиностроения и механики сплошных и сыпучих сред», Москва, 2006 г.

7. VI Международная конференция по неравновесным процессам в соплах и струях (ЫР№-2006), Санкт-Петербург, 2006 г.

8. XVI Школа-семинар молодых учёных и специалистов под руководством академика РАН А.И. Леонтьева, Санкт-Петербург, 2007 г.

9. Международный авиационно-космический научно-гуманитарный семинар имени С.М. Белоцерковского, Москва, 2007 г.

10. Научно-технический семинар НИО-8 ЦАГИ, Жуковский, 2007 г.

11. VI Минский Международный Форум по Тепломассообмену, Минск, 2008 г.

12. 7-ой семинар ЦАГИ-(ЖЕ11А, Жуковский, 23-26 сентября 2008.

13. Семинар по аэродинамике ЦАГИ-ИТПМ, Жуковский-Новосибирск, 18 ноября 2008.

Публикации. Материалы диссертационной работы изложены в 20-ти печатных работах, 11 из них выполнены без соавторов.

Структура и объём диссертационной работы. Работа состоит из введения, трех глав, заключения, библиографического списка использованной литературы (114 названий), 46 рисунков, 6 таблиц. Общий объём работы составляет 174 страницы.

КРАТКОЕ СОДЕРЖАНИЕ

Во Введении отмечается существенное научное и практическое значение исследований эволюции многофазных полидисперсных течений. Большинство опубликованных в настоящее время работ, статей и монографий по этим вопросам касается течений газа с дисперсной примесью в виде твёрдых частиц или капель жидкости в соплах и каналах. Как правило, основной интерес в них концентрируется на вопросах смесеобразования, выпадения конденсата на стенки, эрозии обтекаемых поверхностей. Данная работа посвящена исследованию эволюции двухфазного полидисперсного потока, возникающего при обдуве летательного аппарата воздухом, содержащим диспергированное вещество. Наибольший интерес представляло построение синтетической модели, учитывающей эффекты тепломассообмена частиц конденсата с несущим газом и коагуляции/дробления при их взаимных столкновениях и расчёты на её основе. Это позволило анализировать степень влияния отдельных физических эффектов и получить информацию о воздействии газодинамических возмущений на дисперсность конденсированной фазы. На основании получаемых в расчётах данных можно следить за эволюцией капель конденсата во всём поле течения и исследовать трансформацию их массового спектра в ближнем и дальнем следе летательного аппарата.

Первая глава носит обзорный характер. В ней отмечен весомый вклад различных научных школ в изучение физики явлений и построение математических моделей полидисперсных многофазных потоков. Также в первой главе определяется объект исследования: сверхзвуковое обтекание ЛА полидисперсным двухфазным потоком с совместным учётом ряда физических эффектов: силового воздействия течения на капли, фазовых переходов, коагуляции, дробления частиц под действием аэродинамических сил и при взаимных столкновениях.

Вначале рассмотрены основные результаты теоретического и экспериментального изучения «элементарных» физических процессов в одиночной частице, полученные несколькими коллективами. Проведён анализ и сравнение часто применяемых на практике зависимостей, аппроксимирующих потоки тепла д и массы {т} к поверхности капли в различных случаях: для континуального и свободномолекулярного пределов, а также некоторые интерполяции на промежуточные значения числа Кнудсена. При численных исследованиях многофазных потоков для континуального режима (верхний индекс «С») использовались зависимости:

Р

/(2) = V / ( -ь БЬ = N11 = 2 + —Рг3 •

Здесь а - радиус капли, Та - её среднеобъёмная температура, Т, -

температура и коэффициент динамической вязкости несущего газа, 11еа - число Рейнольдса обтекания капли, р„ - локальная массовая концентрация водяного пара, р„5(Га) - плотность насыщенных паров воды при температуре Та, вычисляемая по формуле Клапейрона-Клаузиуса. Отмеченные верхним индексом «г» параметры газа соответствуют условиям адиабатического восстановления. Свободномолекулярный режим (верхний индекс «Л») тепломассообмена характеризовался следующими выражениями для полных потоков:

1

-ехр

Я 71 2/ \3 я =—а (v) У 16 Х/

5 =

Я-Т.

Здесь приняты следующие обозначения:

Су — ^ ч* Су ^ у

С« = [а.(1 - а,)+а,уф2 + 2^ + (> +1

252-1

25

-ег:

ехр|

+ ои

5-Зу

2(7-1)]

у - отношение удельных теплоёмкостей несущего газа, Ма число Маха обтекания капли, ак ,ае - коэффициенты конденсации и аккомодации по энергии, - удельная газовая постоянная водяного пара. В качестве интерполяции на промежуточные значения чисел Кнудсена использовалась формула типа «параллельных проводимостей»:

Также рассмотрены разные виды сил, действующих на частицы конденсата со стороны несущей среды (аэродинамическое сопротивление РА, сила Сэфмана и возможные варианты их аппроксимации. Для силы аэродинамического сопротивления использовалась зависимость:

где и, V - локальные скорости газа и частицы, р - плотность несущего газа, Са -коэффициент сопротивления. При расчётах зависимость коэффициента сопротивления от параметров для континуального и свободномолекулярного режимов обтекания капли определялась согласно:

На основании обработки опытных данных для учёта температурной неравновесности несущего газа и дисперсной фазы при численном анализе использовано "правило 1/3", согласно которому по-прежнему употребляется стандартная кривая но при нахождении числа Рейнольдса появляется

специфика: используется локальная плотность газа в потоке, а коэффициент молекулярной вязкости берётся при новой температуре Тв:

где Г( совпадает с локальной температурой газа при дозвуковом обтекании капли и равняется температуре за прямым скачком уплотнения при сверхзвуковом. Для свободномолекулярного режима принималось:

где а„ — коэффициент аккомодации молекул пара по нормальной компоненте импульса. В качестве интерполяции на промежуточные значения числа Кнудсена использовалась формула суммы «параллельных проводимостей»:

Тв=та+-{т1-та),

1

{ 02\ 45 + 45 -1 2 Г171-а*

>1-5 )+-1-егп5) +—аи1 71—--

\ ) 25 3 "V Г 5

й- с к-

Для силы Сэфмана, существенной вблизи поверхности обтекаемого тела, использована зависимость:

р дих

дп

Р5а, =0,343а(РА,ет)еп

где ег, е„ - единичные касательный и нормальный векторы к поверхности тела, их - касательная составляющая скорости несущего газа.

Затем проведён анализ способов описания динамики ансамбля частиц с учётом коагуляции/дробления, тепломассообмена и обмена количеством движения и энергией при взаимных соударениях капель. В силу адекватности описываемым явлениям, а также по соображениям большей простоты и экономичности численной реализации по сравнению с другими вариантами, предпочтение отдано непрерывному подходу в рамках гидродинамической модели эволюции полидисперсного конденсата. В терминах функции распределения включений по радиусам и пространственно-временным координатам на основании уравнения Лиувилля в данной работе приведён подробный вывод соответствующей системы интегро-дифференциальных уравнений, а также её дискретного аналога для конечного количества N фракций дисперсной фазы:

дп 1 ^

01 1 т=5+1

Зр 5-1 N

-^- + сНу(у,р,)=сНу(ДУр,)+иД/иЛ/> %к5тфшпт

01 ;'=1 т=$+1

9рХ , «

+ рХ)= с11у(д у« Ур,)+ п, )а + И, у" {т, }РН +

д1

+ ае{1,2,3}

+ +и,(®'„у1)+и, (е, + Ь1у){т5}рн +

5-1 , , . . N '

7 = 1 /И = 5+1

я м

5=1

Здесь использованы обозначения: пг,рг - числовая и массовая концентрации капель 5 -ой фракции дисперсной фазы, у5 - осреднённая скорость фракции, -

I |2

среднеобъёмная температура капель, Р = РА+Р5ву, е, =с1Т5 +0,5| у 5 | - их полная удельная энергия, И5 - коэффициенты диффузии частиц фракции, которые рассматриваются во второй главе работы. При моделировании процессов коагуляции существенную роль играют коэффициенты коагуляции/дробления Ф^ по определению равные отношению среднего изменения массы мишени

сорта 5 к общей массе «обстрелявших» её снарядов сорта /. Величины Ф)5

зависят от условий соударения посредством чисел Лапласа, Рейнольдса, радиусов капель и в опубликованных работах получены на основании обработки экспериментальных данных. Ядра столкновений К^ подробнее анализируются во

второй главе. При расчётах учитывалось дробление капель под действием аэродинамических сил. Существует сложная классификация режимов дробления капель в потоках. В качестве простого критерия в представленной работе использовалось число Вебера (ст„, - коэффициент поверхностного натяжения воды):

\Уе =

2ра|у-ц|

Дробление моделировалось по схеме удвоения: если локальное значение числа Вебера данной фракции превосходило критическое, считалось, что капля распадается на две одинаковые части. Затем находились новые величины \Уе и снова сравнивались с WeKp. В случае We > WeIф = 16 процесс повторялся.

В результате анализа опубликованных работ можно заключить, что теория многофазных потоков в настоящее время интенсивно развивается. Несмотря на многочисленные теоретические и экспериментальные работы, проведённые разными научными группами, единый подход для математического моделирования рассматриваемых течений отсутствует, большинство исследований узко специализированы. Постановка опытов, данные которых позволяют тестировать, отлаживать и совершенствовать модели, крайне затруднительна как по техническим, так и методологическим причинам. В связи с этим, важная роль отводится численному эксперименту в рамках синтетических моделей эволюции полидисперсных потоков, принимающих в учёт сразу несколько физических процессов. Казалось бы, что такой подход ведёт к резкому усложнению: при описании коагуляции/дробления, фазовых переходов и аэродинамического воздействия несущего газа на частицы основные зависимости содержат более десятка безразмерных критериев подобия. Основным в пользу применённого подхода соображением служит то, что при сверхзвуковом движении ЛА газодинамическая картина его обтекания крайне неоднородна, включая в себя области нагретого (пограничные слои) и «холодного» газа (течения Прандтля-Майера), а также сильные разрывы. Следовательно, выделить априори доминирующий эффект (скажем, только фазовый переход или только коагуляцию) крайне затруднительно. На этих основаниях представляется целесообразным использовать модель, обогащенную учтёнными физическими процессами, а в численной реализации системы уравнений предусмотреть

возможность расчёта каждого из них. При этом «главное» слагаемое должно выделяться автоматически в зависимости от локальных условий в точке течения.

Задачи, касающиеся эволюции полидисперсных течений и трансформации массового спектра конденсата вблизи поверхностей летательных аппаратов и в их следах, имеют большое прикладное значение. Их исследованию посвящено лишь небольшое количество публикаций, что подтверждает актуальность представляемой работы.

