Кооперативные эффекты нелинейной динамики активных многоэлементных систем тема автореферата и диссертации по физике, 01.04.03 ВАК РФ

Казанцев, Виктор Борисович АВТОР
доктора физико-математических наук УЧЕНАЯ СТЕПЕНЬ
Нижний Новгород МЕСТО ЗАЩИТЫ
2005 ГОД ЗАЩИТЫ
   
01.04.03 КОД ВАК РФ
Диссертация по физике на тему «Кооперативные эффекты нелинейной динамики активных многоэлементных систем»
 
Автореферат диссертации на тему "Кооперативные эффекты нелинейной динамики активных многоэлементных систем"

На правах рукописи

КАЗАНЦЕВ Виктор Борисович

КООПЕРАТИВНЫЕ ЭФФЕКТЫ НЕЛИНЕЙНОЙ ДИНАМИКИ ' АКТИВНЫХ МНОГОЭЛЕМЕНТНЫХ СИСТЕМ:

СТРУКТУРЫ, ВОЛНЫ, ХАОС, УПРАВЛЕНИЕ

01.04.03 - радиофизика

Автореферат

на соискание ученой степени доктора физико-математических наук

Нижний Новгород - 2005

Работа выполнена в Институте прикладной физики РАН

Официальные оппоненты

член-корреспондент РАН Д.И. Трубецков доктор физико-математических наук А.Ю. Лоскутов доктор физико-математических наук А.М. Фейгин

Ведущая организация - Институт радиотехники и электроники РАН

Защита состоится 24 октября 2005 года в 14:00 часов на заседании диссертационного совета Д 002. 069. 02 в Институте прикладной физики РАН по адресу: 603950, Нижний Новгород, ГСП-120, ул. Ульянова, д. 46, к. 5663.

С диссертацией можно < ~ ~ ИПФ РАН.

Автореферат разослан

Ученый секретарь диссертационного совета д.ф.-м.н.

Ю.В. Чугунов

14%г>%

ЯШМ

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы исследования

Исследование коллективной динамики систем, состоящих из большого числа взаимодействующих нелинейных элементов, является одной из актуальных задач современной радиофизики, возникающих при описании явлений и процессов в самых различных ее областях. Примеры таких систем можно найти как на "микроуровне" - решетки взаимодействующих атомов в физике строения вещества и электронике, так и при макроскопическом описании кооперативных процессов в многоэлементных лазерных системах, сетях фазовой синхронизации, сетевых радиотехнических системах, нейронных ансамблях и др. Эффекты коллективной динамики многоэлементных систем определяются, с одной стороны, динамическими свойствами составляющих систему элементов, с другой - свойствами и архитектурой межэлементных взаимодействий. Наибольший интерес вызывает способность таких систем к самоорганизации - формированию упорядоченных пространственно-временных структур активности без специфического воздействия извне. Фундаментальной проблемой здесь является выявление динамических механизмов возникновения структур, возможность предсказывать их эволюцию. С прикладной точки зрения на основе эффектов кооперативной динамики многоэлементных систем разрабатываются информационно-вычислительные устройства, способные осуществлять параллельное преобразование больших потоков информации, системы синхронизации лазерных систем для получения больших мощностей, системы фазовой синхронизации для управления процессами передачи данных и др. Необходимо также отметить, что многоэлементные системы, при наличии упорядоченной в пространстве архитектуры (цепочка, решетка и т.д.), можно трактовать как дискретные аналоги неравновесных сред, изучение колебательно-волновых процессов в которых является ключевой задачей радиофизики. В широком классе таких систем можно выделить так называемые системы "реакция-диффузия", являющиеся активными нелинейными распределенными системами. Такие модели описывают, в частности, динамику неравновесных химических реакций (реакция Белоусова-Жаботинского, фотополимеризация и др.), процессы в биологических тканях (волны в сердечной мышце), процессы горения, процессы в атмосфере и др.

Последние несколько десятилетий возрастающий интерес исследователей привлекают явления и процессы в нейроноподобных многоэлементных системах. Такие системы моделируют динамику нейронных ансамблей, представляющих собой сети взаимодействующих активных нелинейных элементов - нейронов (нервных клеток). В отличие от формальных нейронных сетей (персептронного типа), широко изучаемых в последние годы, элементы реальных нейросистем

динамикой, которая наряду со сложной архитектурой межэлементных взаимодействий определяет функциональное поведение системы в целом. Именно динамические эффекты кооперативной динамики играют определяющую роль в деятельности различных систем мозга. Исследования в области моделирования динамических процессов в нейросистемах, интенсивно развивающиеся в ведущих мировых научных центрах, привели к созданию новой обширной области приложений нелинейной динамики сложных систем - нейродинамики. Задача изучения коллективных процессов в нейросистемах обладает очевидными сложностями как вследствие сложного устройства самого объекта исследования, так и отсутствием универсальных подходов к его изучению. Наиболее перспективным выглядит радиофизический подход, направленный на исследование колебательно-волновых явлений и процессов в таких системах, которому и посвящена данная работа. Этот подход основывается на построении и исследовании физических моделей с использованием основных достижений современной теории колебаний и волн в нелинейных системах. Общность колебательно-волновых явлений в системах самой различной физической природы позволяет использовать для исследования базовые закономерности динамики нелинейных систем, установленные ранее для другого сорта моделей. Здесь важен также и прикладной аспект, связанный с разработкой на основе исследуемых физических моделей прототипов устройств, имитирующих функции реальных нейронных систем (нейрокомпьютеры, нейроимитирующие системы обработки информации, системы автоматического управления, системы диагностики и протезирования в медицине и др.).

Многоэлементные системы, в том числе и нейродинамического типа, представляют собой нелинейные динамические системы высокой размерности. С теоретической точки зрения принципиально важным представляется изучение структуры фазового пространства систем и построение бифуркационных множеств, отвечающих переходам между различными режимами их функционирования. Методология исследования, проводимого в данной работе, основывается как на классических методах исследования автоколебаний, восходящих к работам A.A. Андронова, так и современных результатах (построение поглощающих областей, локализация инвариантных многообразий, исследование гомо- и гетероклинических структур в фазовом пространстве), развитых в работах B.C. Афраймовича, В.И. Некор-кина, Ю.И. Неймарка, П.С. Ланды, В.Н. Белых, Л.П. Шильникова и др.

Работы по исследованию различных эффектов кооперативной динамики ансамблей активных нелинейных элементов на протяжении последних десятилетий интенсивно проводятся в ведущих научных центрах как у нас в стране, так и за рубежом. Среди них можно отметить группы в Московском государственном университете (П.С. Ланда, А.Ю. Лоскутов), Институте прикладной математики им. М.В. Келдыша (Г.Г. Малинецкий, А.Б. Потапов), ИПФ РАН (В.И. Некоркин, В.Г. Яхно), Нижегородском государствен-

1 J. !.Д*И>ЧГ ' | ^

i' • *r«>»;. -Hi.« <

г»* *Г- •

ном университете (В.Д. Шалфеев и др.), Саратовском государственном университете (Д.И. Трубецков, B.C. Анищенко, Б.П. Безручко, С.П. Кузнецов, А.П. Кузнецов), ИРЭ РАН (A.C. Дмитриев), ФИАН им. П.Н. Лебедева (Е.И. Волков), Институте математических проблем биологии РАН, Пущино (P.M. Борисюк) и др. Среди зарубежных научных центров отметим в США Калифорнийский университет, Сан-Диего, (Г.Д.И. Абарбанель, М.И. Рабинович), Массачусетский технологический институт, MIT (Дж. Айерс), Нью-Йоркский университет (Р.Ллинас, В.И. Макаренко), Бостонский университет (Н. Копел), во Франции Бургундский университет (Ж.М. Бильбо), в Испании Мадридский университет (М.Г. Веларде), университет Катании в Италии (П. Арена, JL Фортуна), Университет Потсдама в Германии (А. Пи-ковский, Ю. Курте), Технологический институт Стокгольма в Швеции (О. Экеберг) и др. Наиболее известными и хорошо изученными феноменами кооперативной динамики многоэлементных систем, играющими важную роль и в нейросистемах, являются синхронизация колебаний (регулярных и хаотических) автогенераторных систем, формирование структур (паттернов), регуляризация и хаотизация колебаний в ансамблях, распространение волн возбуждения, автоволновые структуры и др.

В силу чрезвычайной разнообразности многоэлементных систем как по структурному строению, так и по функциональным свойствам здесь остается неисследованным целый ряд ключевых вопросов и проблем. Для получения адекватного описания эффектов коллективной динамики конкретных нейросистем необходимо, прежде всего, получить и исследовать адекватную модель элемента ансамбля. Использование наиболее точных моделей, построенных на основе биохимических закономерностей, сильно ограничено, поскольку ведет к усложнению модели элемента за счет большого числа переменных и параметров, требующих точной настройки. В этом случае даже на уровне отдельных элементов не всегда удается проследить механизмы возникновения динамических режимов, оценить области их существования и устойчивости. С другой стороны, сильно упрощенные модели не способны адекватно описать наблюдаемые эффекты. В этой связи возникает потребность в разработке моделей, учитывающих лишь определенные черты динамики реальных нейронов, существенные для описания конкретных динамических феноменов. Примером такой задачи является моделирование динамики нейронов с подпороговыми колебаниями с помощью системы связанных автогенераторов, проводимое в данной работе. Формируемые многоэлементными системами структуры активности можно условно разделить на два типа: спонтанные структуры, образованные за счет процессов самоорганизации без специфического воздействия извне, и вынужденные (стимул-индуцированные) процессы. При исследовании спонтанных структур активности основным вопросом остаются динамические механизмы их формирования, требования к динамике элемента и архитектуре связей. В частности, одним из интересных эффектов является возникнове-

ние самоподдерживающихся структур активности в системах, элементы который не обладают автоколебательной активностью. Невыясненным до конца вопросом остается роль архитектуры связей, в частности, нелокальных взаимодействий в формировании структур. Широко обсуждается также проблема так называемой "синаптической пластичности" - динамического изменения характеристик межэлементного взаимодействия в процессе собственной эволюции ансамбля или за счет внешних стимулов. Механизмы формирования структур в системах с динамическими связями остаются неисследованными. Еще более сложным вопросом является динамика многоэлементных систем в присутствии внешних стимулов. На уровне отдельных элементов эта задача сводится к отклику активной нелинейной системы на приходящие импульсные информационные последовательности. Преобразование и обработка информации активными нелинейными системами в нейродинамике связана с проблемой временного нейронного кода. Мало изученным остается вопрос о формировании структур активнйсти под воздействием стимулов в многоэлементных системах. Эта задача представляется еще более сложной, поскольку связана с исследованием неавтономной динамики нелинейных систем высокой размерности. Механизмы динамического формирования структур заданной конфигурации в пространстве и во времени, процессы переключения между различными динамическими режимами остаются практически неисследованными. При исследовании нелинейных волновых процессов в многоэлементных системах особый интерес вызывают самоподдерживающиеся автоволновые структуры - импульсы возбуждения, волновые фронты, спиральные волновые паттерны и др. Изучались, как правило, основные закономерности формирования таких волн в системах с простой архитектурой (цепочки и решетки активных элементов). Малоизученными остаются волновые явления в системах со сложной, многослойной архитектурой, которой, как известно, обладают реальные нейронные системы. Также много вопросов о формировании волновых структур остается в системах, элементы которых обладают сложной (хаотической) динамикой.

Цель работы

Целью данной работы является развитие теории кооперативных процессов в нелинейных многоэлементных системах и конкретных ее приложений к задачам нейродинамики с позиций радиофизического рассмотрения на основе общего колебательно-волнового подхода. Приоритетными фундаментальными задачами являются:

- разработка и исследование базовых моделей элементов систем для моделирования конкретных динамических феноменов в многоэлементных системах;

- изучение процессов преобразования импульсных информационных сигналов активными нелинейными системами;

- исследование явлений спонтанного возникновения регулярных и хаотических колебаний в ансамблях за счет межэлементных взаимодействий;

- исследование динамических механизмов формирования стационарных (статических, колебательных, волновых) структур активности и эффектов их преобразования в многослойных многоэлементных системах;

- исследование влияния дискретной архитектуры многоэлементных систем на процессы распространения нелинейных волн (фронтов, импульсов возбуждения, спиральных волн);

- разработка многоэлементных систем, способных формировать структуры активности с заданными динамическими (информационными) характеристиками.

Научная новизна работы заключается в следующем.

На основе изучения закономерностей генерации электрических потенциалов нейронами предложены феноменологические модели нейронопо-добных элементов, обладающие широким спектром динамических режимов. Разработана модель нейрона с подпороговыми колебаниями и мульти-пороговой генерацией импульсов, воспроизводящая ключевые черты динамики нейронов нижних олив. Предложена модель автогенератора со сложно-пороговым возбуждением, позволяющая осуществлять динамическое преобразование импульсных последовательностей. Модели реализованы в виде радиотехнических аналоговых схем - прототипов нейрочипов. Проведенный бифуркационный анализ моделей является основой к их использованию в качестве единиц многоэлементных систем с требуемыми динамическими характеристиками.

Обнаружен и исследован эффект фазовой автопереустановки, позволяющий эффективно управлять фазой колебаний в ансамблях релаксационных элементов автогенераторного типа. В частности, становится возможным осуществлять фазовую синхронизацию колебаний больших ансамблей автогенераторных систем.

Исследованы динамические механизмы возникновения регулярных и хаотических колебаний во взаимодействующих системах, элементы которых не обладают собственной колебательной активностью. В двух связанных моностабильных отображениях с тривиальной собственной динамикой получены условия возникновения хаотического аттрактора. В многоэлементных системах с цепочечной архитектурой обнаружены и исследованы фрактальные структуры активности, возникающие вследствие сложной нелинейно-волновой динамики.

В многоэлементных системах, состоящих из бистабильных элементов, исследованы процессы формирования стационарных пространственных структур активности. Такие структуры являются эволюционными и реализуются с определенного класса начальных условий. Обнаружен и исследован эффект динамического копирования пространственных структур в системах с многослойной архитектурой.

В многоэлементных системах, состоящих из возбудимых элементов со сложно-пороговой динамикой, изучены процессы распространения уединенных бегущих волн - импульсов возбуждения и волновых фронтов. Исследованы гомо- и гетероклинические орбиты, определяющие, соответственно, профили таких волн. Построены бифуркационные кривые, определяющие зависимость скорости волн от параметров. Обнаружены и исследованы эффекты солитоноподобного поведения волн при столкновении друг с другом и границами системы. Изучены явления взаимодействия волновых движений в системах с многослойной архитектурой, приводящие, в частно-•сти, к циркуляции волновых возбуждений, подавлению и локализации возбуждения, образования спирально-волноьой турбулентности. Исследовано влияние дискретного характера систем на распространение волн.

Разработана система, позволяющая формировать заданные структуры -

колебательной активности - фазовые кластеры. Система моделирует структуру и функции оливо-мозжечковой нейронной системы, осуществляющей формирование моторных паттернов и контроль мышечных сокращений. На основе построенной модели предложен прототип системы управления мно- •

гопараметрическими объектами с помощью параллельного преобразования и настройки фазовых кластеров требуемой конфигурации.

Практическая значимость работы

Разработанные модели многоэлементных систем на основе эффектов их кооперативной динамики могут быть использованы при разработке нового поколения информационно-вычислительных устройств, способных осуществлять параллельное преобразование больших потоков информации с использованием динамических принципов. В работе предложены варианты реализации моделей в виде аналоговых радиотехнических устройств. В частности, разработана система динамического выделения контура объекта на основе эффекта динамического копирования, исследованы процессы динамического преобразования импульсных сигналов, с помощью которых можно осуществлять эффективное мультиплексирование и демультиплексирование информации. В работе предложен прототип устройства динамического управления многопараметрическими объектами. Результаты работы позволяют дать практические рекомендации по выбору параметров моделей для существования и устойчивости требуемых динамических режимов. Фундаментальные результаты работы используются при чтении спецкурсов по динамике многоэлементных систем для студентов старших >

курсов, обучающихся по специальности радиофизика и электроника на радиофизическом факультете ННГУ им. Н.И. Лобачевского. Разработаны и внедрены две лабораторные работы для студентов старших курсов, включающие исследование динамики нелинейных волн в компьютерном моделировании и изучение колебаний автогенератора с подпороговыми колебаниями в физическом эксперименте.

Апробация результатов работы

Основные результаты диссертации докладывались на следующих российских и международных конференциях: Int. Symposium on Nonlinear Theory and its-Applications (NOLTA) (Las Vegas, USA, 1995; Grans-Montana, Switzerland 1998); конференциях Int. Specialist Workshop Nonlinear Dynamics of Electronic Systems (NDES) (Севилья, Испания, 1996; Москва, 1997; Делфт, Голландия, 2001; Измир, Турция, 2002; Скоул, Швейцария, 2003; Эвора, Португалия, 2004); Conference on Control of Oscillations and Chaos (Санкт-Петербург, 1997); Conference on Contemporary Problems in Theory of Dynamical Systems (Нижний Новгород, 1996); Int. Workshop on transmission and signal processing in nonlinear electronics and optics (Дижон, Франция, 1998); международная школа-семинар "Дни нелинейной динамики в Нижнем Новгороде-98" (Нижний Новгород, 1998); International Workshop on Synchronization, Pattern Formation and Spatio-Temporal Chaos in Coupled Chaotic Oscillators (Santiago de Compostela, Испания, 1998); International School on Chaotic Oscillations and Pattern Formation (CHAOS 98, CHAOS 01) (Саратов 1998, 2001); международная конференция, посвященная 100-летию со дня рождения А. А. Андронова (Нижний Новгород, 2001); Int. Conference Dynamics Days Europe (Heidelberg, Germany, 2002); школы no нелинейным волнам (Нижний Новгород, 2002, 2004); научные конференци-ии по радиофизике (Нижний Новгород, 1996, 1997, 2003); Int. Symp. 'Topical Problems of Nonlinear Wave Physics" (Нижний Новгород, 2003, 2005); VII международная школа "Хаотические автоколебания и образование структур - 2004" (Саратов, 2004); International Conference on Brain Inspired Cognitive Systems (Стерлинг, Великобритания, 2004), а также на семинарах ИПФ РАН, кафедры теории колебаний радиофизического факультета ННГУ, междисциплинарного института университета Комплутенсе (Мадрид, Испания), лаборатории электроники Бургундского университета (Дижон, Франция), департамента нейрофизиологии школы медицины Нью-Йоркского университета (Нью-Йорк, США).

По теме диссертации опубликовано 57 научных работ, включая 35 статей в рецензируемых российских и зарубежных изданиях, 20 статей в трудах конференций, 2 методических пособия для лабораторных работ.

Достоверность научных выводов подтверждается согласованностью результатов аналитического исследования, компьютерного моделирования и физического эксперимента с аналоговыми радиотехническими моделями. Кроме того, для нейроноподобных моделей результаты исследований согласуются с экспериментальными данными исследования реальных нейронных систем. Все эффекты, изучаемые в работе, рассматриваются с точки зрения их существования и устойчивости, что позволяет говорить об их практической реализуемости.

Личный вклад автора

В совместных работах автор принимал непосредственное участие в выборе направлений исследований и постановке основных задач, получении теоретических результатов и постановке физических экспериментов. Все расчеты, связанные с компьютерным моделированием исследуемых систем, выполнены лично автором на основе разработанного им комплекса программ для моделирования динамики многоэлементных систем. Аналитические результаты получены на паритетных началах с соавторами работ. Участие в физических экспериментах заключалось в формулировке основных задач, выборе оптимальных вариантов реализации эксперимента, обсуждении и сравнении результатов с теоретическим исследованием и компьютерным моделированием.

Автор выражает особую благодарность своему учителю доктору физико-математических наук, профессору Владимиру Исааковичу Некоркину, в соавторстве с которым получена большая часть научных результатов.

Основные результаты и положения, выносимые на защиту

1) Разработанные феноменологические модели нейроноподобных элементов (модель с подпороговыми колебаниями и модель со сложно-пороговым возбуждением) адекватно описывают ключевые черты динамики колебательных нейронов с мультипороговой генерацией импульсов. Модели представляют собой автогенераторные системы и, в зависимости от параметров, могут быть настроены на описание конкретного динамического феномена (импульсы возбуждения на пиках подпороговых колебаний, регулярные и хаотические спайк-берст колебания, мультипороговая генерация импульсов и др.) на основе проведенного в работе бифуркационного анализа.

2) Активные нелинейные системы способны осуществлять динамическое преобразование импульсных последовательностей, кодирование и декодирование информации по числу импульсов в серии, интервалу следования импульсов и относительной фазе импульсов. Свойства сигнала отклика на импульсный сигнал определяются выбранным динамическим режимом элемента. Отклик обладает интегрирующими, резонансными и фазово-управляемыми свойствами, включающими селекцию по числу импульсов в серии, частоте следования и фазовую автопереустановку.

3) Многоэлементные системы, элементы которых обладают биста-бильностью (триггер, бистабильный осциллятор, кубическое отображение, генератор Чуа), формируют стационарные пространственные структуры. Параметры, отвечающие формированию структур, выделяются методом поглощающих областей. При соответствующем выборе начальных условий любое /Ух/У бинарное изображение может быть закодировано в решетке в виде пространственной структуры.

4) В многослойных многоэлементных системах бистабильных элементов происходит межслойная синхронизация пространственных структур при достаточно сильном межслойном взаимодействии. Такие системы способны осуществлять динамическое копирование образов (регулярных пространственных структур). В основе эффекта лежит механизм конкуренции состояний бистабильных элементов. За счет динамического копирования многослойные бистабильные решетки могут быть использованы для выделения контура заданного изображения.

5) Многоэлементные системы, состоящие из нейроноподобных элементов с возбудимыми свойствами (элемент ФитцХью-Нагумо, модель со сложно-пороговыми возбуждением, генератор Чуа), имеют широкий спектр стационарных волновых решений, включающий бегущие импульсы возбуждения, фронты переключения, спиральные волны возбудимого и колебательного типов. Эти решения ассоциируются с гомо- и гетероклиническими орбитами в сосредоточенных нелинейных системах, описывающих профили бегущих волн. Бифуркационные множества, отвечающие таким орбитам, имеют сложный характер и позволяют получить при выбранных параметрах нелинейные волновые режимы с заданными характеристиками (профиль волны и ее скорость).

6) В многоэлементных системах со сложно-пороговым возбуждением уединенные волны (бегущие импульсы и волновые фронты) демонстрируют, в отличие от классических автоволн в возбудимых средах, солитоноподобное поведение. При столкновении волн между собой и границами системы происходит их взаимное переотражение за счет свойств мультипороговой генерации элемента системы. Такие свойства, а также возникновение волновых неустойчивостей, ведут к формированию в системе сложных, в том числе фрактальных, пространственно-временных структур импульсной активности.

7) Межслойное взаимодействие нелинейных волн (бегущие импульсы, волновые фронты, спиральные волны) приводит к эффектам межслойной циркуляции волн, взаимному подавлению волновых возмущений, локализации волнового возмущения в пространстве, контролируемому изменению характеристик распространения волны (изменению скорости и направления движения в зависимости от коэффициента взаимодействия). Локальное межслойное взаимодействие (пин-контакты) способно изменить глобальную волновую динамику (формирование генераторов синхронизованных импульсов, подавление и инициирование возбуждения).

8) Ансамбль нейроноподобных элементов с подпороговыми колебаниями и импульсно-управляемым межэлементным взаимодействием способен эффективно формировать и поддерживать структуры импульсной активности любой заданной пространственной конфигурации. Изменение конфигурации структуры (переключение) происходит сравнительно быстро за счет короткого импульсного стимула на временах порядка одного, двух периодов подпороговых колебаний. Система использует эффекты фазового

управления подпороговыми колебаниями и динамическое блокирование межэлементных связей. Модель основывается на динамике оливо-мозжечковой нейронной системы формирования моторных паттернов.

Структура и объем диссертации

Диссертация содержит 362 страницы, включая 203 рисунка, 57 научных публикаций (из них 35 статей в реферируемых изданиях) по теме диссертации, 187 наименований цитируемой литературы.

КРАТКОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении проведен краткий обзор литературы по динамике многоэлементных систем, приведен обзор колебательно-волновых феноменов, наблюдаемых в нейронных системах, как примера активных нелинейных систем с многоэлементной структурой, сформулированы основные проблемы исследования, изложена цель работы и ее научная новизна, прикладной аспект исследований и научно-практическая значимость.

В первой главе описаны основные модели базовых элементов, используемые при построении многоэлементных систем. Представлена краткая характеристика известных моделей (бистабильная ячейка, бистабильный осциллятор, модель ФитцХью-Нагумо, осциллятор Чуа, кубическое отображение). Более подробно исследуются две новых модели, используемые в качестве базовых элементов в последующих главах: модель со сложно-пороговым возбуждением и модель с подпороговыми колебаниями. Элемент первого типа представляет собой модификацию известных уравнений ФитцХью-Нагумо за счет введения кусочно-линейной функции в уравнение для восстанавливающей переменной: и = /(И)-У, у = Е(ё(и)-у-1),

где / - нелинейная функция кубического вида, параметр I характеризует порог возбуждения элемента, параметр е>0 характеризует временной масштаб импульса возбуждения. Перемен-Переменная и характеризует потенциал клеточной мембраны, V -восстанавливающая переменная.

Функция 2 имеет вид $(и)=аи при и<О и ри при и>0. Система (1) в возбудимом режиме имеет три состояния равновесия (устойчивый узел или фокус, седло, неустойчивый узел или фокус) (рис. 1). Принципиальным моментом, отличающим систему (1) от классической модели 12

(1)

Рис. 1. Фазовый портрет модели со сложно-пороговым возбуждением.

вход (стимуп)

(1)

Подпороговые кшебания

ВЫХОД, и(1)

I Импульс

1 * > 1возбуждены

ФитцХью-Нагумо, является наличие порогового многообразия, отвечающего сепаратрисе седлового состояния равновесия Это позволяет, в частности, получить в модели режимы сложно-порогового возбуждения, при которых пороговая сепаратриса Ж? совершает один или несколько оборотов вокруг состояний равновесия на фазовой плоскости. Режим возникновения автоколебаний в системе (1) происходит через бифуркацию петли сепаратрис (ИО1—► И^"). В главе представлен подробный бифуркационный анализ модели, результатом которого является бифуркационная диаграмма. На этой диаграмме выделяются области параметров, соответствующие различным динамическим режимам и их бифуркационные границы, определяющие сценарии изменения режимов функционирования модели.

Вторая модель, предлагаемая в работе, представляет собой систему из двух и более взаимодействующих "блоков", каждый из которых определяет различные динамические функции. Так, например, при взаимодействии осцилляторной (например, генератор Ван дер Поля) и возбудимой подсистем (модель ФитцХью-Нагумо) модель демонстрирует возбудимый режим с подпорого-выми колебаниями (рис. 2). При этом импульсы возбуждения возникают строго на пиках квазисинусоидальных подпороговых колебаний, следовательно имеют определенную частоту следования. Другими словами, моменты возникновения импульсов однозначно определяются фазой подпороговых колебаний. При включении в систему дополнительных возбудимых блоков с различными значениями порога возбуждения возможно получение режимов мультипороговой генерации. Система с подпороговыми колебаниями является феноменологической (функциональной) моделью нейронов нижних олив и качественно воспроизводит экспериментально наблюдаемые режимы генерации колебаний.

Для каждой из рассматриваемых в работе моделей приводится аналоговая радиотехническая схема, используемая в физических экспериментах.

Вторая глава посвящена динамическим процессам преобразования сигналов активными нелинейными системами под воздействием импульсных стимулов. Исследуются эффекты интегрирующего и резонансного отклика на импульсные последовательности, формирование серий импульсов отклика, обсуждается проблема импульсного кодирования и декодирования информации. В качестве основной модели используется модель со сложно-пороговым возбуждением (1) с неавтономным импульсным воздействием.

Рис. 2. Блок-диаграмма модели с подпороговыми колебаниями.

Рассматривается внешний сигнал в виде периодической последовательности прямоугольных импульсов, поступающих на "вход" системы в моменты времени ?„ = птр, п = 0, 1, 2,... В этом случае, предполагая импульсы достаточно короткими, а изменение "быстрой" переменной и - мгновенным, динамика отклика системы определяется двумерным нелинейным точечным отображением вида:

ип+1=и(тр,ишуп)+ир; vn+l=v(тp,un,vn), (2)

где величина ир определяет амплитуду входного воздействия. Условием отклика на л-ый импульс в последовательности является уп-]У(ип)<0, где - функция, определяющая форму пороговой сепаратрисы V/' на фазовой плоскости автономной системы (рис. 1). В случае интегрирующих свойств (отклик определяется числом входных импульсов) отображение (2) сводится к одномерному и записывается аналитически. Для резонансного случая (отклик определяется характерной частотой следования импульсов) отображение (2) рассчитывается численно. Исследуя расположение его неподвижных точек относительно порога возбуждения и их бифуркации, рассчитываются области параметров, соответствующие различным режимам отклика. Наиболее интересный случай реализуется в режиме сложно-порогового возбуждения в окрестности бифуркации петли сепаратрис, вовлекающей пороговую сепаратрису. При воздействии одиночным импульсом модель генерирует отклик в виде серии импульсов (берета). Число импульсов в серии и межимпульсные интервалы фиксированы и определяются конкретным соотношением параметров системы (1). Комбинируя интегро-резонансные свойства модели и берет-отклики, можно получить динамическое преобразование, М->Ы, числа импульсов в последовательности. Этот эффект, в частности, может служить основой кодирования сенсорной информации в нейронных системах по "интенсивности" входного сигнала.

Далее в главе изучаются фазовые характеристики импульсного отклика релаксационных систем с колебательной активностью. Базовой моделью является классическая система ФитцХью-Нагумо под воздействием импульсного стимула. Модель рассматривается в окрестности бифуркации Андронова-Хопфа, в результате которой на фазовой плоскости мягко рождается устойчивый предельный цикл. При этом глобальная динамика системы остается релаксационной. Обнаружен эффект фазовой автопереустановки. Он заключается в том, что при воздействии

Рис. 3. Фазовая автопереустановка в модели ФитцХью-Нагумо.

на систему коротким одиночным импульсом фаза колебаний переустанавливается к любому наперед заданному значению, не зависящему от начальной фазы, а определяемому только параметрами стимула (амплитудой и длительностью) (рис. 3). Рассчитываются основные динамические характеристики фазовой автопереустановки, изучается динамический механизм эффекта. Показано, что в его основе лежит сильное сжатие (коллапс) фазового объема системы в результате релаксационной динамики. Одним из возможных приложений эффекта является стимул-индуцированная фазовая синхронизация больших ансамблей автогенераторных систем. При одновременном воздействии на элементы одиночным импульсом, их фазы могут быть синхронизованы без непосредственного межэлементного взаимодействия. Отметим также, что время переходного процесса при фазовой переустановке достаточно мало (1-2 периода подпороговых колебаний), что позволяет эффективно и быстро синхронизовать ансамбль. Эффект фазовой переустановки был обнаружен физиологами в нейронах нижних олив. На основе теоретических результатов было разработана радиотехническая схема генератора, и эффект фазовой автопереустановки был подтвержден в физическом эксперименте. Для описания эффекта автопереустановки было получено отображение фазы колебаний, относящееся к классу отображений окружности. Режим автопереустановки соответствует существованию единственной неподвижной точки с мультипликатором, близким к нулю. При воздействии на систему серией импульсов были исследованы регулярные и хаотические фазовые последовательности.

Третья глава посвящена изучению кооперативных эффектов в малых ансамблях активных нелинейных элементов, состоящих, в простейшем случае, из двух взаимодействующих единиц. Базовые модели систем строятся на основе возбудимой модели ФитцХью-Нагумо и элемента со сложно-пороговым возбуждением (1). Рассматривается динамика импульсов возбуждения в двух связанных элементах со сложно-пороговым возбуждением (1) в'конфигурации "ведущий-ведомый". При этом ведущий элемент находится в режиме периодической генерации импульсов возбуждения (спай-ков), а ведомый - в возбудимом режиме. При увеличении величины связи выше некоторого критического значения ведомый элемент начинает генерировать импульсные последовательности отклика. Целью исследования является описание этих последовательностей и изучение бифуркационных механизмов их возникновения. Показано, что моменты возникновения импульсов формируют, так называемые, "фазовые последовательности". Момент возникновения импульса однозначно определяется относительной фазой, где в качестве опорного генератора выступает ведущий элемент. В этом случае, фазовые последовательности можно описать с помощью одномерного отображения фазы:

фп+1=П(ф„) (3)

определенного на полупрямой [0,+оо) функцией фазового отклика П(ф). Здесь величина ф„ определяется разностью моментов возникновения вынуждающего импульса и ближайшего следующего импульса отклика. Заметим, что в этом случае фаза фп, фактически, определяет две характеристики последовательности отклика: относительную фазу импульса ведомого элемента, фп, той 2п и число "пропусков" импульсов в последовательности отклика, zn=[фn]■ Изучены основные динамические режимы отображения фазы. Установлено, что последовательность импульсов отклика может быть синхронизована с сигналом ведущего элемента с различным соотношением частот возникновения импульсов. Обнаружены интервалы хаотической динамики. Переход к хаосу осуществляется через два основных сценария: перемежаемости и каскада бифуркаций удвоения периода в отображении фазы. Отличительной особенностью динамики модели является возникновение пересечений интегральных многообразий седлового периодического движения в трехмерном неавтономном фазовом пространстве, приводящее в хаотической динамике импульсов отклика. При исследовании динамики целочисленной переменной гл установлено, что импульсные последовательности отклика можно ассоциировать с числовыми последовательностями \zni- Индекс п=1,2,3,... отвечает номеру импульса отклика. Отметим, что определенной величине коэффициента связи соответствует определенная последовательность. Другими словами, эти последовательности можно трактовать как некоторый "информационный код", управляемый величиной взаимодействия.