Во второй главе обсуждаются результаты моделирования поведения инерционных дисперсных включений в поле турбулентных и молекулярных флуктуаций скорости несущего потока. Относительное движение частиц конденсата и несущего газа можно условно разделить на две взаимосвязанные части: осреднённое скольжение фаз и случайные смещения. Как уже упоминалось выше, взаимодействие капель с пульсациями является одной из причин их взаимных соударений, а также вызывает диффузионные перемещения частиц. Информация о времени между столкновениями капель важна при анализе процессов их коагуляции. В представленной работе основной интерес концентрировался на анализе зависимости от свойств турбулентности флуктуационных параметров частиц: функции вовлечения в пульсационное движение, коэффициента диффузии и частоты взаимных столкновений дисперсных включений. Существует ряд публикаций, касающихся вычисления этих величин. Один из распространённых подходов к решению задачи состоит в том, что исследуются скорости и координаты выделенной частицы в поле случайных флуктуаций скорости несущей среды (переменные Лагранжа). Относительно простые аналитические результаты получаются только в приближении однородной изотропной турбулентности. В основе любой из рассматриваемых теорий лежит, как правило, уравнение релаксационного типа, описывающее динамику частицы во внешнем стохастическом поле пульсаций скорости. В результате осреднения по ансамблю реализаций течения возможно сформулировать уравнение только для стохастической составляющей скорости частицы

сН т

где х(() - радиус-вектор частицы, т - характерное время её динамической релаксации, и(г,х(/)) - пульсационная скорость несущей среды вдоль траектории частицы, а(7, х(/)) - случайная скорость среды, вызванная молекулярными эффектами (сила Ланжевена). В случае медленного (стоксового) обтекания шаровой частицы радиуса а время т определяется из соотношения:

6тщта 9\кт

где тв - масса капли, р„ - плотность воды. Особую важность представляет двухвременная функция корреляции флуктуаций скорости несущей среды вдоль

траектории частицы ^и ^ , ))и (/2»))} = (и /и у (^1»'2) • От позволяет

вычислить интенсивность хаотического движения частиц в турбулентном потоке, корреляцию пульсаций скорости капли вдоль собственной траектории, а также её коэффициент диффузии. Совместно с И.В. Деревичем автором данной работы проведен анализ динамики частиц (в переменных Лагранжа) на основе трёхмерного спектрального разложения турбулентности. В рамках гипотез Коррсина о «расщеплении» корреляций и гауссовости флуктуаций скорости капель получена замкнутая система интегральных уравнений, связывающая корреляцию флуктуаций скорости несущей среды по траектории частицы и корреляцию Лагранжа последней. В учёт приняты турбулентные пульсации скорости несущего газа и флуктуации молекулярной природы (броуновское движение), а также скоростное скольжение дисперсной фазы. В силу предполагаемой стационарности поля турбулентных пульсаций все двухвременные корреляции зависят, фактически, от модуля разности значений времени. На этих основаниях получена система:

(и,2 .,(*)= |я„М)ехрОк- \У5)ехр

д1

2

й к

где = \У = {У)-(и) - скорость скольжения

частицы, а функция В,-, (л, к) - образ Фурье двухвременного и двухточечного среднего значения произведения скоростей пульсаций несущей среды:

(и,.(/,,ж, )и; (/2,х2 )) = \ву (| Л/ |,к)ехрОк • у) <М,

У = Х,-Х2!

Для инерционного участка спектра найдено приближённое решение системы и исследовано влияние инерции и осреднённого скольжения фаз на временные масштабы Лагранжа частицы и флуктуаций скорости вдоль её траектории. В предположении экспоненциальной зависимости от времени функции корреляции скорости несущей среды вдоль траектории частицы (з) = Т^) = ехр(-.?/] получено уравнение для определения характерного масштаба Г/:

кщг о ° к 2

где использованы обозначения:

Х 17 , га^е^Д2)^, 0«0,886, 0,969,

(1 + ЛГ

а кШг,еШг — средняя удельная энергия пульсационного движения несущей среды и скорость её диссипации. Коэффициенты диффузии в рамках предложенной модели оцениваются следующим образом:

кв - константа Больцмана. Последнее слагаемое соответствует броуновскому движению.

Ядра столкновений Кр капель-снарядов фракции ] с каплями-мишенями

сорта 5 пропорциональны частоте их взаимных столкновений и могут быть записаны в общем виде следующим образом:

где - модуль вектора относительной скорости частиц. Он зависит как от

осреднённых скоростей фракций, так и от их стохастических составляющих, которые обусловлены вовлечением капель в турбулентное движение несущего газа и их участием в броуновском движении (играет важную роль для мелких частиц). Существует несколько разных способов моделирования этой величины. Использованный при численном анализе вариант выглядит следующим образом:

3 тп

Чиг Е

КТ

Для континуального режима обтекания частиц величина I Д V ^

моделировалась согласно:

2 ккТ

в

3 яа,а5ци(г)'

Взаимодействие капель с турбулентными пульсациями потока является одной из причин взаимных столкновений частиц, а также вызывает их диффузионное движение. При расчётах также использовались опубликованные другими авторами результаты исследования параметров относительного движения капель на основании статистического подхода и следующие из них простые аппроксимирующие зависимости, удобные для применений в численных алгоритмах:

Здесь £2у=ту/Г£ - параметр инерционности - время динамической релаксации капель фракции по скорости, Г£ - временной интегральный масштаб Лагранжа турбулентности). Для среднего значения модуля относительной скорости двух частиц использована зависимость:

В представленной работе автором предлагается еще один вариант оценки частоты столкновений капель. В рамках задачи о достижении границы с учётом диффузионного смещения и движения с осреднённой скоростью для ядра столкновений получено:

где члены ряда выражаются через функции Бесселя мнимого аргумента с полуцелым индексом:

Кр = 1)" (2 п +1 )с2п [п +1 + 52

Здесь использованы обозначения:

V; -У^Дд 2ГК

Как показывают оценки, в рассматриваемых потоках значения параметра 8 малы. В этом случае для нахождения ядра столкновений можно воспользоваться несколькими членами степенного ряда:

Кр =4 яО^

1 + 5- — + — + о(б3) 3 3 ^ '

Третья глава посвящена численному анализу эволюции двухфазного полидисперсного потока при обтекании модельной конфигурации ЛА на основе предложенной синтетической модели. В качестве инструмента для проведения расчётов по нескольким причинам был использован метод крупных частиц Белоцерковского-Давыдова. Неоспоримым достоинством метода является возможность проводить сквозной счёт, без предварительного выделения особенностей течения. Поскольку содержание дисперсной фазы в набегающем потоке принималось малым (отношение массовых концентраций дисперсного вещества и несущего газа порядка нескольких процентов), обратное влияние конденсата на газ не учитывалось. Поэтому вначале проводились исключительно газодинамические расчёты. В целях верификации созданных численных кодов вначале выполнены тестовые расчёты некоторых вариантов классической задачи о распаде разрыва в пространственно одномерной постановке в рамках уравнений Эйлера. Выбор теста такого рода продиктован двумя причинами. Во-первых, эти задачи имеют известные аналитические решения. Во-вторых, их анализ с помощью целого ряда численных методов приводится в литературе, что позволяет провести сравнение результатов. Как известно, метод крупных частиц основывается на расщеплении уравнений по физическим процессам на два этапа. Основной целью теста являлась проверка их надёжности по-отдельности. Важность её выполнения также продиктована тем, что при расчётах дисперсной фазы используется аналогичное расщепление с несколько отличающимся от газового случая эйлеровым этапом, и, практически, тождественно совпадающим по реализации лагранжевым. Постановка начальных условий в задачах содержит решения со слабыми и сильными разрывами, переходами через звуковую точку в разных ситуациях, разлётом и столкновением потоков, а также с движущимся контактным разрывом. В большинстве задач классическая реализация метода крупных частиц дала результаты, хорошо согласующиеся с результатами расчётов другими авторами. Исключение представляла задача о столкновении потоков: при численном решении в области смешения возникали сильные пространственно нелокализованные численные осцилляции плотности газа и числа Маха (имели порядок искомых величин). Их удалось погасить без потери точности вычислений изменением центральноразностных аппроксимаций производных эйлерового этапа на противопотоковые варианты. Дальнейшее сглаживание решения удалось

получить изменением аппроксимации потоков лагранжева этапа согласно идеологии методов конечного объёма и применением противопотокового расщепления, аналогичного подходу Стегера-Уорминга. Расчёты проводились на равномерной сетке, разбивающей единичный отрезок на 2-Ю4 ячеек, число Куранта было разным в разных задачах, но не превосходило 0,5 для всех вариантов. Ниже приводятся графики (рис. 1) зависимостей плотности газа и числа Маха от пространственной координаты в момент времени / (выбирался так, чтобы возмущения не достигли границ области) для двух вариантов задачи о распаде разрыва. Начальные данные сформулированы при 0 < х < 0,5 (Ь, состояние слева) и при 0,5 < х < 1 (Л, состояние справа).

(») Плотность газа

04

0.5

-05

[ !

1

о Число Маха ---■-•-.............1

1 ■ !

!

1 1

Рис. 1. Задача о столкновении потоков

{р,и,р)ь =(1;1,г/г;1), =(1;-1.2л/7;1), / = 0,1

(а) - распределение плотности газа, (б) - распределение числа Маха

Последующие расчёты касались обтекания модельной конфигурации ЛА -плоской тонкой пластины малой толщины и конечной протяжённости вниз по потоку (длина в направлении вниз по потоку - 10 м, толщина — 6 см) сверхзвуковым потоком совершенного газа под углом атаки. Поскольку основными задачами являлись апробация синтетической модели динамики двухфазного полидисперсного потока и разработка численных алгоритмов, позволяющих проводить расчёты в широком диапазоне параметров, численный анализ проводился в геометрически простой двумерной постановке. Сечения пластины плоскостью ОХУ представляли собой прямоугольники, а в направлении третьей координаты она предполагалась бесконечно протяжённой. Использованная плоская прямоугольная расчётная область размером 5Ь х 4£, где £ - длина пластины, захватывала порядка трети Ь вверх по потоку от носика пластины и 3Ь вниз по потоку от её хвостовой части. Для уменьшения влияния неточностей в моделировании краевых условий на границах области её размеры подбирались так, чтобы все косые скачки уплотнения и веера волн разряжения

сносились на ту её часть, через которую поток вытекает. Расчётная область разбивалась прямоугольной регулярной сеткой размера 533x322 ячеек, со сгущениями в областях ожидаемых больших градиентов параметров (вблизи поверхности тела, в головной части.) Данные «на бесконечности» соответствовали условиям полёта на высоте порядка десяти километров. Сначала расчёт проводился методом установления в рамках модели идеального сжимаемого газа (уравнения Эйлера), а затем этот фон использовался как начальный для системы уравнений Рейнольдса. Поскольку для исследования эволюции дисперсной фазы важны параметры турбулентности, применялась двухпараметрическая д -а модель Коукли с поправочным множителем Ван-Дриста (д - квадратный корень из средней удельной кинетической энергии турбулентных пульсаций). На пластине использовались стандартные граничные условия прилипания, непротекания и адиабатичности. Для удовлетворительного разрешения пограничного слоя предварительно проделаны оценки его толщины (по условиям в набегающем потоке) в рамках задачи о ламинарном обтекании бесконечно протяжённой вниз по потоку плоской пластины. Мелкость сетки вблизи поверхности тела подбирались так, чтобы в окрестности его задней кромки на полученную в оценке толщину пограничного слоя приходилось порядка пяти ячеек. Результаты расчётов обтекания пластины находятся в хорошем качественном соответствии с известными классическими данными обтекания тел сверхзвуковым потоком. Ниже приводятся изолинии поля числа Маха несущего газа, полученного при численном решении уравнений Рейнольдса для одного режима Мга=2, угол атаки 10°. На рис. 2 видны характерные особенности обтекания тонкой пластины конечной толщины: отошедшая ударная волна и косой скачок уплотнения в носовой части, а также формирующийся веер волн разрежения в хвостовой. Далее приводятся результаты расчётов величин, характеризующих турбулентность. На рис. 3 показаны изолинии квадратного корня из удельной энергии турбулентных пульсаций. Можно отметить существенное увеличение (приблизительно на три порядка) этого параметра в отошедшей ударной волне и вблизи поверхности пластины по сравнению с «фоновым» значением. При расчётах принималось, что дх ~ 0,1 м /с. На рис. 4 приведены изолинии величины со. Она обратно пропорциональна временному макромасштабу Эйлера, иначе говоря, характерному времени жизни энергоёмких турбулентных вихрей. Также отмечается её увеличение более чем на два порядка в приповерхностных слоях течения. Эффект усиления пульсаций и скорости их диссипации в этих зонах объясняется существенной пространственной неоднородностью потока. На основании приведённых данных можно провести оценку для турбулентной вязкости и заключить, что она увеличивается на порядки в этих областях. Как следствие, локально возрастает роль диффузионных процессов в эволюции диспергированного вещества.

Рис. 2. Изолинии поля числа Маха несущего газа, режим Мш = 2, угол атаки 10°. Стрелка указывают направление набегающего потока

-гооо

03

..._---400.0—

"""600.0____

■500 0-

......428.2-548.6 —

.125 2"

'И: —г -

\ 'О009«»«_:_________вао.0

400 &-----

-200.0-

-251 л^^-да»*""

-06

2.5

3 115

X, м

12.5 13

X, м

Рис. 3. Изолинии поля величины д (отнесены к дж). Входные данные - см. рис. 2

Рис. 4. Изолинии поля величины а = е1иг /к!иг (отнесены к сош). Входные данные - см. рис. 2

Дальнейшие вычисления касались исследования эволюции трёхфракционного конденсата в поле течения около пластины. С целью установления влияния различных входных данных задачи проведена серия параметрических расчётов. Здесь целесообразно провести сравнение численных результатов для разных физических ситуаций.

Сначала рассмотрены характерные особенности поведения капель разных фракций конденсата в рамках фиксированного режима обтекания. На рис. 5 и 6 представлены изолинии числовых концентраций двух фракций дисперсной фазы для режима М^ = 2. В носовой части пластины изменения концентраций частиц обоих сортов по сравнению с невозмущёнными значениями приблизительно одинаковы (увеличиваются в несколько раз за фронтом отошедшей ударной волны). При этом области, где такие изменения выражены, для крупных капель имеют геометрически более компактный характер. Это можно объяснить большей инерционностью последних, вследствие которой их траектории искривляются лишь в зонах более интенсивных изменений параметров газодинамического фона. Также большая инерционность крупных капель является причиной возникновения локальной зоны их повышенной концентрации на подветренной стороне пластины в носовой части. В хвостовой области на подветренной стороне частиц крупной фракции заметно меньше, чем мелких (вблизи донного среза пластины есть зона, где крупные капли практически отсутствуют). Эффект может обуславливаться инерционностью крупных капель, в результате чего они не достигают подветренной поверхности обтекаемого тела. Этот вывод подтверждается рис. 7 и 8, на которых приведены траектории капель двух разных фракций. На основании их анализа можно заключить, что траектории мелкой фракции практически совпадают с линиями тока несущего газа. Лишь очень малая доля капель этого радиуса достигает поверхности пластины, а основная.

часть движется параллельно ей. Для крупных капель ситуация иная. Искривление их траекторий выражено в меньшей степени, чем для мелких, на наветренной стороне видны траектории, «протыкающие» эту поверхность. Часть капель, попадающих на переднюю кромку пластины, смещается на её подветренную сторону, движется вдоль неё, а затем наблюдается отрыв их траекторий от поверхности. Другой причиной уменьшения числовой концентрации может выступать коагуляция в условиях сильной турбулизации потока.

Рис. 5. Изолинии поля числовой концентрации (и-1СГ6м"3) мелкой фракции (размер "на бесконечности" равен 1 мкм) дисперсной фазы для режима Мм = 2, угол атаки 10°. Стрелка указывает направление набегающего потока

Рис. 6. Изолинии поля числовой концентрации (и • 10 6м"3) крупной фракции (размер "на бесконечности" равен 10 мкм) дисперсной фазы. Входные данные - см. рис. 5

.1 .................----1.............................Дл ......-.1--------------¿..„.............ь.......................

1.8 2 2.2 2.4 ^ 1.8 2 2.2 24

х,м х,м

Рис. 7. Траектории частиц мелкой (слева) и крупной (справа) фракций дисперсной фазы в носовой части пластины. Входные данные - см. рис. 5

г,м

5С.М

Рис. 8. Траектории частиц мелкой (слева) и крупной (справа) фракций дисперсной фазы в хвостовой части пластины. Остальные данные - см. рис. 5

Поля размеров частиц конденсата фракций имеют существенные отличия, что видно на рис. 9 и 10. Мелкая фракция лучше релаксирует к потоку по скорости и температуре, что объясняет практически полное испарение её капель за фронтом головной ударной волны. Этот факт подтверждается графиками рис. 11 и 12 , представляющими вертикальные сечения полей скоростей и температуры дисперсной фазы и газа, проведённые через носовую часть пластины. Также представляется важной роль коагуляции частиц этой фракции при взаимных столкновениях, которая усиливается в результате их вовлечения в развитое турбулентное движение газа, что сопровождается ростом их радиуса (рис. 10). Скорость изменения температуры частицы обратно пропорциональна её

радиусу, поэтому частицы мелкой фракции в пристеночной области хвостовой части пластины практически полностью испаряются в горячем пограничном слое. Как следствие, образуется свободная от них зона, распространяющаяся вниз по потоку приблизительно на десятую часть длины обтекаемого тела. В принятой при расчётах модели коагуляции рост капель данного сорта возможен при соударениях с более мелкими. Частота столкновений малоинерционных частиц прямо пропорциональна турбулентной вязкости. В рассматриваемой зоне последняя увеличивается на несколько порядков по сравнению с фоновым значением, что видно на рис. 3,4. В результате на рис. 10 наблюдается увеличение радиуса частиц крупной фракции на десятки процентов на подветренной стороне хвостовой части.

х,м

Рис. 9. Изолинии полей радиусов капель (мкм) мелкой фракции дисперсной фазы. Входные данные - см. рис. 5

............. 2..... .......2 5 ................ 3............12 12.5 13

х,м

Рис. 10. Изолинии полей радиусов капель (мкм) крупной фракции дисперсной фазы. Входные данные - см. рис. 5

I 4 Ч

I у, М

Мв-4

Л

1.1 ц г.

0 4 ОС:

И, 1-й

Рис. 11. Зависимость горизонтальных составляющих скоростей дисперсной фазы и газа от вертикальной координаты в носовой части пластины

-----фракция с радиусом "на бесконечности" 1мкм,---— - Юмкм,

- несущий газ

•, \ ; \

Мд - 2

М„-4

1 К' 14

223К 223К

Рис. 12. Зависимость температуры дисперсной фазы и газа от вертикальной координаты в носовой части пластины

-----фракция с радиусом "на бесконечности" 1мкм,-----Юмкм,

- несущий газ

Графики рис. 11, 12 позволяют сравнить степени релаксации по скорости к несущему газу для частиц трёх разных фракций при двух рассмотренных режимах обтекания. В целом можно отметить, что чем частицы мельче, тем они лучше "подстраиваются" к потоку. Меньшие отличия горизонтальных составляющих скоростей капель от скорости газа для режима М„ = 4 по сравнению с режимом М„ = 2 объясняются предварительным дроблением частиц в головной ударной

волне. Однако полной релаксации может и не быть, что видно для режимаМ„ =2, где разница составляет приблизительно 30% для крупной фракции. На рис. 12 сравниваются температуры фракций и газа в том же сечении расчётной области. Заметно, что релаксация по температуре выражена меньше, чем по скорости, что обусловлено большим характерным временем процессов теплообмена. Разность температур частиц крупной фракции и газа может быть более 50%.

Представляет интерес сравнить результаты расчётов обтекания пластины двухфазным потоком при различных данных «на бесконечности». На рис. 13-16 приводятся изолинии полей числовой концентрации и размеров капель двух фракций конденсата для другого режима: М„ = 4. В целом можно отметить те же характерные особенности, что и в предыдущем случае, хотя можно указать некоторую специфику. Зона полного испарения мелкой фракции утолщается вблизи поверхности тела, начинаясь непосредственно за фронтом головной ударной волны, и оканчивается приблизительно на расстоянии в одну пятую часть длины пластины вниз по потоку от донного среза. Здесь сказывается более сильный, чем в предыдущем случае, нагрев несущего газа в неоднородностях течения и в пограничном слое, что ведет к увеличению тепловых потоков к каплям, их более интенсивному разогреву и быстрому испарению. Из трёх имеющихся фракций этот эффект наиболее выражен для самой мелкой, поскольку скорость изменения температуры частицы обратно пропорциональна квадрату её радиуса в рамках использованной в расчётах континуальной модели теплообмена с несущим газом. В носовой части пластины в отличие от предыдущего режима наблюдаются зоны с характерным размером порядка нескольких толщин тела, в которых существенно увеличивается числовая концентрация обеих фракций (приблизительно в десятки раз), а размеры уменьшаются на порядок. Этот эффект объясняется влиянием дробления капель при прохождении через отошедшую ударную волну, что не происходило при меньшем значении Мш.