Исследована динамика двух взаимодействующих моностабильных отображений. Каждое из отображений возникает при описании динамики элемента со сложно-пороговым возбуждением (1) в возбудимом режиме (рис. 1) на секущей Пуанкаре и имеет тривиальную динамику. При включении взаимодействия в фазовом пространстве системы формируется хаотический аттрактор, все траектории которого имеют гиперболический (седловой) тип. Колебания элементов в этом случае представляют собой взаимно синхронизованную хаотическую последовательность серий импульсов ("беретов"). Импульсы возбуждения внутри каждого из беретов происходят в противо-фазе.

Далее исследуется динамика двух взаимодействующих элементов с подпороговыми колебаниями и импульсно-управляемой связью. В качестве блока, задающего подпороговые колебания, используется модель ФитцХью-Нагумо, генерирующая в окрестности бифуркации Андронова -Хопфа квазисинусоидальные колебания. Модель описывает динамику двух взаимодействующих нейронов нижних олив с подавляющей обратной связью. Коэффициент связи в этом случае задает сопротивление гэп-контакта, а взаимодействие между элементами является электрическим или резистив-ным. При отсутствии импульсов возбуждения элементы связаны резистив-

Рис. 4. Блок-схема модели с импульс-но-управляемой связью.

но, что ведет к синхронизации подпороговых колебаний. При вЬз-никновении импульса возбуждения, на период времени г, происходит блокирование или разрыв межэлементной связи (рис. 4). На длительности г динамика системы определяется автономной эволюцией элементов, что приводит к десинхронизации колебаний за счет разности частот. Далее, связь восстанавливается, и элементы снова стремятся быть синхронизованными. Обнаружены и исследованы следующие динамические режимы: (i) режим синхронизации ймпульсов при достаточно малом времени разрыва связи, (ii) режим асинхронных колебаний, если длительность разрыва связи превышает период подпороговых колебаний, (iii) режим временного связывания (в англ. time binding), при котором синхронизация импульсов происходит лишь на некоторых временных интервалах. Эти режимы были также обнаружены в физическом эксперименте с использованием аналоговой радиотехнической реализации модели.

В четвертой главе изучается динамика решеток бистабильных элементов. Исследуется следующая многомерная система:

¿м =/(«,,*)+ £>(«;♦,.» +uHt +ujM + Ну., -4им), (4)

где пара (j,k) задает точку пространственной решетки,/£=7,2.....N, a D>0 -

параметр, характеризующий связь между элементами решетки, функция Ди) - кубического вида. Система (4) рассматривается граничными условиями Неймана:

M0.t =MU."y,0 = Uj,VUj,N+l = U],N>UN4,k =una- (5)

С использованием метода поглощающих областей установлено, что при D<D*, где D* - некоторое критическое значение, в //-мерном фазовом пространстве системы (4) существует 2"' устойчивых состояний равновесия. Каждое из этих состояний в пространстве решетки (j,k, и) определяет существование стационарной пространственной структуры некоторой пространственной конфигурации. Каждая такая структура может быть "закодирована" матрицей [ajk] с произвольным набором символов Owl. Следовательно, профили структур могут быть чрезвычайно разнообразными - от регулярных распределений, до пространственно беспорядочных (хаотических). Заметим, что переменные решетки локализованы в пределах некоторых поглощающих областей в окрестности невозмущенных состояний 0 и 1. Пространственные структуры являются эволюционными, то есть реализу-

ются с определенного класса начальных условий. Заметим, что с точки зрения нейронных систем бистабильная решетка (4) представляет собой некоторое усредненное (например, по интенсивности колебаний нейронов) описание активности нейронных ансамблей. Эффект формирования пространственных структур был рассмотрен для трех различных реализаций базового элемента: (О бистабильная ячейка - триггер; (п) бистабильный осциллятор; (¡11) осциллятор Чуа. В случае бистабильного осциллятора базовая система (4) описывает распределение амплитуд синфазных колебаний. В этом случае пространственные структуры представляют собой структуры синхронной колебательной активности с неоднородным амплитудным распределением. При выборе параметров осциллятора Чуа в бистабильном режиме базовая бистабильная система определяет лишь условия существования пространственных структур. Задача их локальной устойчивости решается с помощью критерия Гершгорина локализации собственных значений линеаризованной системы - решетки осцилляторов Чуа.

Далее в главе рассматривается вопрос о формировании пространственных структур в решетке кубических отображений (аналог системы (4) с дискретным временем). Для доказательства также используется метод поглощающих областей, с помощью которого удается выделить область параметров, отвечающую высокой мультистабильности решетки - существованию 2"' устойчивых неподвижных точек. Каждая из этих точек определяет существование устойчивой пространственной структуры. Отличительной особенностью эффекта формирования структур в решетках отображений является возможность колебательных процессов внутри поглощающих областей. Это происходит вследствие особенности локальной динамики кубического отображения, неподвижные точки которого при изменении параметров теряют свою устойчивость.

В пятой главе рассматривается взаимодействие пространственных структур в решетках с многослойной архитектурой. Уравнения для двухслойной бистабильной решетки имеют вид:

йм = /(им) + £>(Ди)м '"¡Л (б)

У!* = /(У^+О^!* ~"м)>

где матрица * характеризует межслойное взаимодействие. Для трех типов базовых элементов (бистабильная ячейка, бистабильный осциллятор, осциллятор Чуа) доказано, что при Л* в системе (6) происходит полная взаимная синхронизация движений между слоями. Для параметров, отвечающих существованию в каждом слое решетки пространственных структур (глава 4), в системе (6) происходит взаимная синхронизация пространственных структур.

Эффект синхронизации пространственных структур лежит в основе феномена динамического копирования. Суть его заключается в следующем. Пусть в первом слое решетки сформирована некоторая регулярная

структура. Это, например, может быть структура, отвечающая некоторому двухуровневому изображению (фотографии). При этом элементы остальных слоев находятся в пространственно-беспорядочном состоянии. Тогда, при включении межслойного взаимодействия, в результате синхронизации структур в каждом из слоев решетки формируются тождественные пространственные структуры, повторяющие (копирующие) исходный образ (рис. 5). Показано, что в основе эффекта динамического копирования лежит механизм конкуренции состояний бистабильных элементов при достаточно сильном межслойном взаимодействии. Изучены основные динамические и информационные характеристики эффекта копирования для двухслойных и трехслойных бистабильных систем (функция качества копирования, разрешающая способность). Заметим, что эффект динамического копирования может быть интересен для информационных систем выделения контура объекта, поскольку искажения копии структуры по отношению к оригиналу происходят по контуру исходного образа.

Далее в главе рассматривается межслойная динамика двух взаимодействующих решеток кубических отображений (аналог системы (6) с дискретным временем). Выделена область параметров, отвечающая межслой-ной синхронизации пространственных структур Подобно решеткам с непрерывным временем в этой системе также обнаружен эффект динамического копирования образа и выделения контура. Отличительной особенностью многослойной решетки отображений является наличие верхней границы области синхронизации. При переходе через нее многообразие синхронизации становится трансверсапьно неустойчивым. При этом у неподвижных точек, отвечающих в фазовом пространстве стационарным структурам, появляются мультипликаторы, расположенные за пределами единичной окружности. Изучаются структура и свойства вне-диагональных аттракторов, возникающих при разрушении синхронизованных пространственных структур. Показано, в частности, что динамика системы развивается по сценарию, так называемой, "он-офф" перемежаемости. Отметим, что, несмотря на разрушение режима синхронизации, установившиеся распределения характеризуются кластерной структурой. В частности, сохраняется бистабильное распределение элементов между кластерами, отвечающее

20 40 60 80 100 120

20 40 60 80 100 120

20 40 60 80 100 120

Рис. 5. Динамическое копирование в двухслойной бистабшьной решетке.

заданному изображению. Временное же поведение элементов может быть хаотическим.

В шестой главе изучается распространение нелинейных волн и формирование волновых структур в бистабильных и возбудимых многоэлементных системах. Проводится исследование динамики волновых фронтов в цепочке бистабильных элементов, которая является дискретным аналогом уравнения Хаксли-Нагумо. Такие фронты можно трактовать как фронты переключения между различными уровнями "интенсивности" колебаний нейронов. Описание справедливо при сравнительно малых скоростях распространения волн по отношению к собственному временному масштабу локальных колебаний. Получены условия провала распространения фронтов за счет высокой мультистабильности пространственных структур. Для цепочки возбудимых элементов (дискретный аналог уравнения ФитцХью-Нагумо для возбудимой среды) выделена область параметров, отвечающая провалу распространения возбуждения. Она связана с наличием у элемента конечного порога возбуждения.

В цепочке элементов со сложно-пороговым возбуждением изучается динамика бегущих импульсов и волновых фронтов. Исследуется динамическая система третьего порядка, определяющая профили возможных волновых решений. Рассчитано бифуркационное множество, отвечающее существованию в этой системе гомо- и гетероклинических траекторий, описывающих профили уединенных импульсов и фронтов, соответственно. Это множество определяет зависимость скорости волн от параметров системы и существенно отличается от случая классической модели ФитцХью-Нагумо. Бифуркационные кривые для гомо- и гетероклинических бифуркаций имеют форму спиралей, скручивающихся к общему центру. Эта точка соответствует существованию в фазовом пространстве гетероклинического контура коразмерности 2. В окрестности этого контура существует счетное множество волновых движений, которые при определенных параметрах все становятся неустойчивыми. Установлено, что в этом случае в цепочке формируются фрактальные пространственно-временные структуры импульсной активности (рис. 6). Изучены основные характеристики этих структур - фрактальная размерность и вероятность обнаружения заданного межимпульсного интервала в последо-

1000

200 400 600 800 1000

гремя

Рис. 6. Фрактальная пространственно-временная структура импульсной активности в цепочке элементов со сложно-пороговым возбуждением

вательностях, генерируемых элементами системы. Она имеет два выраженных максимума, соответствующие двум доминантным временным масштабам развития волновых неустойчивостей.

Исследуются эффекты взаимодействия импульсов и волновых фронтов при столкновении друг с другом и с границами системы. Установлено, что в зависимости от параметров импульсы возбуждения, в отличие от классических автоволн, могут вести себя подобно солитонам, отражаясь, при столкновении друг с другом и границами цепочки. Кроме того, при взаимодействии могут генерироваться серии дополнительных импульсов, формирующие волновые составы. Исследован динамический механизм этого эффекта. Показано, что в его основе лежит сложное (осцилляторное) поведение пороговой сепаратрисы локального элемента (1) в окрестности бифуркации петли сепаратрис. Столкновение волн приводит к тому, что в точке столкновения генерируется серия импульсов (глава 2). Исследованы основные закономерности взаимодействия волновых фронтов. Показано, в частности, что их столкновение также может обладать "упругими" свойствами. Другими словами, при столкновении фронты разворачиваются (инвертируются), кинк переходит в анти-кинк и наоборот. Изучена динамика бегущих волн в цепочке осцилляторов Чуа. Исследовались гомо- и гетероклиниче-ские бифуркации в нелинейной системе 4-го порядка. Кроме однообходных гомо- и гетероклинических орбит, рассчитаны бифуркационные кривые для орбит более высокой обходности, определяющих существование в цепочке многогорбых импульсов и осциллирующих волновых фронтов сложной формы. В этой модели также установлено наличие у импульсов и фронтов солитоноподобных свойств, связанных со сложной формой порогового многообразия. Это многообразие для осциллятора Чуа является двумерным.

Далее исследуется динамика спиральных волн в двумерной квадратной решетке элементов ФитцХью-Нагумо. Такая решетка представляет собой дискретной аналог двумерной возбудимой среды. Основное внимание уделяется мелкомасштабным процессам, для которых влияние пространственной архитектуры системы является наиболее существенным. Получена область параметров, отвечающая провалу распространения спиральных волн вследствие дискретности. Разработана локальная модель передачи и подавления возбуждения между элементами, с помощью которой удается достаточно хорошо аппроксимировать зависимости, полученные в прямом моделировании многомерной системы.

В двумерной решетке диффузионно-связанных осцилляторов Чуа обнаружен эффект мультистабильности спиральных волн возбудимого и колебательного типов. Показано, что механизм образования спиральной волны колебательного типа связан с метастабильным поведением элемента Чуа -длительными колебаниями в окрестности бифуркации двукратного предельного цикла. За счет таких колебаний диффузионное взаимодействие "успевает" обеспечить глобальную фазовую когерентность колебаний эле-

ментов решетки, необходимую для поддержания спиральной волны в изначально "неосциллирующей среде".

Седьмая глава посвящена эффектам взаимодействия волн в системах с многослойной архитектурой (взаимодействующие цепочки и решетки). Изучается динамика волновых фронтов (кинков и антикинков) в двух связанных цепочках бистабильных элементов с однородным межслойным взаимодействием. Предполагается, что до включения взаимодействия в первой цепочки распространяется волновой фронт, а вторая находится в пространственно однородном состоянии. Обнаружены и исследованы следующие эффекты. При достаточно большом коэффициенте межслойного взаимодействия происходит взаимная синхронизация движений между слоями. В зависимости от параметров происходит либо возбуждение второй цепочки и возникновение фронта, синхронизованного с исходным, либо подавление волнового фронта и установление пространственно однородного состояния, одинакового для обеих цепочек. При уменьшении коэффициента межслойного взаимодействия синхронизации цепочек не происходит, однако возможны нетривиальные режимы изменения характеристик исходного фронта. В частности, за счет взаимодействия скорость волнового фронта можно увеличивать и уменьшать. При определенных условиях возможен эффект локализации (остановки фронта) и его инвертирования - изменения направления распространения. Получены оценки областей параметров, соответствующих реализации этих эффектов. Проведен физический эксперимент с двумя взаимодействующими электрическими линиями, подтверждающий существование полученных теоретически эффектов взаимодействия.

Исследуется динамика волновых фронтов в цепочках, взаимодействующих лишь в одном пространственном узле (пин-контакте). Здесь получены эффекты возбуждения через пин-контакт пары волновых фронтов в изначально невозбужденной цепочке и локализации (остановки) фронта на пин-контакте. С помощью построения эффективных потенциалов для элементов, составляющих пин-контакт, получены оценки на области параметров, соответствующие наблюдаемым эффектам.

Во взаимодействующих цепочках с возбудимыми свойствами (модель ФитцХью-Нагумо, осциллятор Чуа) исследуются эффекты взаимопроникновения возбуждения между слоями (цепочками). Установлено, в частности, что межслойное взаимодействие может привести как к подавлению возбуждения, так и к его циркуляции между цепочками. При взаимодействии цепочек через один или несколько пин-контактов в системе возможно формирование пространственно-распределенного генератора синхронизованных импульсов. При этом, интервал следования импульсов легко управляется изменением геометрического расположения пин-контактов. В режиме отражения импульсов (цепочка осцилляторов Чуа) за счет введение в систему пин-контактов возможен эффект мультипликативного увеличения

1=0

1=65

числа бегущих импульсов и перехода системы в режим сложной волновой динамики.

Далее исследуется динамика спиральных волн в двух связанных решетках элементов ФитцХью-Нагумо. Обнаружен эффект синхронизации решеток и формирования синхронизованных спиральных волн при достаточно большом коэффициенте межслойного взаимодействия. При слабом взаимодействии с помощью локальной модели передачи и подавления возбуждения изучаются эффекты циркуляции спиральной волны между слоями и ее подавления. Подавление спиральной волны происходит за счет взаимной аннигиляции исходной волны и вторичной волны, возбуждаемой за счет взаимодействия. Установлено, что дискретная архитектура модели приводит к разрушению спиральных волн вторичным возбуждением и формированию сложных волновых паттернов - спирально-волновой турбулентности (рис. 7). Этот эффект определяется анизотропией системы за счет архитектуры межэлементных взаимодействий.

Во взаимодействующих решетках осцилляторов Чуа, обладающих мультистабильностью спиральных волн, получены эффекты переходов спиральных волн от возбудимого типа к колебательному и обратно за счет межслойного взаимодействия.

Восьмая глава посвящена формированию в многоэлементных системах структур активности заданного профиля. Описываются два основных принципа формирования таких структур. В первом случае рассматривается ансамбль автогенераторных элементов, объединенных в систему с помощью глобальной межэлементной связи. При этом взаимодействие характеризуется определенной матрицей весовых коэффициентов. Каждый из элементов ансамбля является автогенератором (генератор Ван дер Поля в мягком режиме возбуждения, модель нейрона с подпороговыми колебаниями). При достаточно малых частотных расстройках и слабых связях динамика амплитуд колебаний генераторов определяется только их внутренними свойствами, а динамика фаз - только слабым взаимодействием между ними.

1-400

Рис. 7. Образование сложных волновых паттернов за счет межслойного взаимодействия.

Для формирования структур матрица взаимодействия выбирается в соответствие с правилом Хебба. В этом случае, фазы элементов формируют две группы (в противофазе друг с другом) - фазовые кластеры, конфигурация которых однозначно соответствует некоторому заданному бинарному вектору. Это распределение отвечает глобальному минимуму потенциальной функции градиентной системы уравнений для фазовых переменных модели.