Рис. 13. Изолинии поля числовой концентрации (п-1СГ6м"3) мелкой фракции (размер "на бесконечности" равен 1 мкм) дисперсной фазы для режима Мю =4, угол атаки 10°. Стрелка указывает направление набегающего потока ■

X, м

Рис. 15. Изолинии полей радиусов капель (мкм) мелкой фракции дисперсной фазы. Входные данные - см. рис. 13

Э 3 Ч 12 ¡25 К- Гз Г

х, м

Рис. 16. Изолинии полей радиусов капель (мкм) крупной фракции дисперсной фазы. Входные данные - см. рис. 13

Рис. 17 иллюстрирует результаты расчетов радиуса капель крупной фракции в случае учёта процессов коагуляции/дробления и в пренебрежении этими эффектами.

Рис. 17. Изолинии поля радиуса крупной фракции (размер "на бесконечности" равен 10 мкм) дисперсной фазы с учётом коагуляции/дробления (слева) и без учёта этих процессов (справа). Режим Мт = 4, угол атаки 15°. Стрелка указывает направление набегающего потока

Можно отметить существенные различия в пространственном расположении линий уровня и более компактный характер областей выраженных изменений радиуса в первом случае. Наблюдается общая тенденция уменьшения радиусов

капель всех фракций в приповерхностных зонах вследствие испарения в нагретом пограничном слое. Учёт коагуляции несколько замедляет этот процесс: вследствие слияния капель при взаимных соударениях уменьшение их радиуса вблизи пластины выражено слабее, чем в случае, учитывающем только фазовые переходы. На основании результатов на рис. 17 можно сделать вывод о важности учета процессов коагуляции капель при изучении трансформации их массового спектра в отекающем ЛА многофазном потоке.

Основные результаты и выводы.

1.На основании анализа опубликованных разными авторами результатов, касающихся исследования отдельных процессов с каплями конденсата (фазовых переходов, коагуляции, дробления, обмена импульсом и энергией с окружающим газом), предложена синтетическая модель эволюции полидисперсных двухфазных течений, совместно учитывающая ряд физических явлений.

2. Созданы численные алгоритмы, позволяющие проводить расчёты обтекания тел полидисперсными многофазными потоками в широком диапазоне параметров вблизи их поверхностей и в следе.

3. Проведена серия параметрических расчётов обтекания модельной конфигурации ЛА сверхзвуковым полидисперсным двухфазным потоком для случая частиц водного конденсата. Исследованы закономерности влияния различных параметров (числа Маха, угла атаки) на картину течения.

4. На основании сравнения результатов численного анализа показана необходимость учёта процессов коагуляции капель в ударно-волновой картине обтекания ЛА.

5. Предложена (в соавторстве с И.В. Деревичем) замкнутая модель, позволяющая рассчитывать стохастические параметры инерционных частиц (среднюю кинетическую энергию пульсационного движения, осреднённую относительную скорость, коэффициент диффузии) в однородной изотропной турбулентности. Проведено сравнение получаемых характеристик с данными, получаемыми по другим моделям.

Основное содержание работы изложено в следующих публикациях: Журналы:

• Здор А.Г. Физическая модель и численные исследования эволюции полидисперсного конденсата в следе за плоской пластиной, обтекаемой сверхзвуковым потоком // Учёные записки ЦАГИ. 2008. т. XXXIX. № 4. с. 35-45.

• Деревич И.В., Здор А.Г. Замкнутая модель флуктуационного движения частиц в турбулентном потоке // Изв. РАН. МЖГ. 2009. № 1. с. 68-82.

• Здор А.Г. Исследование кинетики переохлажденных капель при обтекании плоской пластины двухфазным потоком // Научный Вестник МГТУГА. 2009. № 138(1). с. 63-70.

• Здор А.Г. Моделирование и численные исследования кинетики капель атмосферного аэрозоля в следе за плоской пластиной // Принято к опубликованию в ИФЖ. 2008.

• Здор А.Г. Математическая модель и методические численные исследования эволюции атмосферного аэрозоля за пластиной под углом атаки // Труды ЦАГИ. 2008. выпуск 2676. с. 68-79.

Материалы конференций:

• Стасенко A.JL, Здор А.Г., Миллер А.Б. Экология крылатого летательного аппарата в облаках и в окрестности аэропорта. Сб. трудов IX Международного симпозиума «Актуальные проблемы машиностроения и механики сплошных и сыпучих сред», М., 8-10 февраля 2006.

• Здор А.Г. Эволюция массового спектра капель за телом, быстро движущимся в облаке. Материалы VI Международной конференции по неравновесным процессам в соплах и струях (NPNJ 2006), 26 июня-1 июля 2006 г., Санкт-Петербург. -М.: Вузовская книга, 2006.

• Стасенко A.JL, Здор А.Г., Миллер А.Б. Структура следа высотного летательного аппарата. Труды XLVI научной конференции МФТИ, часть VI, М.: Издательство МФТИ, 2003.

• Здор А.Г. Эволюция массового спектра капель за пластиной, движущейся в облаке. Труды XLVII научной конференции МФТИ, часть VI, М.: Издательство МФТИ, 2004.

• Здор А.Г. Динамика конденсированной фазы при движении плоской пластины в облаке. Труды XLVIII научной конференции МФТИ, часть VI, М.: Издательство МФТИ, 2005.

• Здор А.Г. Физическая модель и численные исследования взаимодействия дисперсных включений со следом JIA во влажной атмосфере. Труды L научной конференции МФТИ, часть VI, М.: Издательство МФТИ, 2007.

• Здор А.Г. Численное моделирование граничных условий взаимодействия JIA с атмосферными аэрозолями. Труды LI научной конференции МФТИ, часть VI, М.: Издательство МФТИ, 2008.

• Здор А.Г., Стасенко A.JI. Физико-математические модели и численные исследования оледенения прямого крыла, движущегося в переохлажденном облаке. Труды LI научной конференции МФТИ, часть VI, М.: Издательство МФТИ, 2008.

• Гринац Э.С., Здор А.Г., Кашеваров А.В., Миллер А.Б., Потапов Ю.Ф., Стасенко A.JI. Физическая кинетика аэрозольного следа ЛА. Международная научно-техническая конференция «Фундаментальные проблемы высокоскоростных течений», сборник тезисов, ЦАГИ, Жуковский, сентябрь 2004.

• Стасенко А.Л., Здор А.Г., Миллер А.Б. Трансформация массового спектра облачных капель в турбулентном следе высотного летательного аппарата. Тезисы докладов Юбилейного Международного семинара по струйным, отрывным и нестационарным течениям, Санкт-Петербург, июль 2004.

• Здор А.Г., Миллер А.Б., Стасенко А.Л. Трансформация массового спектра капель облака, пересекаемого высокоскоростным крылатым ЛА. Материалы XXX академических чтений по космонавтике, М.: Комиссия РАН, 2006.

• Здор А.Г. Влияние на массовый спектр капель граничных условий на поверхности аппарата, движущегося в полидисперсной атмосфере. Материалы XXXI академических чтений по космонавтике, М.: Комиссия РАН, 2007.

• ЗдорА.Г. Численные исследования моделей кинетики дисперсной фазы при обтекании высокоскоростного ЛА. Материалы XXXII академических чтений по космонавтике, М.: Комиссия РАН, 2008.

• ЗдорА.Г., Кашеваров А.В., СтасенкоА.Л. Проблема обледенения ЛА в переохлажденном облаке: предшествующие и поверхностные процессы. Материалы XXXIII академических чтений по космонавтике, М.: Комиссия РАН, 2009.

• ДеревичИ.В., ЗдорА.Г., СтасенкоА.Л. Физическая модель и численные исследования кинетики облачных капель в следе самолета. Материалы VI Минского Международного форума по Тепломассообмену, Минск: ИТМО, 2008 (электронная публикация).

 
Содержание диссертации автор исследовательской работы: кандидата физико-математических наук, Здор, Александр Геннадьевич

Список основных обозначений.

Введение.

1. СИСТЕМА УРАВНЕНИЙ ЭВОЛЮЦИИ

ПОЛИДИСПЕРСНОГО КОНДЕНСАТА.

1.1. Физические и прикладные аспекты моделирования многофазных течений.

1.2. Основные допущения и оценки их адекватности при построении моделей динамики диспергированного вещества.

1.3. Физические процессы в одиночной частице.

1.3.1. Фазовые переходы.

1.3.2. Аэродинамическое воздействие несущего потока на частицы.

1.4. Коагуляция и дробление частиц.

1.4.1 Методы описания эволюции полидисперсных включений.

1.4.2. Описание исходов парного взаимодействия капель.

1.4.3. Источниковые члены в уравнении эволюции функции распределения частиц по радиусам.

1.4.4. Уравнение эволюции массовой концентрации фракции полидисперсного конденсата.

1.4.5. Вывод уравнений эволюции импульса фракций.

1.4.6. Вывод уравнений эволюции полной удельной энергии фракций.

1.4.7 Система уравнений эволюции полидисперсного конденсата в случае конечного количества фракций.

1.5. Выводы по главе 1.

2. ВЗАИМОДЕЙСТВИЕ ДИСПЕРГИРОВАННОГО

ВЕЩЕСТВА С ТУРБУЛЕНТНОЙ НЕСУЩЕЙ СРЕДОЙ.

Введение.

2.1. Основные задачи и методы описания динамики частиц в турбулентных потоках.

2.2. Броуновское движение.

2.2.1. Эволюция одиночной броуновской частицы.

2.2.2. Частота взаимных столкновений в системе броуновских частиц.

2.3. Инерционные частицы в поле турбулентных пульсаций скорости несущей среды.

2.3.1. Эволюция одиночной частицы.

2.3.2. Оценка частоты взаимных столкновений капель, вовлечённых в пульсационное движение.

2.3.3. Диффузионные слагаемые в системе уравнений эволюции полидисперсного конденсата.

2.4. Выводы по главе 2.

3. РЕЗУЛЬТАТЫ ЧИСЛЕННОГО АНАЛИЗА.

Введение.

3.1. Течения газа.

3.1.1. Тестовые одномерные задачи.

3.1.2. Обтекание плоской пластины потоком сжимаемого вязкого теплопроводного газа под углом атаки.

3.2. Результаты расчета параметров полидисперсного конденсата вблизи поверхности и в следе за плоской пластиной.

3.2.1. Разные фракции в рамках одного режима «на бесконечности».

3.2.2. Влияние числа Маха набегающего потока.

3.2.3. Влияние угла атаки набегающего потока.

3.2.4. Влияние учета процессов коагуляции/дробления капель.:.

3.3 Выводы по главе 3.