Второй принцип формирования колебательных структур основывается на динамике оливо-мозжечковой нейронной системы, формирующей моторные паттерны. Рассматривается ансамбль элементов с подпороговыми колебаниями (глава 1) и импульсно-управляемым межэлементным взаимодействием (глава 3). Динамика модели описывается следующей системой уравнений:

' Л

¿V, к

(7)

йШ)

>* -

Л(Ь)

УД = 1,2.....N

Переменные (г,™) описывают динамику колебательной подсистемы элемента ("Са-подсистема" с параметрами 1Са, еСа), переменные (и,у) - возбудимой подсистемы ("Ыа - подсистема" с параметрами 1цю %а), коэффициент к вводится для согласования характерных временных масштабов подсистем. На каждый элемент ансамбля одновременно подается одиночный импульс фиксированной длительности, амплитуда которого различна для каждого из элементов ансамбля и выбирается согласно предлагаемому стимулу:

А, + (А-А0)¥" ¥пт, при/„</</„ +т„

У^тшх Фтш

О, прибег,,,

(8)

где {\ffjjJ - МхМ действительная матрица, отвечающая, например, некоторому NxN изображению, где цвет пиксела кодируется определенным действительным числом. Предполагается, что элементы матрицы стимула распределены в некотором диапазоне значений {Щ,к1е[у/тш, Утах1 Этот интервал отображается в интервал амплитуд стимулирующего импульса А„е[А0,А1]. Последний, в свою очередь, определяет диапазон фаз [фтш, Фтах/> на который будет переустановлены фазы подпороговых колебаний осцилляторов за счет эффекта фазовой автопереустановки (глава 2). Однако фаза колебаний может изменяться за счет любых возмущений или шумов.

Для поддержания требуемых фазовых соотношений предлагается использовать механизм импульсно управляемых связей (глава 3). Его действие (рис. 4) описыва-

ется

слагаемым

1

Рис. 8. Формирование фазовых кластеров заданной конфигурации на основе фазовой автопереустановки

о

200

400

600

800

0(Арг)1к в системе (7). Введение импульсной обратной связи позволяет поддерживать установленные фазовые соотношения за счет механизма син-

хронизации элементов внутри данного кластера и фазовые сдвиги между кластерами. Процесс формирования фазовых кластеров иллюстрирует рис. 8. На основе разработанной модели оливо-мозжечковой системы в работе предлагается принцип построения системы многопараметрического управления за счет формирования фазовых кластеров заданной конфигурации.

В заключении приведены краткие выводы и сформулированы основные результаты.

ОСНОВНЫЕ РЕЗУЛЬТАТЫ ДИССЕРТАЦИОННОЙ РАБОТЫ

1. Разработана модель возбудимого элемента со сложно-пороговым возбуждением. Модель построена на основе классических уравнений ФитцХью-Нагумо, описывающих процессы генерации электрических потенциалов в клеточной мембране. Порог возбуждения описывается входящей сепаратрисой седлового состояния равновесия, которая в зависимости от параметров может иметь сложный осцилляторный харак-

2. Предложена динамическая модель нейронов с подпороговыми колебаниями. Модель представляет собой систему взаимодействующих блоков - динамических систем с возбудимыми и колебательными свойствами. Колебания модели демонстрируют хорошее качественное соответствие с экспериментальными данными для нейронов нижних олив.

3. Исследован эффект преобразования импульсных сигналов в модели со сложно-пороговым возбуждением. Получены условия интегро-резонансного отклика на серии импульсов. Обнаружен эффект берет-отклика - формирование серии определенного числа импульсов.

тер.

4. Исследован эффект формирования хаотических колебаний в системе двух взаимодействующих моностабильных отображений. Модель описывает динамику двух связанных нейроноподобных систем.

5. Обнаружен эффект формирования регулярных и хаотических последовательностей импульсов в модели двух взаимодействующих элементов со сложно-пороговым возбуждением. Такие последовательности характеризуются фазой (моментом) возникновения импульса относительно опорного генератора. Получено отображение фазы импульса, кодирующее фазовые последовательности.

6. В модели релаксационного генератора обнаружен и исследован эффект фазовой автопереустановки. Он заключается в том, что при воздействии коротким импульсом на автогенератор, фаза его колебаний переустанавливается к значению, не зависящему от начальной фазы и определяемому только параметрами самого импульса. Эффект позволяет управлять фазой колебаний с помощью внешнего стимула. Эффект автопереустановки наблюдался нейрофизиологами экспериментально при исследовании нейронов нижних олив.

7. Разработана модель импульсного управления межэлементными связями в системе взаимодействующих возбудимых элементов с подпороговы-ми колебаниями. Импульс возбуждения, возникающий на пиках подпо-роговых колебаний элементов, на определенных интервалах подавляет межэлементное взаимодействие и приводит к десинхронизации элементов. При отсутствии импульсов элементы синхронизуются за счет разностной (диффузионной) связи. Модель позволяет эффективно управлять процессами синхронизации и десинхронизации импульсов и осуществлять их "временное связывание".

8. В бистабильных многоэлементных системах (решетках триггерных элементов, решетках бистабильных осцилляторов, решетках кубических отображений, решетках генераторов Чуа) исследован эффект формирования стационарных пространственных структур. С использованием метода поглощающих областей получены условия на параметры моделей, при которых они имеют г*1 аттракторов (Ы2 - число элементов решетки), отвечающих пространственным структурам. При соответствующем выборе начальных условий любое ЛЫМ бинарное изображение может быть закодировано в решетке в виде пространственной структуры.

9. В бистабильных решетках с многослойной архитектурой обнаружен и исследован эффект межслойной синхронизации движений. Этот эффект лежит в основе явления динамического копирования образов. Если первый (входной) слой системы содержит пространственную структуру, отвечающую некоторому бинарному изображению, а элементы остальных слоев распределены беспорядочно, то за счет межслойной синхронизации в слоях системы формируются тождественные пространствен-

ные структуры, профиль которых является достаточно точной копией исходного стимула. В основе эффекта лежит механизм конкуренции состояний бистабильных элементов. За счет динамического копирования многослойные бистабильные решетки могут быть использованы для выделения контура заданного изображения.

10. В ансамбле элементов со сложно-пороговым возбуждением обнаружены фрактальные пространственно-временные структуры импульсной (спайковой) активности, формируемые без специфического воздействия извне. В основе эффекта лежит существование и неустойчивость большого числа волновых решений, отвечающих гомо- и гетероклиниче-ским траекториям трехмерной нелинейной системы, описывающей профили бегущих волн. В фазовом пространстве этой системы обнаружен гетероклинический контур коразмерности 2.

11. Обнаружен и исследован эффект солитоноподобного поведения импульсов и волновых фронтов в цепочках возбудимых элементов (элемент со сложно-пороговым возбуждением и генератор Чуа). При столкновении бегущих импульсов возбуждения между собой и границами системы происходит их взаимное переотражение в отличие от классических автоволн в возбудимых системах. В основе эффекта лежит сложно-пороговая динамика базовых элементов систем. В частности, такие элементы способны генерировать вторичные импульсы возбуждения при взаимном подавлении импульсов при столкновении. При взаимодействии волновых фронтов (кинка и анти-кинка) происходит инвертирование фронта в точке столкновения,

12. В многослойных многоэлементных системах с цепочечной архитектурой исследованы процессы межслойного взаимодействия волн. Обнаружено, что за счет такого взаимодействия в бистабильных системах происходит модуляция скорости волнового фронта (кинка или анти-кинка), его разворот или остановка. При локальном межслойном взаимодействии (пин-контакты) бегущий волновой фронт может быть остановлен (локализован) в точке контакта. В основе эффекта лежит механизм конкуренции состояний бистабильной системы.

' 13. При межслойном взаимодействии импульсов возбуждения обнаружены

эффекты циклического возбуждения слоев системы и формирования импульсных последовательностей с заданными характеристиками. По-I лучены также условия подавления возбуждения за счет межслойного

взаимодействия.

14. Исследована динамика спиральных волн возбуждения в двух связанных решетках возбудимых элементов. Обнаружены эффекты межслойной циркуляции спиральных волн, подавления волн и возникновения сложных волновых структур. Изучено влияние дискретной архитектуры системы на распространение волн, масштабы которых сравнимы с собственными пространственными масштабами решетки. Установлено, что

определяющую роль в формировании сложных волновых структур играет анизотропная архитектура межэлементных взаимодействий. Для описания полученных эффектов была разработана локальная модель межэлементной передачи и подавления возбуждения.

15. Предложен метод формирования колебательных структур активности (фазовых кластеров) заданной пространственной конфигурации согласно заданному стимулу в многоэлементных системах с центральным осциллятором. Заданное распределение фазовых кластеров устанавливается за счет эффекта фазовой автопереустановки и поддерживается с помощью импульсно-управляемых межэлементных связей. Эффект основан на динамике формирования моторных паттернов в оливо-мозжечковой нейронной системе.

СПИСОК РАБОТ ПО ТЕМЕ ДИССЕРТАЦИИ

1 Nekorkin V.I., Kazantsev V.B. Spatio-temporal dynamics of a one-dimensional array of Chua's circuits // Procs of Int Symposium on Nonlinear Theory and its Applications (NOLTA 95), Las Vegas, USA, 1995. P. 591594.

2 Некоркин В.И., Макаров B.A., Казанцев В.Б. Пространственный беспорядок в решетках связанных бистабильных систем // Вестник Нижегородского ун-та. Нелинейная динамика - синхронизация и хаос/ Под ред. М.И. Рабиновича. Н.Новгород: Изд-во ННГУ. 1996. С. 61-76.

3 Nekorkin V.I., Kazantsev V.B., Chua L.O. Chaotic attractors and waves in a one-dimensional array of modified Chua's circuits // Int. J. Bifurcation and Chaos. 1996. Vol.6, N. 7, P. 1295-1317.

4 Казанцев В.Б, Пространственный беспорядок, структуры и волны в цепочках взаимосвязанных осцилляторов Чуа // Труды научной конференции по радиофизике / Ред. А.В. Якимов. Н.Новгород, 1996. С. 13.

5 Nekorkin УЛ., Makarov V.A., Kazantsev V.B., Velarde M.G. Ordered and spatially chaotic patterns in lattice electronic systems // Proc. Fourth Int. Workshop on Nonlinear Dynamics of Electronic Systems (NDES), Seville, Spain, 1996. P. 207-212.

6 Nekorkin УЛ., Kazantsev V.B., Velarde M.G. Travelling waves in a circular array of Chua's circuits // Int. J. Bifurcation and Chaos. 1996. Vol. 6, N. 3, P. 473-484.

7 Nekorkin V.I., Kazantsev V.B., Velarde M.G. Mutual synchronization of two lattices of bistable elements // Phys. Lett. A. 1997. Vol. 236, P. 505-512.

8 Velarde M.G., Nekorkin V.I., Kazantsev V.B., Ross J. The emergence of form by replication//Proc. Nat. Acad. Sci. USA. 1997. Vol. 94, P. 5024-5027.

9 Kazantsev V.B., Nekorkin V.I., Velarde M.G. Pulses, fronts and chaotic wave trains in a one-dimensional Chua's lattice // Int. J. Bifurcation and Chaos. 1997. Vol. 7, N. 8, P. 1775-1790.

10 Некоркин В.И., Казанцев В Б., Веларде МГ. Динамическое копирование в многослойных бистабильных решетках // Известия вузов. Прикладная Нелинейная Динамика, 1997, т. 5, N 5, С. 56-68.

11 Казанцев В. Б. Pattern synchronization and replication of form in two coupled lattices of bistable elements // Труды научной конференции по радиофизике, посвященной 95-летию со дня рождения М.Т. Греховой / Ред. А.В. Якимов. Н.Новгород, 1997. С. 43-44.

12 Nekorkin V.I., Kazantsev V.B., Artyuhin D.V. Mutual synchronization of patterns and wave fronts in two coupled chains of Chua's circuits // Procs of the 1st International Conference on Control of Oscillation and Chaos / Eds. F. L. Chernonsko, A.L. Fradkov, 1997. V. 1. P. 54-57.

13 Nekorkin V.I., Kazantsev V.B., Velarde M.G. Patterns and waves ^interacting lattice bistable systems // Procs. of 5th Int. Spec. Workshop Nonlinear Dynamics of Electronic Systems (NDES), Moscow, Russia, 1997. P. 324329.

14 Nekorkin V.I., Makarov V.A., Kazantsev V.B., Velarde M.G.-Spatial disorder and pattern formation in lattices of coupled bistable systems // Physica D.

1997. V. 100. P. 330-342.

15 Nekorkin V.I., Kazantsev V.B., Rabinovich M.I., Velarde M.G. Controlled disordered patterns and information transfer between coupled neural lattices with oscillatory states //Phys. Rev. E. 1998. Vol. 57, N.3. P. 3344-3351.

16 Казанцев В.Б., Некоркин В И. Информационный транспорт в активных электронных волокнах. Часть I. Уединенные волны // Известия вузов. Прикладная Нелинейная Динамика. 1998. т. 6, N 3. С. 49-66.

17 Казанцев В.Б., Некоркин В. И Информационный транспорт в активных 1 электронных волокнах. Волокно-система "реакция-диффузия" // Известия вузов. Прикладная Нелинейная Динамика. 1998. т. 6, N 3. С. 67-73.

18 Nekorkin V.I., Kazantsev V.B., Velarde M.G., Chua L.O. Pattern interaction and spiral waves in a two-layer system of excitable units // Phys. Rev. E.

1998. Vol. 58, N.2. P. 1764-1773.

19 Казанцев В.Б., Некоркин В.И, Велардэ М.Г. Модель нейрона с осцилля-торной активностью ниже порога возбуждения // Изв. ВУЗов. Радиофизика. 1998. т. XLI, N 12. Р. 1623-1635.

20 Казанцев В.Б., Некоркин В.И., Артюхин Д.В. Динамика импульсов возбуждения в двух связанных нервных волокнах // Изв. ВУЗов. Радиофизика. 1998. т. XLI, N 12. Р. 1593-1603.

21 Nekorkin V.I., Kazantsev V.B., Velarde M.G. Replication of patterns and controlled spiral waves in coupled lattices of Chua's circuits // Procs. of Int. Symposium on Nonlinear Theory and its Applications (NOLTA 98), GransMontana, Switzerland, 1998. P. 315-316.

22 Nekorkin V.I., Kazantsev V.B., Artyuhin D.V., Velarde M.G. Wave propagation along interacting fiber-like lattices // Eur. Phys. J. B. 1999. V. 11, P. 677-685.

23 Nekorkin V.I., Kazantsev V.B., Velarde M.G. Image transfer in multi-layered assemblies of lattices of bistable oscillators // Phys. Rev. E. 1999. V. 59. P. 4515-4522.

24 Nekorkin V.I., Kazantsev V.B., Velarde M.G. Spike-burst and other oscillations in a system composed of two coupled, drastically different elements // Eur. Phys. J. B. 2000. V. 16. P. 147.

25 Kazantsev V.B., Nekorkin V.L, Artyuhin D.V., Velarde M.G. Synchronization, re-entry, and failure of spiral waves in a two-layer discrete excitable system // Phys. Rev. E. 2001. V. 63. P. 016212.

26 Nekorkin V.L, Kazantsev V.B., Morfu S., Bilbault J.-M., Marquie P. Theoretical and experimental study of two discrete coupled Nagumo chains // Phys. Rev. E. 2001. V. 64. P. 036602.

27 Казанцев В.Б., Некоркин В.И. Принципы контроля и координации движений на основе динамики нейронов головного мозга // Изв. ВУЗов "Прикладная нелинейная динамика". 2001. Т. 9, N 1. С. 38-48.

28 Kazantsev V.B. Selective communication and information processing by excitable systems // Phys Rev E. 2001. V. 64. P. 056210.

29 Nekorkin V.L, Kazantsev V.B., Velarde M.G. Synchronization in two-layer bistable coupled map lattices // Physica D. 2001. V. 151. P. 1-26.

30 Kazantsev V.B., Nekorkin V.I. Spiral waves in a two-layer excitable lattice // Procs. of Int. Workshop on Nonlinear Dynamics of Electronic Systems (NDES 2001), Delft, The Netherlands, 2001. P. 125-128.

31 Kazantsev V.B., Nekorkin V.I. A behavior-based model of inferior olive neuron // Procs. of Int. Conf. "Progress in Nonlinear Science", v. 3 "Nonlinear Oscillations, Control and Information". Nizhny Novgorod, Russia, 2002. P.68-73.

32 Mal'kova E.V., Kazantsev V.B. Integrate-and-Fire Neuron Model with a Thershold Manifold // Procs. of Int. Conf. 'Progress in Nonlinear Science", V. 3 "Nonlinear Oscillations, Control and Information". Nizhny Novgorod, Russia, 2002. P.213-218.

33 Nekorkin V.L, Kazantsev V.B. Autowaves and solitons in a three-component reaction-diffusion system// Int. J. Bifurcation and Chaos. 2002. V. 12, N 11. P. 2421-2434.

34 Velarde M.G., Nekorkin V.L, Kazantsev V.B., Makarenko V.A., Llinas R. Modeling Inferior Olive Dynamics // Neural Networks. 2002. V. 15, P. 5-10.

35 Казанцев В.Б., Некоркин В.И. Динамика колебательных нейронов. Информационные аспекты. В кн. "Нелинейные волны - 2002" / Отв. ред. А.В. Гапонов-Грехов, В.И. Некоркин. - Нижний Новгород: ИПФ РАН, 2003. С. 9-33.

36 Nekorkin V.I., Kazantsev V.B. Image processing in two-layer bistable lattices // Procs. Of the 10th Workshop on Nonlinear Dynamics of Electronic Systems (NDES), Izmir, Turkey, 2002. P. 4-29 - 4-32.

37 Kazantsev V.B., Nekorkin V.I. Signal transmission in the net of two coupled electronic fibers // Procs. Of the 10th Workshop on Nonlinear Dynamics of Electronic Systems (NDES), Izmir, Turkey, 2002. P. 4-9 - 4-13.

38 Kazantsev V.B., Nekorkin V.I., Makarenko V.I., Llinas R. Olivo-cerebellar cluster-based universal control system // Procs. Natl. Acad. Sci. USA. 2003. V. 100, N. 22. P. 13064-13068.

39 Binczak S., Kazantsev V.B., Nekorkin V.I., Bilbault J.M. Experimental study of bifurcations in modified FitzHugh-Nagumo cell // Electron. Lett. 2003. V. 39. p. 13.

40 Kazantsev V.B., Nekorkin V.I., Binczak S., Bilbaut J.M. Spiking patterns emerging from wave instabilities in a one-dimensional neural lattice // Phys. Rev. E. 2003. V.68. P. 017201.

41 Bilbault J.M., Binczak S., Kazantsev V.B., Nekorkin V.I. Experimental bifurcations in a modified FitzHugh-Nagumo cell // Procs. Of the. 11th Workshop on Nonlinear Dynamics of Electronic Systems (NDES), Schuls, Switzerland, 2003. P. 33-36.

42 Престунов В.А., Щапин Д.С., Казанцев В.Б., Некоркин В.И. Эффекты синхронизации и десинхронизации в системе двух динамических связанных автогенераторов // Труды научной конференции по радиофизике, посвященной 90-летию со дня рождения B.C. Троицкого / Ред. А.В. Якимов. - Нижний Новгород: TAJIAM, 2003. С. 120.

43 Клиньшов В.В., Казанцев В.Б., Некоркин В.И. Фазовые кластеры в сети генераторов Ван-дер-Поля // Труды научной конференции по радиофизике, посвященной 90-летию со дня рождения B.C. Троицкого / Ред. А.В. Якимов. - Нижний Новгород: TAJIAM, 2003. С.112.

44 Courbage М., Kazantsev V.B., Nekorkin V.I., Senneret M. Emergence of chaotic attractor and anti-synchronization for two coupled monostable neurons // Chaos. 2004. V. 12. P. 1148-1156.

45 Kazantsev V.B., Nekorkin V.I., Makarenko V.I., Llinas R. Self-referential phase reset based on inferior olive oscillator dynamics // Proc. Natl. Acad. Sci. USA. 2004. V. 101, N 52. P. 18183-18188.

46 Клиньшов В.В., Казанцев В.Б., Некоркин В.И. Фазовые кластеры в ансамбле генераторов Ван-дер-Поля // Изв. ВУЗов - Прикладная нелинейная динамика. 2004. Т. 12, N 6. Р. 129-143.

47 Казанцев В. Б. Динамическое преобразование импульсных сигналов в нейронных системах // Изв. ВУЗов ПНД Прикладная нелинейная динамика. 2004. Т. 12, N 6. Р. 118-128.

48 Jacquir S., Binczak S., Bilbault J.M., Kazantsev V.B., Nekorkin V.I. Unilateral coupling between two MFHN electronic neurons // Book of Abstracts of Brain Inspired Cognitive Systems 2004, University of Stirling, Scotland, UK, 2004. Paper BIS5.2. P. 22-23.

49 Казанцев В. Б. Интегро-резонансные свойства нейронов с подпорого-выми колебаниями // Материалы VII международной школы «Хаотиче-

ские автоколебания и образование структур - 2004". Саратов: Изд-во ГосУНЦ «Колледж», 2004. С.89-90.

50 Клиныиов В.В., Казанцев В.Б., Некоркин В.И. Синхронизация и десин-хронизация в системе генераторов с импульсно-управляемой связью // Материалы VII международной школы «Хаотические автоколебания и образование структур - 2004». Саратов: Изд-во ГосУНЦ «Колледж», 2004. С.47-48.

51 Дмитричев A.C., Щапин Д.С., Казанцев В.Б., Некоркин В.И. Сложная волновая динамика в ансамбле взаимосвязанных элементов ФитцХью-Нагумо и сепаратрисные контура // Материалы VII международной школы «Хаотические автоколебания и образование структур - 2004». Саратов: Изд-во ГосУНЦ «Колледж», 2004. С. 119-120.

52 Jacquir S., Binczak S., Bilbàult J.-M., Kazantsev V.B., Nekorkin V.l. Study of electronic master-slave MFHN neurons // Procs of NDES2004 (International ŒEE Workshop on Nonlinear Dynamics of Electronic Systems), Evora, Portugal, 2004. P. 182-185.

53 Kazantsev V.B., Nekorkin V.l., Binczak S., Jacquir S., Bilbault J.M. Spiking dynamics of interacting oscillatory neurons // Chaos. 2005. V. 15, P. 023103.

54 Казанцев В.Б., Некоркин В.И. Фазово-управляемые колебания в нейро-динамике // В кн. Нелинейные волны - 2004. - Нижний Новгород: ИПФ РАН, 2005, С. 345-361.

55 Некоркин В.И., Дмитричев A.C., Щапин Д.С., Казанцев В.Б. Динамика модели нейрона со сложно-пороговым возбуждением // Математическое моделирование. 2005. Т. 17, N 6, С. 75-91.

56 Папко В В., Казанцев В.Б., Некоркин В.И. Модель нейрона с подпо-роговыми колебаниями // Методические указания и описания к лабораторной работе. Н. Новгород, ННГУ. 2001,26 с.

57 Казанцев В. Б., Некоркин В.И, Горшков, К.А. Нелинейные волны в дискретных средах // Методические указания и описания к лабораторной работе. Н. Новгород, ННГУ, 2001. 20 с.

СОДЕРЖАНИЕ ДИССЕРТАЦИИ

Введение.

6

Глава 1. Модели базовых элементов многоэлементных систем

1.1. Бистабильные элементы...........................................................

1.1.1. Бистабильная ячейка.............................................................

1.1.2. Бистабильный осциллятор........................................:...........

1.2. Модели возбудимого типа.......................................................

1.2.1. Модель ФитцХью-Нагумо....................................................

1.2.2. Модель со сложно-пороговым возбуждением....................

1.2.2.1. Бифуркационный анализ модели.......................................

1.2.2.2. Бифуркационная диаграмма и фазовые портреты...........

27 27

27

28

29

30

31

32 44

1 -2.2.3. Динамические режимы модели со сложно-пороговым

возбуждением................................................................................................................................................................................................46

1 -2.2.4. Аналоговая реализация модели со сложно-пороговым

возбуждением................................................................................................................................................................................................50

1 2.3. Модель с подпороговыми колебаниями и мультипороговой

генерацией импульсов....................................................................................................................................................................52

1.2.3.1. Функциональная схема модели............................................................................................................53

1.2.3.2. Бифуркационный анализ модели........................................................................................................55

1.2.3.3. Генератор импульсов с подпороговыми колебаниями..................................59

1.2.3.4. Возбудимая модель с двухпороговой генерацией................................................61

1.2.3.6. Двухпороговая генерация при наличии внешнего стимула..................64

1.3. Базовые модели с хаотической динамикой..................................................................................65

1.4. Модели элементов с дискретным временем................................................................................67

1.4.1. Кубическое отображение......................................................................................................................................67

1.4.2. Дискретная модель элемента со сложно-пороговым возбуждением 68

Глава 2. Преобразование импульсных сигналов в активных нелинейных

системах................................................................................................................................................................................................................70

2.1. Интегрирующие и резонансные свойства возбудимых систем..................71

2.1.1. Модель импульсного стимула......................................................................................................................72

2.1.2. Интегрирующий отклик..........................................................................................................................................73

2.1.2. Резонансный отклик......................................................................................................................................................79

2.1.2.1. Линейное приближение......................................................................................................................................80

2.1.2.2. Нелинейный резонансный отклик....................................................................................................83

2.1.2.3. Отклик на подавляющее воздействие........................................................................................85

2.1.3. "Берет-отклики"....................................................................................................................................................................86

2.1.4. Временные характеристики отклика..................................................................................................89

2.2. Управление фазой колебаний..............................................................................................................................91

2.2.1. Фазовая переустановка в модели ФитцХью-Нагумо..............................................93

2.2.1.1. Автопереустановка фазы..................................................................................................................................94

2.2.1.2. Динамический механизм фазовой автопереустановки..................................97

2.2.1.3. Стимул-индуцированная синхронизация многоэлементных систем........................................................................................................................................................................................................................99

2.2.1.4. Описание фазовой автопереустановки. Отображение фазы................101

2.2.2. Фазовые последовательности........................................................................................................................102

Глава 3. Эффекты межэлементного взаимодействия в малых

ансамблях..............................................................................................................................................................................................................107

3.1. Динамика связанных генераторов в конфигурации

"ведущий-ведомый"..........................................................................................................................................................................108

3.1.1. Модель..................................................................................................................................................................................................108

3.1.2. Описание сигнала отклика................................................................................................................................110

3.1.3. Кривая фазового отклика.....................¡- .......................................111

33 Г »^ НАЦИОНАЛ ь ПА/; I »МвЛЯОГИСА I СПепрбург j

- № J

3.1.4. Аттракторы отображения фазы..................................................................................................................113

3.1.5.Анализ числа импульсов отклика и импульсное кодирование................118

3.1.6. Экспериментальное исследование сигналов отклика............................................120

3.2. Хаотическая динамика системы из двух взаимодействующих элементов со сложно-пороговым возбуждением..............................................................................122

3.2.1. Основные свойства отображения............................................................................................................123

3.2.2.Инвариантная область и хаотический аттрактор............................................................125

3.2.3 Хаотические колебания..............................................................................................................................................129

3.3.Взаимодействие возбудимых систем с подпороговыми колебаниями 130

3.3.1. Синхронизация импульсов возбуждения....................................................................................131

3.3.2. Импульсное управление межэлементной связью........................................................134

Глава 4. Формирование стационарных структур активности

в бистабильных системах......................................................................................................................................................145

4.1. Пространственные структуры в решетках бистабильных элементов 145

4.1.1. Градиентность системы............................................................................................................................................146

4.1.2. Локализация движений в многомерном фазовом пространстве..........147

4.1.3. Устойчивые состояния равновесия......................................................................................................150

4.1.4. Пространственный беспорядок..................................................................................................................152

4.2. Пространственные структуры в решетке бистабильных осцилляторов..................................................................................................................................................................................................154

4.2.1. Усредненная система....................................................................................................................................................154

4.2.2. Синхронные колебания элементов решетки........................................................................155

4.2.3. Пространственный беспорядок и фазовые кластеры..............................................157

4.3 Пространственные структуры в решетке элементов Чуа..........................158

4.3.1. Градиентная система на устойчивом многообразии..............................................159

4.3.2. Пространственный беспорядок и структуры........................................................................160

4.4. Формирование пространственных структур в бистабильных решетках точечных отображений..................................................................................................................................................................163

4.4.1. Инвариантная область................................................................................................................................................164

4.4.2. Локализация траекторий внутри инвариантной области................................167

4.4.3. Мультистабильность и стационарные пространственные структуры............................................................................................................................................................................................................170

Глава 5. Взаимодействие пространственных структур в многослойных

многоэлементных системах. Динамическое копирование................................................173

5.1. Синхронизация пространственных структур в бистабильных

многослойных решетках............................................................................................................................................................174

5.1.1. Глобальная устойчивость многообразия синхронизации..............................175

5.1.2. Примеры синхронизации пространственных структур......................................177

5.1.2.1. Синхронизация пространственного беспорядка......................................................178

5.1.2.2. Синхронизация регулярных структур........................................................................................179

5.1.2.3. Синхронизации"рёф:ля£>ной и хаотической структур......................................180

«ш» \ 34 ..... i

r..„

5.1.2.4. Взаимодействие при разреженных связях..........................................................................181

5.2. Межслойная синхронизация в решетках бистабильных

осцилляторов..................................................................................................................................................................................................182

5.2.1. Градиентность системы............................................................................................................................................183

5.2.2. Устойчивость синфазных колебаний................................................................................................184

5.2.3. Взаимная синхронизация колебаний между решетками..................................184

5.4.1. Копирование регулярного стимула в двухслойной системе......................189

5.4.1.1. Синхронизация амплитуд колебаний и копирование......................................189

5.4.1.2. Динамическая основа копирования................................................................................................191

5.4.1.4. Копирование и искажения............................................................................................................................194

5.4.1.5. Влияние неоднородного распределение фаз колебаний

на процесс динамического копирования........................................................................................................196

5.4.2. Характеристики двухслойной бистабильной решетки

как копирующей системы........................................................................................................................................................197

5.4.2.1. Функция качества копирования............................................................................................................197

5.4.2.2. Динамическое копирование и обработка информации................................200

5.4.2.3. Пространственное разрешение копирующей системы..................................201

5.4.2.4. Динамическое копирование в живой природе............................................................202

5.4.3. Копирование в многослойных решетках....................................................................................202

5.4.3.1. Межслойная "диффузия" образа в трехслойной системе........................203

5.4.3.2. Функция качества для трехслойной решетки................................................................204

5.5. Динамика многослойной решетки кубических отображений........................206

5.5.1. Существование инвариантной области..........................................................................................206

5.5.2. Глобальная устойчивость многообразия синхронизации..............................207

5.5.3. Синхронизация пространственных структур h динамическое копирование....................................................................................................................................................................................................210

5.5.4. Неустойчивость многообразия синхронизации..............................................................212

5.5.4.1. Неустойчивость однородных неподвижных точек..............................................212

5.5.4.2. Неустойчивость синхронизованных пространственных структур. 215

5.5.4.3. Трансверсальная неустойчивость хаотических аттракторов

и "он-офф" перемежаемость................................................................................................................................................217

5.5.4.4. Десинхронизованные пространственные структуры........................................220

Приложение. Мультипликаторы неподвижных точек............................................................222

А. 1. Мультипликаторы однородных неподвижных точек................................................222

А.2 Мультипликаторы неоднородных неподвижных точек..........................................224

Глава 6. Волны и волновые структуры в активных многоэлементных

системах................................................................................................................................................................................................................226

6.1. Волновые фронты и провал распространения в дискретной бистабильной цепочке....................................................................................................................................................................227

6.1.1. Волновые фронты............................................................................................................................................................228

6.1.2. Провал распространения волн....................................................................................................................230

6.2. Бегущие импульсы в дискретной цепочке ФитцХью-Нагумо......................232

6.2.1. Импульсы в длинноволновой аппроксимации................................. 233

6.2.2. Влияние дискретности системы................................................................................................................235

6.3. Волны и волновые структуры в ансамбле элементов

со сложно-пороговым возбуждением......................................................... 236

6.3.1. Бегущие волны........................................................................................................................................................................237

6.3.2. Неустойчивости бегущих волн....................................................................................................................239

6.3.3. Фрактальные структуры активности..................................................................................................240

6.3.4. Гетероклинический контур и волновые фронты............................................................242

6.3.5. Взаимодействие импульсов. Аннигиляция и отражение................................245

6.3.6. Взаимодействие волновых фронтов. Аннигиляция и отражение... 249

6.4. Автоволны и солитоны в цепочке взаимодействующих осцилляторов Чуа..................................................................................................................................................................................251

6.4.1. Существование бегущих волн......................................................................................................................252

6.4.2. Гомоклинические орбиты....................................................................................................................................253

6.4.3 Бифуркационные кривые........................................................................................................................................254

6.4.4. Бегущие импульсы и составы из импульсов........................................................................256

6.5. Волновые интерфейсы в колебательных многоэлементных системах261

6.6. Спиральные волны в многоэлементных системах с двумерной геометрией..........................................................................................................................................................................................................264

6.6.1. Спиральные волны в решетке элементов ФитцХью-Нагумо..................265

6.6.1.1. Формирование спиральной волны..................................................................................................265

6.6.1.2. Локальная модель передачи возбуждения..........................................................................267

6.6.2. Спиральные волны в решетке элементов Чуа....................................................................270

6.6.2.1. "Темные" и "светлые" спиральные волны возбудимого типа..........270

6.6.2.2. Спиральные волны осцилляторного типа............................................................................272

6.6.2.3. Метастабильные осцилляции элемента решетки, механизм образования спиральных волн в неосциллирующей среде..............................................273

Глава 7 Взаимодействие нелинейных волн в многослойных

многоэлементных системах..............................................................................................................................................277

7.1. Управление волновыми фронтами в двух взаимодействующих

цепочках бистабильных элементов..........................................................................................................................277

7.1.1. Взаимная синхронизация движений между слоями................................................279

7.1.2 Замедление, остановка и разворот волнового фронта..........................................279

7.1.3. Ускорение волновых фронтов......................................................................................................................283

7.1.4. Модуляция скорости кинка пространственной структурой........................285

7.1.5 Взаимодействие цепочек в случае точечных межслойных

контактов (пин-контакгы)........................................................................................................................................................286