 
Введение диссертация по механике, на тему "Физико-математические модели и численные исследования трансформации массового спектра облачных капель за высокоскоростным летательным аппаратом"

Одним из важнейших направлений механики гетерогенных сред является исследование эволюции двухфазных потоков. Наличие дисперсных включений в течениях газа или жидкости не только влияет на количественные характеристики последних, но и существенно обогащает физику происходящих процессов. Исследования в этой области естествознания представляют научный интерес, а также имеют массу практических приложений. Среди них стоит упомянуть:

Метеорологию. Фактически все задачи метеорологии касаются физики и механики многофазных течений, где в качестве дисперсных включений выступают капли воды, льдистые частицы, пылинки. Изучение процессов зарождения и эволюции облаков актуальны в связи с проблемами локального регулирования климата (управление выпадением осадков), детектирования распространения атмосферных фронтов и предсказания погоды.

Экологию. Практический интерес представляет мониторинг состояния атмосферы с учётом влияния дисперсных включений природного (извержения вулканов, бури) и антропогенного происхождения. Наличие аэрозоля может существенно изменять скорости различных химических реакций, сопровождающиеся появлением и трансформациями активных соединений (озон, окислы азота, серы), влиять на процессы переноса солнечного и теплового излучения, что способно привести к нарушениям естественного температурного баланса.

Авиационную и ракетную технику. Здесь приложения особенно многочисленны. Исторически первыми появились задачи (актуальные и сейчас), связанные с моделированием динамики обледенения летательных аппаратов при движении в облаках и разработкой комплексов мер по его предотвращению или уменьшению. Сугубо практический интерес представляет изучение эрозионного и абразивного воздействия аэрозоля на обшивку ЛА. Наличие дисперсной фазы в набегающем потоке вызывает увеличение силовых и тепловых нагрузок на обтекаемые поверхности, особенно в затупленных головных частях фрагментов компоновки, что приводит к ускоренному разрушению покрытия. Также практическую значимость представляют оценки изменения аэродинамических характеристик планера самолёта при движении в атмосфере с высокой влажностью и большой удельной долей капель конденсата (взлёт и посадка в дождь). Отдельного внимания заслуживает проблема наблюдения за траекториями движения летательных аппаратов. Капли, входящие в состав атмосферного аэрозоля, при взаимодействии с создаваемыми ЛА газодинамическими неоднородностями участвуют в целом ряде физических процессов. Они могут испаряться в горячих приповерхностных зонах, дробиться при прохождении разрывов, коагулировать и снова конденсироваться в достаточно "холодных" областях течения. Все эти явления способны приводить к температурной и скоростной неравновесности фаз в потоке, а также существенно искажать массовый спектр аэрозоля. Возникающие при этом неоднородности могут быть хорошо заметными в некоторых диапазонах длин волн солнечного или сканирующего излучения. Подобные следы испарения визуально наблюдались при движении самолёта в низкой облачной дымке над поверхностью моря и имели характерную длину порядка нескольких десятков километров.

Машиностроение. Изучение физики двухфазных потоков, их эволюции и закономерностей взаимодействия с обтекаемыми поверхностями при наличии диспергированного вещества актуально в задачах проектировании оптимальных сопел разного назначения (реактивные двигатели, эжекторы), трактов двигателей, турбинной техники. Исследования в этой области играют важную роль при разработке методов и технологий нанесения покрытий путём напыления, упрочнения поверхностей деталей машин при ударном воздействии, а также управления движением примесей, что имеет -отношение к фильтрации и сепарации взвесей.

История исследования однофазных течений (газовая динамика и гидромеханика) насчитывает уже не одну сотню лет, и, несмотря на хорошую развитость моделей для большинства важных на практике случаев (здесь стоит упомянуть системы уравнений Эйлера, Навье-Стокса, Рейнольдса) по-прежнему изобилует массой нерешённых вопросов. Многофазные потоки по своим физическим свойствам гораздо сложнее, характеризуются большим числом степеней свободы, а, следовательно, и большим количеством необходимых характерных величин. Даже сравнительно простые синтетические модели кинетики полидисперсного конденсата включают порядка десятка различных безразмерных параметров подобия. Однако каждая из них необходимо содержит определённые способы описания двух важных аспектов:

1) Физических процессов, в которых участвует одиночная частица дисперсной фазы при взагшодействии с несущей средой. Во многих случаях дисперсная фаза в многофазном течении обменивается массой и теплом с несущей средой. В течение долгого времени эти процессы являются предметом теоретических и экспериментальных исследований различных научных школ. Как правило, эти явления определяются широкой совокупностью различных определяющих параметров: температурами капель и окружающей среды, её компонентным составом (предельными здесь выступают случаи испарения в собственный пар или в пассивный газ), скоростным скольжением частиц, числом Кнудсена их обтекания и другими величинами. Соответствующие зависимости для континуального и свободномолекулярного пределов достаточно хорошо изучены. Для промежуточных режимов существуют интерполирующие формулы.

Виды силового воздействия на частицу со стороны несущего потока также многочисленны. Как правило, принимается гипотеза об их независимости, что позволяет рассматривать разные эффекты по-отдельности. К наиболее существенным из них относится сила аэродинамического сопротивления. В литературе опубликованы аналитические зависимости коэффициента сопротивления от определяющих параметров для сферических частиц, прошедшие серьёзную экспериментальную проверку. Также существуют поправки к ним, учитывающие деформацию капель. При исследованиях эволюции дисперсных включений важную роль могут играть сила Сэфмана (существенная в областях сдвиговых течений) и сила Магнуса (при учёте вращения частиц). Необходимо упомянуть и стохастические воздействия несущей среды на частицы. Действительно, рассматриваемые потоки являются, как правило, турбулентными вследствие чего их параметры (скорость, температура, плотность) испытывают пульсации. Находясь в случайном поле флуктуаций скорости, частица испытывает диффузионные смещения. В случае малых радиусов частиц становится важным учет их броуновского движения. Исследованию этих явлений посвящено большое количество работ. При анализе неоднородных течений необходимо принимать во внимание форетические силы разной природы (турбофорез, термофорез). Также важно оценивать степень деформации и устойчивость капли, поскольку в ней могут развиваться колебания с незатухающими модами, приводящие к её разрушению. Рассматриваемые частицы в некоторых случаях могут нести электрический заряд, что приводит к необходимости учитывать силы их взаимодействия друг с другом и с внешними электромагнитными полями.

2) Эволюции ансамбля взаимодействующих частиц. Для моделирования эволюции системы дисперсных включений в несущем потоке в опубликованных работах предлагается несколько разных подходов. Все они подразумевают использование конечного количества параметров, характеризующих состояние частицы. В состав последних обычно включается её радиус, скорость центра масс, среднеобъёмная температура, кинетический момент вращения относительно центра масс. Для справедливости предположения о конечности количества параметров необходимо выполнение требований малости градиентов температур и скоростей вещества частицы, а также затухания вызванных взаимными столкновениями возмущений за промежуток времени между соударениями. Наиболее последовательные подходы подразумевают либо использование кинетического уравнения для функции распределения частиц системы по скоростям, пространственным координатам, радиусам, температурам, моментам импульса и другим представляющим интерес переменным, либо рассмотрение задачи о совместной эволюции параметров состояния капель вдоль их траекторий для достаточно больших совокупностей (до десятков миллионов «участников»). Их реализация на практике требует больших вычислительных затрат (например, использования методов прямого статистического моделирования). Несколько более экономичными и удобными в приложениях являются гидродинамические модели, в которых двухфазный поток рассматривается как многокомпонентная сплошная среда (газ и фракции диспергированного вещества). Допускается, что каждая из её составляющих может обладать собственными локальными значениями параметров состояния: температурой, скоростью, числовой и массовой концентрацией. Идентификация фракций конденсата осуществляется при помощи только одной величины — радиуса частицы, который также зависит от пространственных и временных координат. При учёте процессов коагуляции капель в результате взаимных столкновений необходимо адекватно описывать распределение массы, импульса, энергии и других параметров конденсата по фракциям. Широкое распространение для моделирования этих явлений получили непрерывный и кинетический подходы.

Основным предметом данной диссертации является эволюция и свойства двухфазных полидисперсных течений с малой объёмной долей конденсата около поверхности твёрдого тела и в его следе.

Первые модели, аналитические результаты и данные численных исследований движения частиц в потенциальных течениях несущей жидкости около сферы и цилиндра были обобщены в монографии Фукса Н.А. [89]. Вопросы мелкомасштабного движения вязкой несущей среды около частиц примеси рассматривались в монографиях Левина JT.M. [58] и ВолощукаВ.М. [16]. Родственные задачи в случае малых чисел Рейнольдса обтекания частиц примеси, а также их гидродинамическое взаимодействие подробно освещены в монографии ВолощукаВ.М. и Седунова Ю.С. [17]. Теоретические и экспериментальные данные о физических процессах в каплях конденсата (тепломассообмен с окружающей средой, силовое воздействие) при их движении в неоднородных газовых потоках систематизированы в работах Гилинского М. М. [22], Нигматулина Р.И. [66], Стасенко А.Л. [22, 76-81, 85], СтернинаЛ.Е. [86-88]. Наиболее известные исследовательские группы и отдельные ученые, занимавшиеся вопросами двухфазной газодинамики, проводили работы в Институте механики МГУ им. М.В. Ломоносова (Нигматулин Р.И., Стулов В.П., Осипцов А.Н., Шапиро Е.Г., Гилинский М.М. и др. [22, 66, 68, 69]), ЦИАМ им. П.И. Баранова (Крайко А.Н. [52]), ЦАГИ им. проф. Н.Е. Жуковского (Стасенко А.Л., Василевский Э.Б., АсмоловЕ.С. [1, 2, 12, 40, 76-85]), Ленинградском (Санкт-Петербургском) государственном университете (Матвеев С.К., Лашков В.А. и др. [55, 56, 61, 62]), Институте высоких температур АН СССР (РАН) (Полежаев Ю.В., Михатулин Д.С. и др. [10, 70, 71]), Томском государственном университете (Гришин A.M., Забарин В.И. и др. [25]), ЦНИИМаш (ВасинА.В. и др. [10]), БГТУ «Военмех» им. Д.Ф.Устинова (Циркунов Ю.М., Тарасова Н.В., Волков А.Н. и др. [14, 91-93]), ВЦ АН СССР (РАН) (Давыдов Ю.М., Толстых А.И. [26, 82, 83]).

Отдельным научным направлением при исследовании эволюции многофазных потоков является учёт влияния турбулентных пульсаций параметров несущей среды. В результате стохастических воздействий инерционные частицы дисперсной фазы также оказывается в той или иной мере вовлеченными в пульсационное движение,« что вызывает их диффузионные перемещения и влияет на частоту их взаимных столкновений. Изучением этих вопросов занимается целый ряд исследователей, существуют различные подходы к моделированию процессов. Наибольшее влияние на формирование взглядов автора диссертации в этой области оказали работы Деревича И.В. [29, 30, 99, 100] и Зайчика Л.И. [32-35].