7.1.5.1. Локализация фронта на пин-контакте........................................................................................287

7.1.5.2. Возбуждающее действие пин -контакта................................................................................289

7.1.6. Волновые интерфейсы во взаимодействующих цепочках

элементов со сложно-пороговым возбуждением..............................................................................290

7.2. Взаимодействие волн в двухслойных цепочках возбудимых элементов..............................................................................................................................................................................................................292

7.2.1. Однородное взаимодействие..........................................................................................................................293

7.2.2. Динамика пин-контакта............................................................................................................................................294

7.2.3. Двухточечный контакт..............................................................................................................................................296

7.3. Особенности динамики двух взаимодействующих цепочек генераторов Чуа........................................................................................................................................................................................297

7.4. Эффекты межслойного взаимодействия спиральных волн

в двухслойной решетке ФитцХью-Нагумо..................................................................................................299

7.4.1. Взаимодействие спиральных волн........................................................................................................300

7.4.2. Локальная модель передачи возбуждения................................................................................304

7.4.3. Межслойная динамика при разреженных связях..........................................................308

7.5. Структуры и спиральные волны в двухслойной решетке

элементов Чуа..............................................................................................................................................................................................309

Глава 8. Формирование структур активности с заданными

характеристиками............................................................................................................................................................................312

8.2. Колебательные структуры в ансамбле с импульсно-управляемыми межэлементными связями........................................................................................................................................................316

8.2.1. Архитектура оливо-мозжечковой нейронной системы......................................317

8.2.2. Формирование кластеров за счет подавления межэлементных связей..........................................................................................................................................................................................................................320

8.2.2.1. Спонтанные фазовые кластеры............................................................................................................322

8.2.2.2. Фазовые кластеры, индуцированные стимулом........................................................323

8.3. Формирование заданных колебательных структур за счет фазовой автопереустановки................................................................................................................................................................................325

8.4. Контроль и координация движений на основе динамики оливо-мозжечковой системы..............................................................................................................................................328

Заключение........................................................................................................................................................................................................332

Цитируемая литература..........................................................................................................................................................340

Список работ по теме диссертации....................................................................................................................355

Виктор Борисович Казанцев

КООПЕРАТИВНЫЕ ЭФФЕКТЫ НЕЛИНЕЙНОЙ ДИНАМИКИ АКТИВНЫХ МНОГОЭЛЕМЕНТНЫХ СИСТЕМ: СТРУКТУРЫ, ВОЛНЫ, ХАОС, УПРАВЛЕНИЕ

Автореферат

Подписано к печати 06.09.2005 г. Формат 60 х 90 'А6. Бумага офсетная № 1. Уел печ л. 2,5 Тираж 120 экз Заказ №89(2005) Бесплатно

Отпечатано в типографии Института прикладной физики РАН, 603950 Н Новгород, ул Ульянова, 46

I :¡

A i

к,

I

/

í i

I

í

Р17 О 8 7

РНБ Русский фонд

2006-4 14923

i

(

 
Содержание диссертации автор исследовательской работы: доктора физико-математических наук, Казанцев, Виктор Борисович

Введение.

Глава 1. Модели базовых элементов многоэлементных систем.

1.1. Бистабильные элементы.

1.1.1. Бистабильная ячейка.

1.1.2. Бистабильный осциллятор.

1.2. Модели возбудимого типа.

1.2.1. Модель ФитцХью-Нагумо.

1.2.2. Модель со сложно-пороговым возбуждением.

1.2.2.1. Бифуркационный анализ модели.

1.2.2.2. Бифуркационная диаграмма и фазовые портреты.

1.2.2.3. Динамические режимы модели со сложно-пороговым возбуждением.

1.2.2.4. Аналоговая реализация модели со сложно-пороговым возбуждением.

1.2.3. Модель с подпороговыми колебаниями и мультипороговой генерацией импульсов.

1.2.3.1. Функциональная схема модели.

1.2.3.2. Бифуркационный анализ модели.

1.2.3.3. Генератор импульсов с подпороговыми колебаниями.

1.2.3.4. Возбудимая модель с двухпороговой генерацией.

1.2.3.6. Двухпороговая генерация при наличии внешнего стимула.

1.3. Базовые модели с хаотической динамикой.

1.4. Модели элементов с дискретным временем.

1.4.1. Кубическое отображение.

1.4.2. Дискретная модель элемента со сложно-пороговым возбуждением.

Глава 2. Преобразование импульсных сигналов в активных нелинейных системах.

2.1. Интегрирующие и резонансные свойства возбудимых систем.

2.1.1. Модель импульсного стимула.

2.1.2. Интегрирующий отклик.

2.1.2. Резонансный отклик.

2.1.2.1. Линейное приближение.

2.1.2.2. Нелинейный резонансный отклик.

2.1.2.3. Отклик на подавляющее воздействие.

2.1.3. "Берет-отклики".

2.1.4. Временные характеристики отклика.

2.2. Управление фазой колебаний.

2.2.1. Фазовая переустановка в модели ФитцХью-Нагумо.

2.2.1.1. Авто-переустановка фазы.

2.2.1.2. Динамический механизм фазовой авто-переустановки.

2.2.1.3. Стимул-индуцированная синхронизация многоэлементных систем.

2.2.1.4. Описание фазовой авто-переустановки. Отображение фазы.

2.2.2. Фазовые последовательности.

Глава 3. Эффекты межэлементного взаимодействия в малых ансамблях.

3.1. Динамика связанных генераторов в конфигурации "ведущий-ведомый".

3.1.1. Модель.

3.1.2. Описание сигнала отклика.

3.1.3. Кривая фазового отклика.

3.1.4. Аттракторы отображения фазы.

3.1.5.Анализ числа импульсов отклика и импульсное кодирование.

3.1.6. Экспериментальное исследование сигналов отклика.

3.2. Хаотическая динамика системы из двух взаимодействующих элементов со сложно-пороговым возбуждением.

3.2.1. Основные свойства отображения.

3.2.2.Инвариантная область и хаотический аттрактор.

3.2.3 Хаотические колебания.

3.3.Взаимодействие возбудимых систем с подпороговыми колебаниями.

3.3.1. Синхронизация импульсов возбуждения.

3.3.2. Импульсное управление межэлементной связью.

Глава 4. Формирование стационарных структур активности в биста-бильных системах.

4.1. Пространственные структуры в решетках бистабильных элементов.

4.1.1. Градиентность системы.

4.1.2. Локализация движений в многомерном фазовом пространстве.

4.1.3. Устойчивые состояния равновесия.

4.1.4. Пространственный беспорядок.

4.2. Пространственные структуры в решетке бистабильных осцилляторов.

4.2.1. Усредненная система.

4.2.2. Синхронные колебания элементов решетки.

4.2.3. Пространственный беспорядок и фазовые кластеры.

4.3. Пространственные структуры в решетке элементов Чуа.

4.3.1. Градиентная система на устойчивом многообразии.

4.3.2. Пространственный беспорядок и структуры.

4.4. Формирование пространственных структур в бистабильных решетках точечных отображений.

4.4.1. Инвариантная область.

4.4.2. Локализация траекторий внутри инвариантной области.

4.4.3. Мультистабильность и стационарные пространственные структуры.

Глава 5. Взаимодействие пространственных структур в многослойных многоэлементных системах. Динамическое копирование.

5.1. Синхронизация пространственных структур в бистабильных многослойф ных решетках.

5.1.1. Глобальная устойчивость многообразия синхронизации.

5.1.2. Примеры синхронизации пространственных структур.

5.1.2.1. Синхронизация пространственного беспорядка.

5.1.2.2. Синхронизация регулярных структур.

5.1.2.3. Синхронизация регулярной и хаотической структур.

5.1.2.4. Взаимодействие при разреженных связях.

5.2. Межслойная синхронизация в решетках бистабильных осцилляторов.

5.2.1. Градиентность системы.

5.2.2. Устойчивость синфазных колебаний.

5.2.3. Взаимная синхронизация колебаний между решетками.

5.4.1. Копирование регулярного стимула в двухслойной системе.

5.4.1.1. Синхронизация амплитуд колебаний и копирование.

5.4.1.2. Динамическая основа копирования.

5.4.1.4. Копирование и искажения.

5.4.1.5. Влияние неоднородного распределение фаз колебаний на процесс динамического копирования. ф 5.4.2. Характеристики двухслойной бистабильной решетки как копирующей системы.

5.4.2.1. Функция качества копирования.

5.4.2.2. Динамическое копирование и обработка информации.

5.4.2.3. Пространственное разрешение копирующей системы.

5.4.2.4. Динамическое копирование в живой природе.

5.4.3. Копирование в многослойных решетках.

5.4.3.1. Межслойная "диффузия" образа в трехслойной системе.

5.4.3.2. Функция качества для трехслойной решетки.

5.5. Динамика многослойной решетки кубических отображений.

5.5.1. Существование инвариантной области.

5.5.2. Глобальная устойчивость многообразия синхронизации.

5.5.3. Синхронизация пространственных структур и динамическое копирование. ф 5.5.4. Неустойчивость многообразия синхронизации.

5.5.4.1. Неустойчивость однородных неподвижных точек.

5.5.4.2. Неустойчивость синхронизованных пространственных структур.

5.5.4.3. Трансверсальная неустойчивость хаотических аттракторов и "он-офф" перемежаемость.

5.5.4.4. Десинхронизованные пространственные структуры.

 
Введение диссертация по физике, на тему "Кооперативные эффекты нелинейной динамики активных многоэлементных систем"

Актуальность исследования

Исследование коллективной динамики систем, состоящих из большого числа взаимодействующих нелинейных элементов, является одной из актуальных задач современной нелинейной физики, возникающих при описании явлений и процессов в самых различных ее областях. Примеры таких систем можно найти как на "микроуровне" - решетки взаимодействующих атомов в физике строения вещества и электронике, так и при макроскопическом описании кооперативных процессов в многоэлементных лазерных системах [38, 148, 180], массивах джозефсоновских контактов [37, 166, 167], сетях фазовой синхронизации [31,42, 49, 66] и др. Эффекты коллективной динамики многоэлементных систем определяются, с одной стороны, динамическими свойствами составляющих элементов, с другой - свойствами и архитектурой межэлементных взаимодействий. Наибольший интерес вызывает способность таких систем формировать упорядоченные пространственно-временные структуры, взаимная синхронизация элементов, распространение нелинейных волн (солитонов, волновых фронтов, автоволновые процессы) [56, 147, 159]. Фундаментальной проблемой здесь является выявление динамических механизмов формирования структур, возможность управлять их эволюцией. С прикладной точки зрения, на основе кооперативных эффектов динамики многоэлементных систем, разрабатываются информационно-вычислительные устройства, способные осуществлять параллельное преобразование больших потоков информации, системы синхронизации лазерных систем для получения больших мощностей, системы фазовой синхронизации для управления процессами передачи данных, системы автоматического управления и др. Необходимо отметить, что многоэлементные системы при наличии упорядоченной в пространстве архитектуры (цепочка, решетка и т.д.) можно трактовать как дискретные аналоги неравновесных сред, изучение колебательно-волновых процессов в которых является одной из ключевых задач радиофизики. В широком классе таких систем можно выделить, так называемые, системы "реакция-диффузия", являющиеся активными нелинейными распределенными системами. Такие модели описывают, в частности, динамику неравновесных химических реакций (реакция Белоусова-Жаботинского, фотополимеризация и др.), процессы в биологических тканях (волны в сердечной мышце), процессы горения, процессы в атмосфере и др. [35, 39, 56, 85, 98, 127, 143, 147, 166, 179].

Последние несколько десятилетий возрастающий интерес исследователей привлекают нелинейные явления и процессы в многоэлементных системах нейродинамического типа или нейронных ансамблях. Элементами таких систем являются нейроны (нервные клетки) - активные нелинейные системы, обладающие собственной нетривиальной динамикой. Объединение элементов в единую систему происходит за счет, так называемых, синаптических связей, имеющих сложную пространственную архитектуру и обеспечивающих разнообразный характер межэлементных взаимодействий. Задача изучения коллективных процессов в нейросистемах обладает очевидными сложностями как вследствие сложного устройства самого объекта исследования, так и отсутствием универсальных подходов к его изучению. Можно выделить три основных уровня описания процессов в нейродинамических системах. Это, прежде всего, биологический подход, позволяющий выявить биохимические механизмы функционирования клеток, архитектуру и характеристики межэлементных взаимодействий. Далее следует биофизический подход, позволяющий установить, в частности, основные физико-химические закономерности генерации электрической активности в нейронных системах. И, наконец, радиофизический подход, направленный на исследование колебательно-волновых явлений в нейроноподобных моделях и выявление динамических механизмов их функционирования, которому и посвящена данная работа. Этот подход основывается на разработке и исследовании физических моделей с использованием основных достижений современной теории колебаний и волн в нелинейных системах. Общность колебательно-волновых явлений в системах самой различной физической природы позволяет использовать задачах нейродинамики базовые закономерности динамики нелинейных систем, установленные ранее для другого сорта моделей. Здесь важен также и прикладной аспект, связанный с разработкой на основе исследуемых физических моделей прототипов устройств, имитирующих динамику нейронных систем [95, 108].

Построение и исследование радиофизических моделей нейродинамиче-ских систем является очень сложной, однако, чрезвычайно привлекательной задачей. Трудности вызваны двумя основными причинами. С одной стороны, сам объект исследования устроен чрезвычайно сложно. Так, например, по последним оценкам нейрофизиологов головной мозг состоит более чем из 1011 нервных клеток, взаимодействующих между собой. Кроме того, существует около 103 различных типов этих клеток. С другой стороны, получение экспериментальных данных имеет очевидные трудности, связанные, во-первых, с малыми размерами нервных клеток (-0.2 мкм.), во-вторых, - со сложностью самих измерений - объект должен оставаться живым. В силу этих причин не представляется возможным построить универсальную теорию нейросистем. Многообещающим здесь выгладит физический, модельный подход, направленный на описание конкретных коллективных явлений, наблюдаемых в экспериментах, получения условий их существования и устойчивости. Исследование динамики даже сильно упрощенных нейродина-мических моделей позволяет объяснить основные механизмы функционирования нейронных ансамблей, а также предсказать их поведение в тех или иных условиях. Для перспективных приложений такие исследования могут сыграть определяющую роль в диагностике и прогнозе динамических заболеваний и указать способы их лечения. Яркие примеры здесь: возможность подавления сердечных фибрилляций и аритмий, вызванных образованием в сердечной ткани спирально-волновой турбулентности, нарушающей нормальную работу сердца; подавление эпилептических расстройств, связанных с нарушением колебательных ритмов в мозге; волн депрессии, вызывающих мигрени и т.д. Для технологических приложений, на основе моделей нейро-динамики разрабатываются информационно-вычислительные системы нового поколения. В этой области, наряду с уже имеющимися успехами (например, различные системы распознавания образов) имеются огромные перспективы. В частности, многообещающим выглядит моделирование процессов ассоциативной памяти, пространственно-временной селекции, построение систем управления, контроля и координации движений автономных машин -роботов с использованием принципов нейродинамики. Эффективность таких систем будет на несколько порядков превосходить мощности современных компьютерных систем. Для сравнения, простейшее хватательное движение пальца руки, управляемое нейронами головного мозга, требует одновременного сокращения около 50 мышц. Для управления таким движением с помощью компьютера, то есть выбора оптимальной комбинации мышц в реальном времени (порядка 1 мс), требуется процессор с частотой 106 Ггц! [176]

Рассмотрим кратко основные характеристики объекта исследования с позиций радиофизики. За счет различных биохимических процессов элемент ансамбля - нейрон генерирует электрические потенциалы, динамику которых можно описать в рамках следующей системы уравнений, представляющих собой упрощенный вариант известной модели Ходжкина-Хаксли [114]:

Ш ^ ш

Первое уравнение описывает баланс токов клеточной мембраны. Здесь переменная V - потенциал клеточной мембраны, (V) - "быстрый" ток, включающий токи утечки через мембрану и втекающий внутрь клетки ионный ток. Эта зависимость, согласно экспериментальным данным, имеет N образную форму. Переменная описывает "восстанавливающий" ионный ток, динамика которого определяется функцией активации и>„(У). В простейшем случае эта функция выбирается линейной. Параметр Ст характеризует емкость мембраны, функция т„(У) описывает время релаксации переменной w, Isy„(V, Vp) - синаптический ток, поступающий от соседнего нейрона (потенциал Vp). Он характеризуется пороговой зависимостью от Vp. Слагаемое Igap(y~Vp) описывает электрическую связь между нейронами (так называемый гэп-контакт) и характеризуется постоянным электрическим сопротивлением контакта Igap(V -Vp) = ggap(V -Vp). Система (*) при отсутствии связи между нейронами является нелинейной динамической системой второго порядка и обладает, в зависимости от выбора конкретных форм нелинейностей, широким диапазоном динамических режимов. Ясно, что при объединении таких систем в ансамбль его коллективная динамика становится чрезвычайно разнообразной. Модели, которые будут рассматриваться в работе, являются различными модификациями системы (*), построенными для учета тех или иных динамических особенностей нейронов. Так, например, для учета биста-бильных свойств модели (*), ее динамику можно описать в рамках "интегрального" описания с использованием триггерных элементов. Два устойчивых состояния триггера отвечают состоянию покоя и возбуждения нейрона, соответственно. При определенных параметрах система (*) может обладать пороговыми (возбудимыми) свойствами и режимами непрерывной генерации импульсов.

Экспериментальные исследования различных нейро-систем, интенсивно проводимые в течении последних десятилетий, свидетельствуют о том, что ключевую роль в нейро-процессах играют коллективные колебательно-волновые процессы [47, 78, 80, 93, 107, 113, 119, 120, 128, 131, 134, 136, 137, 139, 177, 183, 184]. Колебания в частотном диапазоне 1-100 Гц регистрируются в различных частях головного мозга. Так, например, сравнительно быстрые процессы (у - ритм, 40 Гц) формируются в таламо-кортикальной нейронной системе [78,135,136]. Их связывают с такими явлениями как пространственно-временное связывание сенсорной информации, приходящей по различным сенсорным каналам, что составляет основу ассоциативного восприятия [120]. Колебания в диапазоне 8-12 Гц (а-ритм) играют ключевую роль в динамике оливо-мозжечковых взаимодействий, ответственных за

10 формирование моторных паттернов в системе моторного контроля [131, 137, 176, 177, 183, 184]. Колебательные процессы в гиппокампе (#-ритм, 5-10Гц) связаны с процессами кратковременной памяти и фазовой прецессии, играющей ключевую роль при навигации объекта в пространстве [80, 113, 139, 163, 172]. Эти исследования показывают, что различные нейронные системы способны за счет собственной динамики формировать пространственно-временные структуры колебательной активности, изменяющиеся за счет внешнего воздействия (сенсорных сигналов).

Построение и исследование динамических моделей нейронов и нейронных систем имеет сравнительно короткую историю. Основополагающими здесь можно считать работы Ходжкина и Хаксли, удостоенные Нобелевской премии в 1963 году за моделирование электрической активности гигантского аксона кальмара. В частности, исходя из детального изучения физико-химических процессов в клеточной мембране, была получена система нелинейных дифференциальных уравнений, описывающая процессы генерации электрических сигналов (потенциал покоя и потенциал действия) в аксоне [114]. Далее предлагались различные обобщения уравнений Ходжкина-Хаксли для различных типов нейронов [119, 168, 128]. Другой подход, основанный на качественном моделировании электрической активности нервных клеток, берет свое начало с модели ФитцХью-Нагумо [99]. Такие модели являются феноменологическими или функциональными, способными описать различные динамические механизмы генерации сигналов нейронами [1,65, 111, 118, 165, 159, 160]. С точки зрения нелинейной динамики, модели нейронных систем можно классифицировать как активные нелинейные системы автогенераторного типа. Исследование колебаний в нелинейных системах и динамических механизмов их возникновения составляют фундаментальную базу нейродинамики. Среди большого числа книг и научных работ по теории нелинейных колебаний упомянем лишь несколько основных, описывающих методы и походы, использованные в данной работе [2-6, 7, 12, 18, 34, 35, 36, 46, 48, 51, 53, 62, 63, 66, 68, 70, 101, 106, 109, 146, 166, 187]. Различным математическим моделям биофизических процессов посвящены работы [8,21, 23, 24, 40, 53-56, 64, 65, 79, 87, 100, 125, 126, 165, 166, 159]. При исследовании коллективных процессов в ансамблях нейроноподобных элементов основным вопросом является способность таких систем формировать пространственно-временные структуры - паттерны. Эта проблема широко изучалась в связи с различными аспектами как нейродинамики, так и других областей нелинейной физики. Были исследованы процессы формирования стационарных пространственных структур в бистабильных системах [52, 59, 66, 71, 86, 124, 138, 146, 147], синхронизации ансамблей автоколебательных систем [19-21, 25, 48, 66, 127, 143, 179], синхронизации хаотических систем [28, 29, 48, 67, 101, 151, 152], явление кластерообразования [75, 77, 97, 103, 141, 142, 145, 169], формирования хаотических пространственно-временных структур [9, 10, 14-17, 66, 81, 82, 89, 96, 127, 155]. Широко исследовались нелинейные волновые процессы: распространение волновых фронтов в триг-герных моделях [56, 85, 86, 124, 144 - 146, 161], импульсы возбуждения и автоволновые структуры [8, 22, 32, 33, 44, 53, 56, 110, 154, 155], спиральные и концентрические волны [22,32,33,122,149,150] и др. Полученные результаты позволяют оценить области параметров существования и устойчивости тех или иных динамических режимов, условия их формирования и основные динамические, статистические и информационные характеристики. Другой ключевой проблемой является изучение вынужденных процессов в нелинейных динамических системах. Основу здесь составляют упомянутые выше классические результаты по синхронизации автогенераторных систем внешним сигналом, нашедшие новые приложения при изучении преобразования сенсорных сигналов нейроноподобными системами. Задача об импульсном воздействии на автогенераторные системы широко изучалась в связи с исследованием процессов в самых различных областях: электрической активности кардио клеток сердечной ткани [24, 79, 104, 105, 182], процессов преобразования информации хаотическими системами [26, 94, 171], кодирования и декодирования в системах связи [5,26-29] и нейронных системах

64,84,118,158], процессы в системах автоматического регулирования [57,58] и др. Явления ассоциативной восприятия, хранения и преобразования информации многоэлементными нейроноподобными системам приводят к задаче о формировании структур активности заданной пространственной конфигурации и временной динамики. Интенсивное исследование этой проблемы началось в 80-ые годы прошлого столетия с работ Хопфилда [115, 116]. В сети Хопфилда пространственная структура определяется состоянием равновесия системы, отвечающим минимуму потенциальной (градиентной) функции. Пространственная конфигурация установившейся структуры определяется нелокальными межэлементными связями с определенными весовыми коэффициентами. В литературе предлагались различные модели нейропо-добных многоэлементных сетей [87] позволяющие осуществлять формирование и различные преобразования структур на основе правил Хэбба [112] для моделирования явления ассоциативной памяти. Широко исследовались сети персепронного типа с использованием статистико-мехнических правил обучения [164, 178]. Особое место занимают работы по исследованию сетей, состоящих из аналоговых локально активных элементов, так называемых, Клеточных Нейронных Сетей (от англ. CNN- Cellular Neural Networks), предложенных в конце 80-х и реализованных в виде аналоговых интегральных микросхем [88-92]. Эти системы, кроме параллельного преобразования входных сигналов для задач распознавания образов, были способны поддерживать различные автоволновые структуры для формирования, например, генераторов ритма [71]. Следует отметить также работы, посвященные формированию структур активности заданной конфигурации в многоэлементных системах с колебательными свойствами. В модели слабо связанных фазовых осцилляторов (модель Курамото) [101, 127] такие структуры устанавливаются при квазипериодическом воздействии на межэлементные связи с весовыми коэффициентами, пространственное распределение которых содержит заданный образ [65, 117]. В рамках фазовой модели такая структура представляет собой фазовые кластеры (синфазные и противофазные колебания) заданной пространственной конфигурации. В решетке релаксационных осцилляторов формирование осцилляторных структур исследовалось в работах [65, 174, 175]. В сетях с центральным осциллятором и периодическим во времени входным воздействием изучались процессы настройки ансамбля на определенное входное изображение [81, 83]. Прикладной аспект исследования ней-родинамических моделей связан с перспективами построения новейших "интеллектуальных" информационных систем. Отметим здесь разработки нейро-сетевых систем управления локомоторными движениями [1, 71, 95, 108], координации движений роботов [162], нейрокомпьютеров [117], систем распознавания образов и обработки изображений [27, 90, 132].

В силу чрезвычайной разнообразности многоэлементных систем как по структурному строению, так и по функциональным свойствам здесь остается неисследованными целый ряд ключевых вопросов и проблем. Для получения адекватного описания эффектов коллективной динамики ансамблей необходимо, прежде всего, получить и исследовать адекватную модель элемента ансамбля. Использование наиболее точных моделей, построенных на основе подхода Ходжкина-Хаксли, сильно ограничено, поскольку ведет к усложнению модели элемента за счет большого числа переменных и параметров, требующих точной настройки. В этом случае, даже на уровне отдельных элементов не всегда удается проследить механизмы возникновения динамических режимов, оценить области их существования и устойчивости. С другой стороны, сильно упрощенные модели не способны адекватно описать наблюдаемые эффекты. В этой связи возникает потребность в разработке моделей, учитывающих лишь определенные черты динамики реальных нейронов, существенные для описания конкретных динамических феноменов. Примером такой задачи является исследование нейронов нижних олив. Согласно экспериментальным данным эти нейроны обладают спонтанными квазипериодическими колебаниями ниже порога возбуждения и двухпороговой генерацией импульсов возбуждения [137]. Существующие к настоящему времени модели нейронов как биохимические, так и функциональные, оказались не способны описать эти эффекты. В данной работе будет представлена модель блочного типа, качественно воспроизводящая практически все типы экспериментально наблюдаемых колебательных процессов. Другим интересным моментом является способность нейронов генерировать импульсы отклика при достаточно сильном подавляющем воздействии (нейроны нижних олив) и генерировать, так называемые, берет-отклики - серии импульсов с определенным числом импульсов и интервалом следования (например, моторные нейроны). Этот эффект не удавалось описать в рамках сравнительно простых моделей, которые наиболее удобны при исследовании коллективных процессов. Использовались более сложные модели (модель ХиндМарш-Розе), обладающие, кроме требуемых режимов, широким спектром динамического поведения, в том числе и хаотического. Таким образом, сравнительно простые функциональные модели, направленные на описание конкретного эффекта оказываются востребованными как с точки зрения моделирования отдельных нейронов, так и для описания коллективной динамики.

Формируемые многоэлементными системами структуры активности можно условно разделить на два типа: спонтанные структуры, образованные за счет процессов самоорганизации без специфического воздействия извне и стимул-индуцированные процессы. При исследовании спонтанных структур активности основным вопросом остаются динамические механизмы их формирования, требования к динамике элемента и архитектуре связей. Одним из интересных эффектов является возникновение самоподдерживающихся структур активности в системах, элементы который не обладают автоколебательной активностью. Невыясненным до конца вопросом остается роль архитектуры связей, в частности, нелокальных взаимодействий в формировании структур. Широко обсуждается также проблема синаптической пластичности - динамического изменения характеристик межэлементного взаимодействия в процессе собственной эволюции ансамбля или за счет внешних стимулов. Механизмы формирования структур в системах с динамическими связями остаются неисследованными. Еще более сложным вопросом является динамика многоэлементных систем в присутствии внешних стимулов. На уровне отдельных элементов, эта задача сводится к отклику активной нелинейной системы на приходящие импульсные информационные последовательности. Преобразование и обработка информации нейродинамическими системами связана с проблемой временного нейронного кода, которая к настоящему времени остается невыясненной. Считается, что информация кодируется в изменяющемся интервале следования импульсов [84]. Однако, экспериментальные данные, например, явление фазовой прецессии в гиппокампе, свидетельствуют о том, что не только число импульсов и интервал их следования, но и фаза импульса является ключевой информационной характеристикой. Мало изученным остается вопрос о формировании стимул-индуцированных структур активности в многоэлементных системах. Эта задача представляется еще более сложной, так как связана с исследованием неавтономной динамики нелинейных систем высокой размерности. Здесь можно отметить результаты по исследованию структур активности в системах с центральным осциллятором при периодическом внешнем воздействии [83] и формирование структур в системах слабо связанных фазовых осцилляторов [117]. Задача о динамическом формировании структур заданной конфигурации в пространстве и во времени, процессов переключения между различными динамическими режимами остается практически неисследованной.

Отдельной задачей являются нелинейные волновые процессы в многоэлементных системах. Здесь особый интерес вызывают самоподдерживающиеся автоволновые структуры - импульсы возбуждения, волновые фронты, спиральные волновые паттерны и др. [22]. Исследовались, как правило, основные закономерности формирования таких волн в системах с простой архитектурой (цепочки и решетки активных элементов). Малоизученными остаются волновые явления в системах со сложной, многослойной архитектурой, которой, как известно, обладают реальные нейронные системы. Также много вопросов о формировании волновых структур остается в системах, элементы которых обладают сложной, хаотической динамикой.

Цель работы

Целью данной работы является развитие теории кооперативных процессов в нелинейных многоэлементных системах и конкретных ее приложений к задачам нейродинамики с позиций радиофизического рассмотрения на основе общего колебательно-волнового подхода. Приоритетными фундаментальными задачами являются:

- разработка и исследование базовых моделей элементов систем для моделирования конкретных динамических феноменов в многоэлементных системах;

- изучение процессов преобразования импульсных информационных сигналов активными нелинейными системами;

- исследование явлений спонтанного возникновения регулярных и хаотических колебаний в ансамблях за счет межэлементных взаимодействий;

- исследование динамических механизмов формирования стационарных (статических, колебательных, волновых) структур активности и эффектов их преобразования в многослойных многоэлеметных системах;

- исследование влияния дискретной архитектуры многоэлементных систем на процессы распространения нелинейных волн (фронтов, импульсов возбуждения, спиральных волн);

- разработка многоэлементных систем, способных формировать структуры активности с заданными динамическими (информационными) характеристиками.

Научная новизна работы заключается в следующем.

На основе изучения закономерностей генерации электрических потенциалов нейронами предложены новые модели нейроноподобных элементов автогенераторного типа, обладающие широким спектром динамических режимов. Разработана модель нейрона с подпороговыми колебаниями и мульти-пороговой генерацией импульсов, воспроизводящая ключевые черты динамики нейронов нижних олив. Предложена модель автогенератора со сложнопороговым возбуждением, позволяющая осуществлять динамическое преобразование импульсных последовательностей. Модели реализованы в виде радиотехнических аналоговых схем - прототипов нейрочипов. Проведенный бифуркационный анализ моделей является основой к их использованию в качестве единиц многоэлементных систем с требуемыми динамическими характеристиками.

Обнаружен и исследован эффект фазовой авто-переустановки, позволяющий эффективно управлять фазой колебаний в ансамблях релаксационных элементов автогенераторного типа. В частности, становится возможным осуществлять фазовую синхронизацию колебаний больших ансамблей автогенераторных систем.

Исследованы динамические механизмы возникновения регулярных и хаотических колебаний во взаимодействующих системах, элементы которых не обладают собственной колебательной активностью. В двух связанных моностабильных отображениях с тривиальной собственной динамикой получены условия возникновения хаотического аттрактора. В многоэлементных системах с цепочечной архитектурой обнаружены и исследованы фрактальные структуры активности, возникающие вследствие сложной нелинейно-волновой динамики.

В многоэлементных системах, состоящих из бистабильных элементов, исследованы процессы формирования стационарных пространственных структур активности. Такие структуры являются эволюционными и реализуются с определенного класса начальных условий. Обнаружен и исследован эффект динамического копирования пространственных структур в системах с многослойной архитектурой.

В многоэлементных системах, состоящих из возбудимых элементов со сложно-пороговой динамикой, изучены процессы распространения уединенных бегущих волн - импульсов возбуждения и волновых фронтов. Исследованы гомо- и гетероклинические орбиты, определяющие, соответственно, профили таких волн. Построены бифуркационные кривые, определяющие зависимость скорости волн от параметров. Обнаружены и исследованы эффекты солитоноподобного поведения волн при столкновении друг с другом и границами системы. Изучены явления взаимодействия волновых движений в системах с многослойной архитектурой, приводящие, в частности, к циркуляции волновых возбуждений, подавлению и локализации возбуждения, образования спирально-волновой турбулентности. Исследовано влияние дискретного характера систем на распространение волн.

Разработана система, позволяющая формировать заданные структуры колебательной активности - фазовые кластеры. Система моделирует структуру и функции оливо-мозжечковой нейронной системы, осуществляющей формирование моторных паттернов и контроль мышечных сокращений. На основе построенной модели предложен прототип системы управления многопараметрическими объектами с помощью параллельного преобразования и настройки фазовых кластеров требуемой конфигурации.

Практическая значимость работы

Разработанные модели многоэлементных систем на основе эффектов их кооперативной динамики могут быть использованы при разработке нового поколения информационно-вычислительных устройств, способных осуществлять параллельное преобразование больших потоков информации с использованием динамических принципов. В работе предложены варианты реализации моделей в виде аналоговых радиотехнических устройств. В частности, разработана система динамического выделения контура объекта на основе эффекта динамического копирования, исследованы процессы динамического преобразования импульсных сигналов, с помощью которых можно осуществлять эффективное мультиплексирование и демультиплексирование информации. В работе предложен прототип устройства динамического управления многопараметрическими объектами. Результаты работы позволяют дать практические рекомендации по выбору параметров моделей для существования и устойчивости требуемых динамических режимов. Фундаментальные результаты работы используются при чтении спецкурсов по динамике многоэлементных систем для студентов старших курсов, обучающихся по специальности радиофизика и электроника на радиофизическом факультете ННГУ им Н.И. Лобачевского. Разработаны и внедрены две лабораторных работы для студентов старших курсов, включающие исследование динамики нелинейных волн в компьютерном моделировании и изучение колебаний автогенератора с подпороговыми колебаниями в физическом эксперименте.