В результате анализа опубликованных работ можно заключить, что теория многофазных потоков в настоящее время интенсивно развивается. Несмотря на многочисленные теоретические и экспериментальные работы, проведённые разными научными группами, можно отметить, что единый подход для математического моделирования рассматриваемых течений отсутствует, большинство исследований узко специализированы. Постановка опытов, данные которых позволяют тестировать, отлаживать и совершенствовать модели, крайне затруднительна как по техническим, так и методологическим причинам. В связи с этим, важная роль отводится численному эксперименту в рамках синтетических моделей эволюции полидисперсных потоков, принимающих в учёт сразу несколько физических процессов. Казалось бы, такой подход ведёт к резкому усложнению: при описании коагуляции/дробления, фазовых переходов и аэродинамического воздействия несущего газа на частицы основные зависимости содержат более десятка безразмерных критериев подобия. Основным в пользу предлагаемого подхода соображением служит то, что зачастую газодинамическая картина обтекания рассматриваемых тел крайне неоднородна, включая в себя области нагретого и «холодного» газа, а также, возможно, сильные разрывы. Следовательно, выделить априори доминирующий эффект (скажем, только фазовый переход или только коагуляцию) крайне затруднительно. На этих основаниях представляется целесообразным использовать модель, обогащённую учтёнными физическими процессами, а в численной реализации системы уравнений предусмотреть возможность расчёта каждого из них. При этом «главное» слагаемое должно выделяться автоматически в зависимости от локальных условий в точке течения.

Задачи, касающиеся эволюции полидисперсных течений и трансформации массового спектра конденсата вблизи поверхностей летательных аппаратов и в их следах, имеют большое прикладное значение. Их исследованию посвящено лишь небольшое количество публикаций, что подтверждает актуальность представляемой работы.

Цель диссертационной работы состояла в построении синтетической физико-математической модели эволюции полидисперсного двухфазного течения, создании численного кода и теоретических и методических численных исследованиях изменения дисперсности и динамики капель водного конденсата при обтекании модельной конфигурации ЛА высокоскоростным потоком.

Главными задачами работы являлись:

1. Анализ современного состояния исследований многофазных полидисперсных потоков.

2. Выбор математических моделей для описания физических явлений, происходящих с частицей конденсата: фазовых переходов, теплообмена, обмена импульсом с несущим газом.

3. Выбор модели эволюции ансамбля частиц дисперсной фазы, взаимодействующих с несущим газом и друг с другом.

4. Выбор, сравнительный анализ и дальнейшая разработка моделей взаимодействия дисперсной фазы с турбулентной несущей средой.

5. Построение синтетических моделей эволюции полидисперсного конденсата.

6. Создание численных кодов для расчёта течений газа и дисперсной фазы и отладка программ.

7. Методические численные исследования обтекания модельной конфигурации ЛА и его ближнего следа для разных режимов «на бесконечности» и разных комбинаций учитываемых эффектов.

8. Анализ численных результатов и определение диапазонов влияния параметров. Оценка важности учёта отдельных физических эффектов.

9. Оценки адекватности использованных физических моделей и результатов численного анализа.

Первая глава носит обзорный характер. В ней отмечен вклад различных научных школ в изучение физики явлений и построение математических моделей полидисперсных многофазных потоков. Определяется объект исследования: сверхзвуковое обтекание ЛА полидисперсным двухфазным потоком с совместным учётом ряда физических эффектов: силового воздействия течения на капли, фазовых переходов, коагуляции, дробления частиц под действием аэродинамических сил и при взаимных столкновениях. На основании уравнения Лиувилля приводится подробный вывод системы уравнений эволюции полидисперсного конденсата для гидродинамической модели в рамках непрерывного подхода.

Во второй главе обсуждаются результаты моделирования поведения инерционных дисперсных включений в поле турбулентных и молекулярных " флуктуаций скорости несущего потока. Относительное движение частиц конденсата и несущего газа можно условно разделить на две взаимосвязанные части: осреднённое скольжение фаз и случайные смещения. Как упоминалось выше, взаимодействие капель с пульсациями является одной из причин их взаимных соударений, а также вызывает диффузионные перемещения частиц. Информация о времени между столкновениями капель важна при анализе процессов их коагуляции. В представленной работе основной интерес концентрировался на анализе зависимости от свойств турбулентности флуктуационных параметров частиц: функции вовлечения в пульсационное движение, коэффициента диффузии и частоты взаимных столкновений дисперсных включений.

Третья глава посвящена численному анализу эволюции двухфазного полидисперсного потока при обтекании модельной конфигурации ЛА на основе предложенной синтетической модели. В качестве инструмента для проведения расчётов был использован метод крупных частиц Белоцерковского-Давыдова.

Неоспоримым достоинством метода является возможность проводить сквозной счёт, без предварительного выделения особенностей течения. Поскольку содержание дисперсной фазы в набегающем потоке принималось малым (отношение массовых концентраций дисперсного вещества и несущего газа порядка нескольких процентов), обратное влияние конденсата на газ не учитывалось. Поэтому вначале проводились исключительно газодинамические расчёты. Дальнейшие вычисления касались исследования эволюции трёхфракционного конденсата в поле течения около пластины. С целью установления влияния различных входных данных задачи выполнена серия параметрических расчётов. Проведено сравнение результатов численного анализа эволюции разных фракций в рамках одного режима «на бесконечности», изучено влияние параметров набегающего потока (числа Маха, угла атаки), показана важность учёта коагуляции/дробления капель при взаимных столкновениях при определении параметров конденсата вблизи обтекаемого тела и в следе. Автор защищает следующие положения:

• Синтетическую модель эволюции полидисперсных двухфазных течений, учитывающую ряд физических процессов: фазовые переходы, коагуляцию, дробление капель.

• Результаты верификации созданных численных кодов, позволяющих проводить исследования полидисперсных многофазных потоков в широком диапазоне параметров вблизи поверхностей тел и в следах.

• ' Результаты серии параметрических расчётов обтекания модельной конфигурации ЛА сверхзвуковым полидисперсным двухфазным потоком для случая частиц водного конденсата. Исследования закономерности влияния различных параметров (числа Маха набегающего потока, угла атаки, числовой концентрации дисперсной фазы в набегающем потоке) на картину течения.

• Результаты численных исследований влияния процессов коагуляции на трансформацию массового спектра капель в ударно-волновой картине обтекания ЛА.

• Предложенную (в соавторстве с Деревичем И.В.) замкнутую модель, позволяющую рассчитывать стохастические параметры инерционных частиц в однородной изотропной турбулентности в рамках подхода Лагранжа и сравнение получаемых по ней характеристик с результатами других моделей.

Результаты выполненных исследований по теме диссертации докладывались и получили положительную оценку на следующих конференциях и семинарах:

1. Научные конференции МФТИ: ХЬУ1 (2003 г.), ХЬУИ (2004 г.), ХЬУШ (2005 г.), ХЫХ (2006 г.), Ь (2007 г.), Ы (2008 г.).

2. Юбилейный международный семинар по струйным, отрывным и нестационарным течениям, Санкт-Петербург, 2004 г.

3. Международная научно-техническая конференция «Фундаментальные проблемы высокоскоростных течений», Жуковский, 2004 г.

4. Академические чтения по космонавтике («Королёвские чтения»), Москва: XXIX (2005 г.), XXX (2006 г.), XXXI (2007 г.), XXXII (2008 г.), XXXIII (2009 г.).

5. Научно-техническая школа-семинар «Современные проблемы аэрокосмической науки и техники» в рамках 2-ой Международной выставки авиационно-технического творчества молодёжи «ЮниМАКС-2005» и «Вузовская наука», Жуковский, 2005 г.

6. IX Международный симпозиум «Актуальные проблемы машиностроения и механики сплошных и сыпучих сред», Москва, 2006 г.

7. VI Международная конференция по неравновесным процессам в соплах и струях (№>N.1-2006), Санкт-Петербург, 2006 г.

8. XVI Школа-семинар молодых учёных и специалистов под руководством академика РАН А.И. Леонтьева, Санкт-Петербург, 2007 г.

9. Международный авиационно-космический научно-гуманитарный семинар имени С.М. Белоцерковского, Москва, 2007 г.

10. Научно-технический семинар НИО-8 ЦАГИ, Жуковский, 2007 г.

11. VI Минский Международный Форум по Тепломассообмену, Минск, 2008 г.

12. 7-ой семинар ЦАГИ-ОЫЕКА, Жуковский, 23-26 сентября 2008.

13. Семинар по аэродинамике ЦАГИ-ИТПМ, Жуковский-Новосибирск, 18 ноября 2008.

По результатам диссертационного исследования автором опубликовано 20 работ (5 статьей и 15 докладов), из них 11 без соавторов.

Автор глубоко признателен своему научному руководителю — доктору технических наук, профессору Стасенко А.Л., который оказал большое влияние на формирование научных интересов и взглядов соискателя, а также привлёк его внимание к рассмотренной задаче и принимал активное участие в обсуждении результатов исследований. Автор благодарен доктору технических наук, профессору Вышинскому В.В. за исчерпывающую информацию по ряду научных вопросов, представлявших интерес для автора, и за справедливые критические замечания по некоторым пунктам, улучшившие качество работы. Также автор хотел бы выразить благодарность коллеге по работе в ЦАГИ, кандидату технических наук, доценту Моллесон Г.В. за помощь в создании численных кодов.

 
Заключение диссертации по теме "Механика жидкости, газа и плазмы"

Основные результаты диссертационной работы состоят в следующем:

1. На основании анализа опубликованных разными авторами результатов, касающихся исследования отдельных процессов с каплями конденсата (фазовых переходов, коагуляции, дробления, обмена импульсом и энергией с окружающим газом), предложена синтетическая модель эволюции полидисперсных двухфазных течений, совместно учитывающая ряд физических явлений.

2. Созданы численные алгоритмы, позволяющие проводить расчёты обтекания тел полидисперсными многофазными потоками в широком диапазоне параметров вблизи их поверхностей и в следе.

3. Проведена серия параметрических расчётов обтекания модельной конфигурации ЛА сверхзвуковым полидисперсным двухфазным потоком для случая частиц водного конденсата. Исследованы закономерности влияния различных параметров на картину течения вблизи обтекаемого тела и в его следе.

4. На основании численных данных показана необходимость учёта процессов коагуляции капель в ударно-волновой картине обтекания ЛА.

5. Предложена (в соавторстве с Деревичем И.В.) замкнутая модель, позволяющая рассчитывать стохастические параметры инерционных частиц в однородной изотропной турбулентности в представлении Лагранжа. Проведено сравнение получаемых характеристик с данными, получаемыми по другим моделям.

В целом, в данной диссертации сформулирована задача об эволюции полидисперсного конденсата и исследовании трансформации его массового спектра для течения вблизи поверхности твердого тела и в его следе. Предложена синтетическая физико-математическая модель, учитывающая достаточно широкую совокупность явлений: обмен массой, теплом и импульсом фракций с несущим газом, дробление капель под действием аэродинамических сил, коагуляцию/дробление при их взаимных столкновениях, вовлечение частиц в турбулентность. Теоретический анализ различных аспектов проблемы, разработка математических и численных моделей, а также выполненные методические расчёты позволили получить представления об особенностях поведения конденсированной фазы при обтекании поверхности ЛА при различных сочетаниях размеров частиц и условий в набегающем потоке, установить роль некоторых определяющих параметров задачи, получить оценки порядков основных величин, характеризующих диспергированное вещество. Направления дальнейших исследований в рамках предложенной модели в этой области двухфазной аэродинамики, по мнению автора диссертации, могли бы состоять в следующем:

1. Расчёты зон смачивания и определение потоков массы конденсата к поверхности обтекаемого ЛА.

2. Расчёты поправок к аэродинамическим характеристикам профилей при высокой массовой доле конденсата в набегающем потоке (роль частиц в генерации и подавлении пульсаций скорости несущей среды).

3. Учёт обратного влияния дисперсной фазы на характеристики газа, в том числе и на параметры турбулентности.

4. Учёт возникающей в некоторых классах течений (пограничные слои, струи) анизотропии турбулентности, а также оценки влияния неоднородностей потока (ударные волны) на параметры стохастического движения капель.

Все перечисленные выше задачи являются актуальными как с научной, так и прикладной точки зрения.

ЗАКЛЮЧЕНИЕ

 
Список источников диссертации и автореферата по механике, кандидата физико-математических наук, Здор, Александр Геннадьевич, Жуковский

1. Асмолов Е.С. О динамике сферической частицы в ламинарном пограничном слое // Изв. АН СССР, МЖГ. 1990, № 6, с. 91-96.

2. Асмолов Е.С. О движении дисперсной примеси в ламинарном пограничном слое на плоской пластине // Изв. РАН, МЖГ. 1992, № 1, с. 66-73.

3. БабухаЛ.Г., ШрайберА.А. Взаимодействие частиц полидисперсного вещества в двухфазных потоках. — Киев: Наук, думка, 1972.

4. Бахвалов Н., Жидков Н., Кобельков Г. Численные методы. — М. — С.-Пб.: Физматлит, Невский Диалект, Лаборатория базовых знаний, 2001.

5. Белоцерковский О.М., Давыдов Ю.М. Метод крупных частиц в газовой динамике. -М.: Наука, 1982.

6. Бусройд Р. Течение газа со взвешенными частицами. Пер. с англ. М.: Мир, 1975.

7. Вызова Н.Л., Иванов В.Н., ГаргерЕ.К. Турбулентность в пограничном слое атмосферы. Л.: Гидрометеоиздат, 1989.

8. Бэтчелор Дж. Теория однородной турбулентности. Изд. Иностранной литературы, М. 1955.

9. ВасенинИ.М., Архипов В.А., Бутов В.Г., Глазунов A.A., Трофимов В.Ф. Газовая динамика двухфазных течений в соплах. Издательство Томского университета, 1986.

10. Васин A.B., Михатулин Д.С., Полежаев Ю.В. О влиянии теплового состояния материалов на их эрозионную стойкость в запыленном газовом потоке // Изв. АН СССР, МЖГ. 1985, № 6, с.172-175.

11. Ван Кампен Н.Г. Стохастические процессы в физике и химии. М.: Высшая школа, 1990.

12. Василевский Э.Б., Осипцов А.Н., Чирихин A.B., Яковлева Л.В. Теплообмен на лобовой поверхности затупленного тела в высокоскоростном потоке, содержащем малоинерционные частицы // ИФЖ. 2001, т. 74, № 6, с. 29-37.

13. Васильков А.П. Окрестность критической точки затупленного тела в гиперзвуковом двухфазном потоке // Изв. АН СССР, МЖГ. 1975, № 5, с. 121-129.

14. Волков А.Н., Семёнов B.B., ЦиркуновЮ.М. Влияние моно- и полидисперсной примеси на течение и теплообмен при сверхзвуковом обтекании затупленного тела потоком газовзвеси // Математическое моделирование. 2004, т. 16, №7, с. 6-12.

15. Волков В.А. Исследование параметров двухфазной среды при сверхзвуковом обтекании затупленных тел // Труды XIX научной конф. МФТИ, 1973. Сер. Аэромех. и проц. управл. Долгопрудный: МФТИ, 1974, с. 14-21.

16. Волощук В.М. Введение в гидродинамику грубодисперсных аэрозолей. Л.: Гидрометеоиздат, 1971.

17. Волщук В.М., Седунов Ю.С. Процессы коагуляции в дисперсных системах. -Л.: Гидрометеоиздат, 1975.

18. ВороничИ.В. Сравнительный анализ группы численных методов газовой динамики: Учебное пособие. М.: МФТИ, 2007.

19. Гавин Л.Б., Шрайбер A.A. Турбулентные течения газа с частицами // Итоги науки и техники, серия МЖГ. т. 25. М.: ВИНИТИ, 1991.-е. 90-182.

20. Галкин B.C., Коган М.Н., Фридлендер О.Г. О некоторых кинетических эффектах в течениях сплошной среды. Изв. АН СССР, МЖГ, 1976, № 3, с. 13-21.

21. Гонор А.Л., РивкиндВ.Я. Динамика капли // Итоги науки и техники. Сер. Механика жидкости и газа. М.: Машиностроение, 1984.

22. Гилинский М.М., Стасенко А.Л. Сверхзвуковые газодисперсные струи. М.: Машиностроение 1990.

23. Горбачев Ю.Е., Лунькин Ю.П. Граничные условия в задаче о течении гетерогенной смеси // Письма в ЖТФ, 1980, т.6, Вып. 5, с. 299-301.

24. Горбачев Ю.Е., Круглов В.Ю. Расчет параметров течения двухфазной смеси при обтекании сферы с учетом столкновений частиц примеси между собой // Изв. АН СССР, МЖГ, 1989, № 4, с. 93-96.

25. Гришин A.M., Забарин В.И. Трение и теплообмен в двухфазном пограничном слое на пластине // ПМТФ, 1988, 1988, № 4, с. 78-86.

26. Давыдов Ю.М., Нигматулин Р.И. Расчет внешнего обтекания затупленных тел гетерогенным потоком газа с каплями или частицами // Докл. АН СССР, 1981, т. 259, № 1, с. 57-60.

27. Дрейк Р., Беккер Дж. Теплопередача от шара к разреженному газу в сверхзвуковом потоке // Вопросы ракетной техники. М.: Изд. иностр. ли-ры, 1953, вып. 2(14), с. 54-69.

28. Демидович Б.П., Марон И.А., Шувалова Э.З. Численные методы анализа. -М.: Физматлит, 1963.

29. ДеревичИ.В. Столкновения частиц в турбулентном потоке. Известия РАН, МЖГ, 1996, №2, с. 104.

30. ДеревичИ.В., Здор А.Г. Замкнутая модель флуктуационного движения частиц в турбулентном потоке. Принято к опубликованию в Известия РАН, МЖГ, 2008.

31. Зайчик Л.И. Оценка времени между столкновениями дисперсных частиц в турбулентном потоке // ТВТ, 1998, т. 36, №3, с. 456 460.

32. Зайчик Л.И., Алипченков В.М., Петров О.Ф. Кластеризация заряженных частиц в условиях изотропной турбулентности // ТВТ, 2004, т. 42, № 6, с. 908-916.

33. Зайчик Л.И., Алипченков В.М. Кластеризация малоинерционных частиц в изотропной турбулентности // ТВТ, 2007, т. 45, № 1, с. 66-76.

34. Зайчик Л.И., Алипченков В.М. Столкновения частиц в турбулентном потоке // Изв. РАН, МЖГ, 2007, № 3, с. 94-109.

35. Здор А.Г. Эволюция массового спектра капель за пластиной, движущейся в облаке. Труды XLVII научной конференции МФТИ, часть VI, М.: Издательство МФТИ, 2004.

36. Здор А.Г. Динамика конденсированной фазы при движении плоской пластины в облаке. Труды XLVIII научной конференции МФТИ, часть VI, М.: Издательство МФТИ, 2005.

37. Здор А.Г. Эволюция массового спектра капель за телом, быстро движущимся в облаке. Материалы VI Международной конференции по неравновеснымпроцессам в соплах и струях (NPNJ 2006), 26 июня-1июля 2006 г., Санкт-Петербург. — М.: Вузовская книга, 2006.

38. Здор А.Г. Численное моделирование граничных условий взаимодействия JIA с атмосферными аэрозолями. Труды XLIX научной конференции МФТИ, часть VI, М.: Издательство МФТИ, 2006.

39. Здор А.Г., Миллер А.Б., Стасенко A.JI. Трансформация массового спектра капель облака, пересекаемого высокоскоростным крылатым JIA. Материалы XXX академических чтений по космонавтике, М.: Комиссия РАН, 2006.

40. Здор А.Г. Влияние на массовый спектр капель граничных условий на поверхности аппарата, движущегося в полидисперсной атмосфере. Материалы XXXI академических чтений по космонавтике, М.: Комиссия РАН, 2007.

41. Здор А.Г. Численные исследования моделей кинетики дисперсной фазы при обтекании высокоскоростного ДА. Материалы XXXII академических чтений по космонавтике, М.: Комиссия РАН, 2008.

42. Здор А.Г. Математическая модель и методические численные исследования эволюции атмосферного аэрозоля за пластиной под углом атаки. Труды ЦАГИ, выпуск 2676, 2008.

43. Здор А.Г. Физическая модель и численные исследования эволюции полидисперсного конденсата в следе за плоской пластиной, обтекаемой сверхзвуковым потоком. Принято к опубликованию в Учёные записки ЦАГИ, 2008.

44. Зилитинкевич С.С. Динамика пограничного слоя атмосферы. Ленинград: Гидрометеоиздат, 1970.

45. Карлсон Д., Хогланд Д. Сопротивление и теплопередача частиц в соплах ракетных двигателей. Ракетная техника и космонавтика, 1964, тю2, № 11, с. 104109.

46. Кашеваров A.B., Стасенко А.Л. Управление массовым составом и прозрачностью контрейла авиалайнера при помощи инжекции ионов в струи двигателей. Ученые записки ЦАГИ. 2006, т. XXVI, №3-4.

47. Кейн Э. Коэффициент лобового сопротивления шара при сверхзвуковой скорости и малых числах Яе. Вопросы ракетной техники. — М.: Изд-во иностранной литературы, 1953, вып. 2 (14), с. 70-86.

48. Коган М.Н. Динамика разреженного газа. М.: Наука, 1968.

49. Колмогоров А.Н. Уравнения турбулентного движения несжимаемой жидкости // Изв. АН СССР, сер. физ., 1942, т. 6, № 1-2.

50. Кошмаров Ю.А., Рыжов Ю.А. Прикладная динамика разреженного газа. М.: Машиностроение, 1977.

51. Крайко А.Н. К двухжидкостной модели течений газа с диспергированными в нем частицами // ПММ, 1982, т.6. Вып. 1, с. 96-106.

52. Лайхтман Д.Л. Физика пограничного слоя атмосферы. Л.: Гидрометеоиздат, 1970.

53. Ландау Л.Д., Лифшиц Е.М. Теоретическая физика. Т. VI. Гидродинамика. -М.: «Наука», 1988.

54. ЛашковВ.А. Об экспериментальном определении коэффициентов восстановления скорости частиц потока газовзвеси при ударе о поверхность // ИФЖ. 1991, т.60, № 2, с. 197-203.

55. Лашков В.А. Аэродинамическое сопротивление цилиндра в двухфазном потоке // Изв. РАН, МЖГ. 1992, № 1, с. 123-129.

56. Лебедев П.Д., ЛеончикБ.И., Тыныбеков Е.К., МаякинВ.П., Лазарев В.Н. Исследование испарения капель в среде перегретого пара. ИФЖ, 1968, т. 16, № 4.

57. Левин Л.М. Исследования по физике грубодисперсных аэрозолей — М.: Изд-во АН СССР, 1961.

58. Леонтович М.А. Введение в термодинамику. Статистическая физика. М.: Наука, 1983.

59. Лойцянский Л.Г. Механика жидкости и газа. — М.: Наука, 1987.

60. Матвеев С.К. Модель газа из твердых частиц с учетом неупругих соударений //Изв. АН СССР, МЖГ. 1983, №6, с.12-16.

61. Матвеев С.К., Сеюкова Л.П. Обтекание сферы потоком газовзвеси // Динамика однородных и неоднородных сред. — Л.: Изд-во Ленингр. Ун-та, 1987. с. 16-23 («Газодинамика и теплообмен», Вып. 9).

62. Миллер А.Б., Моллесон Г.В., Стасенко A.JI. Механика и оптика сверхзвукового мелкодисперсного потока около освещаемой сферы // Учёные записки ЦАГИ, 2007, том XXXVIII, № 3-4, с. 92-101.

63. Монин A.C., Яглом A.M. Статистическая гидромеханика. Ч. 1. М.: Наука, 1965.

64. Найфэ А. Введение в методы возмущений. Пер. с англ. М.: Мир, 1984.

65. Нигматулин Р.И. Динамика многофазных сред. Т.1. М.: Наука, 1987.

66. Овсянников JI.B. Лекции по основам газовой динамики. М: Наука 1981.

67. Осипцов А.Н., Шапиро Е.Г. Влияние мелкодисперсной примеси на структуру пограничного слоя при гиперзвуковом обтекании затупленного тела // Изв. АН СССР, МЖГ, 1989, № 4, с. 85-92.

68. Осипцов А.Н., Шапиро Е.Г. Обтекание сферы запыленным газом с большой сверхзвуковой скоростью // Исследование газодинамики и теплообмена сложных течений однородных и многофазных сред / под ред. СтуловаВ.П. — М.: Изд-во Моск. Ун-та, 1990. с. 89-105.

69. Полежаев Ю.В. Проблемы теплообмена в запыленных потоках // Труды Второй Российской национальной конференции по теплообмену. Т. 1. Пленарные и общие проблемные доклады. Доклады на круглых столах. М.: Изд-во МЭИ, 1998. с. 64-69.

70. Полежаев Ю.В., Репин И.В., Михатулин Д.С. Теплообмен в сверхзвуковом гетерогенном потоке // ТВТ. 1992, т. 30, № 6, с. 1147-1153.

71. Резибуа П., Де Ленер М. Классическая кинетическая теория жидкостей и газов. Пер. с англ. М.: Мир, 1980.

72. Рёпке Г. Неравновесная статистическая механика. Пер. с нем. М.: Мир, 1990.

73. Салтанов Г.А. Неравновесные и нестационарные процессы в газодинамике. — М.: Наука, 1979.

74. Самарский A.A., Попов Ю.П. Разностные схемы газовой динамики. М.: Наука, 1975.

75. Сенковенко С.А., Стасенко А.Л. Релаксационные процессы в сверхзвуковых струях газа. -М.: Энергоатомиздат, 1985.

76. Стасенко A.JI. Газодисперсные течения в аэродинамике и летательной технике. Труды ЦАГИ, 1982, вып. 2133.

77. Стасенко А.Л. Модели динамики и теплообмена шаровых частиц в газодисперсных и капельных потоках// Труды ЦАГИ — 1983. Вып. 2220.

78. Стасенко А.Л. Модели дисперсных систем // Модели механики сплошной среды. Новосибирск: ИТПМ, 1983, с. 139-161.

79. Стасенко А.Л. Феноменология газодисперсных и парокапельных потоков с межфазным массообменом и лучистым переносом энергии. Труды ЦАГИ, 1994, вып. 2530, с. 3-27.

80. Стасенко А.Л. Проблемы авиационной экологии// Энергия, журн. Президиума РАН 1999. №7.

81. Стасенко А.Л., Толстых А.И., Широбоков Д.А. К моделированию оледенения самолёта: динамика капель и поверхность смачивания. РАН, Мат. моделирование, т. 13, №6, 2001.

82. Стасенко А.Л., Толстых А.И., Широбоков Д.А. Динамика деформируемых капель у поверхности крыла в вязком воздухе // Известия Академии наук, МЖГ, №5,2002, с. 180-190.

83. Стасенко А.Л., Здор А.Г., Миллер А.Б. Структура следа высотного летательного аппарата. Труды XLVI научной конференции МФТИ, часть VI, М.: Издательство МФТИ, 2003.

84. Стасенко А.Л. Физическая механика многофазных потоков. — М.: Издательство МФТИ, 2004.

85. Стернин Л.Е. Основы газодинамики двухфазных течений в соплах. М.: Машиностроение, 1974.

86. Стернин Л.Е., Маслов Б.Н., Шрайбер А.А., Подвысоцкий А.М. Двухфазные моно- и полидисперсные течения газа с частицами. М.: Машиностроение, 1980.

87. Стернин Л.Е., Шрайбер А.А. Многофазные течения газа с частицами. М.: Машиностроение 1994.

88. Фукс Н.А. Механика аэрозолей. М.: Изд-во АН СССР, 1955.

89. Хлопков Ю.И. Характеристики обтекания сферы в переходном режиме при сверх- и гиперзвуковых скоростях // Изв. АН СССР, МЖГ, 1981, № 3, с. 175-178.

90. ЦиркуновЮ.М. Влияние вязкого пограничного слоя на осаждение частиц при обтекании сферы газовзвесыо // Изв. АН СССР, МЖГ, 1982, № 1, с. 59-66.

91. Циркунов Ю.М., Тарасова Н.В. Влияние температуры преграды на осаждение тонкодисперсной примеси из сверхзвукового потока газовзвеси // ТВТ, 1992, №6, с. 1154-1162.

92. Циркунов Ю.М. Обтекание тел потоком газовзвеси. Докторская диссертация, С.-Пб., 2005.

93. Шафф С.А., Шамбре П.А. Течение разреженных газов // Основы газовой динамики. Изд-во иностранной литературы, 1963, с. 637-688.

94. Шидловский В.П. Введение в динамику разреженного газа. М.: Наука, 1965.

95. Яненко H.H., Солоухин Р.И., Папырин А.Н., Фомин В.Н. Сверхзвуковые двухфазные течения в условиях скоростной неравновесности частиц. -Новосибирск: Наука, 1980.

96. Aroesty J. Sphere drag in low-density supersonic flow // Raref. Gas Dynamics. — N.Y.-Lnd., Acad. Press, 1963, vol. 2, pp.261-277.

97. Coakley T.J. Turbulence modeling methods for the compressible Navier-Stokes equations // AIAA-83-1693.

98. Derevich I.V. Statistical modeling of particles relative motion in a turbulent gas flow // International Journal of Heat and Mass Transfer, No 49, 2006.

99. Derevich I.V. Coagulation kernel of particles in a turbulent gas flow // International Journal of Heat and Mass Transfer, No 50, 2007.

100. Henderson C.B. Drag coefficients of spheres in continuum and rarified flows. AIAA J., 1976, vol. 14, No 6, pp. 707-708.

101. Herner S.E. Fluid-dynamic drag. Published by the author, 1958.

102. Kavanau L.L. Heat transfer from spheres in a rarefied gas in subsonic flow // Trans. ASME. 1955, vol. 77, No 5, pp. 617-623.

103. Kogan M.N. Kinetic theory in aerothermodynamics. Prog. Aerospace Sei., Vol. 29, pp. 27-354, 1992. Printed in GB, Pergamon Press Ltd, 1993.

104. Mei R. An approximate expression for the shear lift force on a spherical particle on finite Reynolds number//Int. J. Multiphase Flow Vol. 18, No l,pp. 145-147, 1992.

105. Millikan R. A. The general law of fall of a small spherical body through a gas, and its bearing upon the nature of molecular reflection from surfaces// Phys. Rev. 1923. V. 22, No 1.

106. Nauman A. Luftwiederstand von Kugeln bei hohen Unterschallgeschwindigkeiten. Algem. Wärmetechnik, 1953, vol. 1, S. 217-221.

107. Osiptsov A.N. Mathematical modeling of dusty-gas boundary layers // Appl. Mech. Rev. 1997. vol. 50. No 6, pp. 357-370.

108. Pao Y.H. Structure of turbulent velocity and scalar fields at large wave numbers // Physics of Fluids, 1965, V.8, P. 1063-1075.

109. Sawford B.L. Reynolds number effects in Lagrangian stochastic models of turbulent dispersion// Phys. Fluids A 1991 - V. 3, No 6.

110. Sherman F.S. A survey of experimental results and methods for the transition regime of rarefied gas dynamics // Raref. Gas Dynamics. N.Y.-Lnd.: Acad. Press, 1963, vol. 2, pp. 228-260.

111. Sims W.H. Experimental sphere drag results in the near free molecular regime // Raref. Gas Dynamics. N.Y.-Lnd.: Acad. Press, 1969, vol. 1, pp. 751-756.

112. Stokes G.G. On the effect of internal friction of fluids on the motion of pendulums. Trans. Cambr. Phil., vol. 9, No 8.; Math. And Phys. Papers, Cambridge, 1901, vol. 3, pp. 1-141.

113. Corrsin S. Estimates of the relations between Eulerian and Lagrangian scales in large Reynolds number turbulens // J. Atmos. Sei., 1963, V. 5, No 2, pp. 115-119.