Апробация результатов работы

Основные результаты диссертации докладывались на следующих российских и международных конференциях: Int. Symposium on Nonlinear Theory and its Applications (NOLTA) (Las Vegas, USA 1995; Grans-Montana, Switzerland 1998); конференциях Int. Specialist Workshop Nonlinear Dynamics of Electronic Systems (NDES) (Севилья, Испания 1996; Москва 1997; Делфт, Голландия, 2001; Измир, Турция 2002; Скоул, Швейцария, 2003; Эвора, Португалия, 2004); Conference on Control of Oscillations and Chaos (Санкт-Петербург, 1997); Conference on Contemporary Problems in Theory of Dynamical Systems (Нижний Новгород, 1996); Int. Workshop on transmission and signal processing in nonlinear electronics and optics (Дижон, Франция 1998); международная Школа-Семинар "Дни Нелинейной Динамики в Нижнем Новгороде-98" (Нижний Новгород, 1998); International Workshop on Synchronization, Pattern Formation and Spatio-Temporal Chaos in Coupled Chaotic Oscillators (Santiago de Compostela, Испания 1998); International School on Chaotic Oscillations and Pattern Formation (CHAOS 98, CHAOS 01) (Саратов 1998, 2001); международная конференция, посвященная 100-летию со дня рождения А.А. Андронова (Нижний Новгород, 2001); Int. Conference Dynamics Days Europe (Heidelberg, Germany, 2002); школы по нелинейным волнам (Нижний Новгород, 2002, 2004); научные конференциии по радиофизике (Нижний Новгород, 1996, 1997, 2003); Int. Symp. "Topical Problems of Nonlinear Wave Physics" (Нижний Новгород, 2003, 2005); VII международная школа

Хаотические автоколебания и образование структур - 2004" (Саратов 2004); International Conference on Brain Inspired Cognitive Systems (Стерлинг, Великобритания, 2004), а также на семинарах ИПФ РАН, кафедры теории колебаний радиофизического факультета ННГУ, междисциплинарного института университета Комплутенсе (Мадрид, Испания), лаборатории электроники Бургундского университета (Дижон, Франция), департамента нейрофизиологии школы медицины Нью-Йоркского университета (Нью-Йорк, США).

По теме диссертации опубликовано 57 научных работ, включая 35 статей в рецензируемых российских и зарубежных изданиях, 20 статей в трудах конференций, 2 методических пособия для лабораторных работ.

Достоверность научных выводов подтверждается согласованностью результатов аналитического исследования, компьютерного моделирования и физического эксперимента с аналоговыми радиотехническими моделями. Кроме того, для нейроноподобных моделей, результаты исследований согласуются с экспериментальными данными исследования реальных нейронных систем. Все эффекты, изучаемые в работе, рассматриваются с точки зрения их существования и устойчивости, что позволяет говорить об их практической реализуемости.

Личный вклад автора

В совместных работах автор принимал непосредственное участие в выборе направлений исследований и постановке основных задач, получении теоретических результатов и постановке физических экспериментов. Все расчеты, связанные с компьютерным моделированием исследуемых систем, выполнены лично автором на основе разработанного им комплекса программ для моделирования динамики многоэлементных систем. Аналитические результаты получены на паритетных началах с соавторами работ. Участие в физических экспериментах заключалось в формулировке основных задач, выборе оптимальных вариантов реализации эксперимента, обсуждении и сравнении результатов с теоретическим исследованием и компьютерным моделированием.

Автор выражает особую благодарность своему учителю доктору физико-математических наук, профессору Владимиру Исааковичу Некоркину, в соавторстве с которым получена большая часть научных результатов.

Основные результаты и положения, выносимые на защиту

1) Разработанные феноменологические модели нейроноподобных элементов (модель с подпороговыми колебаниями и модель со сложно-пороговым возбуждением) адекватно описывают ключевые черты динамики колебательных нейронов с мультипороговой генерацией импульсов. Модели представляют собой автогенераторные системы и, в зависимости от параметров, могут быть настроены на описание конкретного динамического феномена (импульсы возбуждения на пиках подпороговых колебаний, регулярные и хаотические спайк-берст колебания, мультипороговая генерация импульсов и др.) на основе проведенного в работе бифуркационного анализа.

2) Активные нелинейные системы способны осуществлять динамическое преобразование импульсных последовательностей, кодирование и декодирование информации по числу импульсов в серии, интервалу следования импульсов и относительной фазе импульсов. Свойства сигнала отклика на импульсный сигнал определяются выбранным динамическим режимом элемента. Отклик обладает интегрирующими, резонансными и фазово-управляемыми свойствами, включающими селекцию по числу импульсов в серии, частоте следования и фазовую авто-переустановку.

3) Многоэлементные системы, элементы которых обладают бистабильно-стью (триггер, бистабильный осциллятор, кубическое отображение, генератор Чуа), формируют стационарные пространственные структуры. Параметры, отвечающие формированию структур, выделяются методом поглощающих областей. При соответствующем выборе начальных условий любое Ы^Ы бинарное изображение может быть закодировано в решетке в виде пространственной структуры.

4) В многослойных многоэлементных системах бистабильных элементов происходит межслойная синхронизация пространственных структур при достаточно сильном межслойном взаимодействии. Такие системы способны осуществлять динамическое копирование образов (регулярных пространственных структур). В основе эффекта лежит механизм конкуренции состояний бистабильных элементов. За счет динамического копирования многослойные бистабильные решетки могут быть использованы для выделения контура заданного изображения.

5) Многоэлементные системы, состоящие из нейроноподобных элементов с возбудимыми свойствами (элемент ФитцХью-Нагумо, модель со сложно-пороговыми возбуждением, генератор Чуа), имеют широкий спектр стационарных волновых решений, включающий бегущие импульсы возбуждения, фронты переключения, спиральные волны возбудимого и колебательного типов. Эти решения ассоциируются с гомо- и гетероклиническими орбитами в сосредоточенных нелинейных системах, описывающих профили бегущих волн. Бифуркационные множества, отвечающие таким орбитам, имеют сложный характер, и позволяют получить при выбранных параметрах нелинейные волновые режимы с заданными характеристиками (профиль волны и ее скорость).

6) В многоэлементных системах со сложно-пороговым возбуждением уединенные волны (бегущие импульсы и волновые фронты) демонстрируют, в отличии от классических автоволн в возбудимых средах, солитоноподобное поведение. При столкновении волн между собой и границами системы происходит их взаимное переотражение за счет свойств мультипороговой генерации элемента системы. Такие свойства, а также возникновение волновых неустойчивостей, ведут к формированию в системе сложных, в том числе фрактальных, пространственно-временных структур импульсной активности.

7) Межслойное взаимодействие нелинейных волн (бегущие импульсы, волновые фронты, спиральные волны) приводит к эффектам межслойной циркуляции волн, взаимному подавлению волновых возмущений, локализации волнового возмущения в пространстве, контролируемому изменению характеристик распространения волны (изменению скорости и направления движения в зависимости от коэффициента взаимодействия). Локальное межслойное взаимодействие (пин-контакты) способно изменить глобальную волновую динамику (формирование генераторов синхронизованных импульсов, подавление и инициирование возбуждения).

8) Ансамбль нейроноподобных элементов с подпороговыми колебаниями и импульсно-управляемым межэлементным взаимодействием способен эффективно формировать и поддерживать структуры импульсной активности любой заданной пространственной конфигурации. Изменение конфигурации структуры (переключение) происходит сравнительно быстро за счет короткого импульсного стимула на временах порядка одного, двух периодов подпо-роговых колебаний. Система использует эффекты фазового управления подпороговыми колебаниями и динамическое блокирование межэлементных связей. Модель основывается на динамике оливо-мозжечковой нейронной системы формирования моторных паттернов.

Структура и объем диссертации

Работа организована следующим образом. В первой главе рассматриваются модели базовых элементов, изучаются их основные динамические характеристики. Наряду с известными моделями представлены авторские разработки новых моделей с отличными от классических функциональными свойствами. Вторая глава посвящена изучению неавтономной динамики элементов при импульсном внешнем воздействии. Будут изучаться процессы преобразования сигналов, генерации импульсного отклика и представлен механизм фазового управления колебания на основе эффекта фазовой авто-переустановки.

В главе 3 рассматривается простейшая архитектура ансамбля из двух элементов в конфигурации "ведущий-ведомый", исследуются фазовые характеристики импульсных сигналов, процессы импульсного кодирования информации. Здесь также рассмотрен эффект возникновения хаотических колебаний за счет межэлементного взаимодействия в системе из двух возбудимых элементов. Изучается динамика двух автогенераторов с импульсно-управляемыми связями. Глава 4 посвящена изучению процессов формирования пространственных структур в многоэлементных бистабильных системах. Здесь будут получены условия возникновения таких структур, рассчитаны их основные характеристики с помощью построения поглощающих областей в многомерном фазовом пространстве. В главе 5 рассмотрены процессы преобразования структур активности в многоэлементых системах с многослойной пространственной архитектурой. Будет описан, в частности, эффект динамического копирования структур и основанное на нем динамическое выделение контура объекта. Глава 6 посвящена распространению нелинейных волн в многоэлементных системах. Будут изучены фронты переключения в бистабильных моделях и распространение уединенных импульсов с солитонопо-добными свойствами. Здесь также будет показано как за счет неустойчивости волновых движений в ансамбле могут быть сформированы самоподдерживающиеся фрактальные волновые фронты. Математический аппарат исследования волновых процессов основан на детальном изучении бифуркационных множеств, отвечающих существованию гомо- и гетероклинических структур в фазовом пространстве автомодельных систем. В главе 7 рассмотрены основные эффекты взаимодействия волн в системах с многослойной архитектурой. Здесь важную роль играют процессы управления фронтами активности в битабильных моделях, локализация и изменение скорости распространения. В возбудимых системах будут рассматриваться процессы межслойной синхронизации и циркуляции возбуждения между слоями. Глава 8 посвящена изучению стимул-индуцированных процессов в многоэлементных системах автогенераторного типа. Исследуются процессы формирования фазовых кластеров заданной пространственной конфигурации и стимул-индуцированной синхронизации. В заключении представлен кратких обзор полученных результатов.

Диссертация содержит 362 страницы, включая 203 рисунка, 57 научных публикаций (из них 35 статей в реферируемых изданиях) по теме диссертации, 187 наименований цитируемой литературы.

 
Заключение диссертации по теме "Радиофизика"

Результаты работы и краткие выводы .

1) Предложена модель возбудимого элемента со сложно-пороговым возбуждением. Модель построена на основе классических уравнений

ФитцХью-Нагумо, описывающих процессы генерации электрических потенциалов в клеточной мембране. Порог возбуждения описывается входящей сепаратрисой седлового состояния равновесия, которая в зависимости от параметров может иметь сложный осцилляторный характер. Проведен бифуркационный анализ модели.

2) Предложена динамическая модель нейронов с подпороговыми колебаниями. Модель представляет собой систему взаимодействующих блоков - динамических систем с возбудимыми и колебательными свойствами. Модель описывает режимы генерации электрических сигналов, полученные экспериментально для нейронов нижних олив.

3) Исследован эффект преобразования импульсных сигналов в модели нейронной системы со сложно-пороговым возбуждением. Получены условия интегро-резонансного отклика на серии импульсов. Обнаружен эффект берет-отклика - формирование серии определенного числа импульсов.

4) Исследован эффект формирования хаотических колебаний в системе двух взаимодействующих моностабильных отображений. Модель описывает динамику двух связанных нейроноподобных систем.

5) Обнаружен эффект формирования регулярных и хаотических последовательностей импульсов в модели двух взаимодействующих элементов со сложно-пороговым возбуждением. Такие последовательности характеризуются фазой (моментом) возникновения импульса относительно опорного генератора. Построено и исследовано отображение фазы импульса, кодирующее фазовые последовательности.

6) В модели релаксационного генератора обнаружен и исследован эффект фазовой авто-переустановки. Он заключается в том, что при воздействии коротким импульсом на автогенератор, фаза его колебаний переустанавливается к значению, не зависящему от начальной фазы и определяемому только параметрами самого импульса. Эффект позволяет управлять фазой колебаний с помощью внешнего стимула. Эффект авто-переустановки описывает динамику нейронов с подпорого-выми колебаниями и наблюдался нейрофизиологами экспериментально при исследовании нейронов нижних олив.

7) Разработана модель импульсного управления межэлементными связями в системе взаимодействующих возбудимых элементов с подпоро-говыми колебаниями. Импульс возбуждения, возникающий на пиках подпороговых колебаний элементов на определенных интервалах подавляет межэлементное взаимодействие и приводит к десинхрониза-ции элементов. При отсутствии импульсов элементы синхронизуются за счет разностной (диффузионной) связи. Модель позволяет эффективно управлять процессами синхронизации и десинхронизации импульсов и осуществлять их "временное связывание".

8) В бистабильных многоэлементных системах (решетках триггерных элементов, решетках бистабильных осцилляторов, решетках кубических отображений, решетках генераторов Чуа) исследован эффект формирования стационарных пространственных структур. С использованием метода поглощающих областей получены условия на параметры моделей, при которых они имеют 2К' аттракторов (№ - число элементов решетки), отвечающих пространственным структурам. При соответствующем выборе начальных условий любое А^х// бинарное изображение может быть закодировано в решетке в виде пространственной структуры.

9) В бистабильных решетках с многослойной архитектурой обнаружен и исследован эффект межслойной синхронизации движений. Этот эффект лежит в основе явления динамического копирования образов. Если первый (входной) слой системы содержит пространственную структуру, отвечающую некоторому бинарному изображению, а элементы остальных слоев распределены беспорядочно, то за счет межслойной синхронизации в слоях системы формируются тождественные пространственные структуры, профиль которых является достаточно точной копией исходного стимула. В основе эффекта лежит механизм конкуренции состояний бистабильных элементов. За счет динамического копирования многослойные бистабильные решетки могут быть использованы для выделения контура исходного изображения.

10) В ансамбле элементов со сложно-пороговым возбуждением обнаружены фрактальные пространственно-временные структуры импульсной (спайковой) активности, формируемые без специфического воздействия извне. В основе эффекта лежит существование и неустойчивость большого числа волновых решений, отвечающих гомо- и гетерокли-ническим траекториям трехмерной нелинейной системы, описывающей профили бегущих волн. В фазовом пространстве этой системы обнаружен гетероклинический контур коразмерности 2.

И) Обнаружен и исследован эффект солитоноподобного поведения импульсов и волновых фронтов в цепочках возбудимых элементов (элемент со сложно-пороговым возбуждением и генератор Чуа). При столкновении бегущих импульсов возбуждения между собой и границами системы происходит их взаимное переотражение в отличие от классических автоволн в возбудимых системах. В основе эффекта лежит сложно-пороговое поведение базовых элементов систем. В частности, такие элементы способны генерировать вторичные импульсы возбуждения при взаимном подавлении импульсов при столкновении. При взаимодействии волновых фронтов (кинка и анти-кинка) происходит инвертирование фронта в точке столкновения.

12) В многоэлементных многослойных системах с цепочечной архитектурой исследованы процессы межслойного взаимодействия волн. Обнаружено, что за счет такого взаимодействия в бистабильных системах происходит модуляция скорости волнового фронта (кинка или анти-кинка), его разворот или остановка. Получены условия на параметры, соответствующие этим эффектам. При локальном межслойном взаимодействии (пин-контакты) бегущий волновой фронт может быть остановлен (локализован) в точке контакта. В основе эффекта лежит механизм конкуренции состояний бистабильной системы.

13) При межслойном взаимодействии импульсов возбуждения обнаружены эффекты циклического возбуждения слоев системы и формирования импульсных последовательностей с заданными характеристиками. Получены также условия подавления возбуждения за счет межслойно-го взаимодействия.

14) Исследована динамика спиральных волн возбуждения в двух связанных решетках возбудимых элементов. Обнаружены эффекты меж-слойной циркуляции спиральных волн, подавления волны и возникновения сложных волновых структур. Изучено влияние дискретной архитектуры системы на распространение волн, масштабы которых сравнимы с собственными пространственными масштабами решетки. Установлено, что определяющую роль в формировании сложных волновых структур играет анизотропная архитектура межэлементных взаимодействий. Для описания полученных эффектов была разработана локальная модель межэлементной передачи и подавления возбуждения.

15) Предложен метод формирования колебательных структур активности (фазовых кластеров) заданной пространственной конфигурации согласно заданному стимулу в многоэлементных системах с центральным осциллятором. Заданное распределение фазовых кластеров устанавливается за счет эффекта фазовой авто-переустановки и поддерживается с помощью импульсно-управляемых межэлементных связей. Эффект основан на динамике формирования моторных паттернов в оливо-мозжечковой нейронной системе.

Заключение.

В заключении отметим ключевые моменты проведенного исследования и выделим основные результаты. Среди большого спектра изученных кооперативных эффектов динамики многоэлементных систем можно выделить три основных группы, связанные с динамическими свойствами элемента системы.

1) К первой группе относятся эффекты формирования структур активности в ансамблях бистабильных элементов. Ключевым свойством, определяющим динамику, является бистабильность. С точки зрения моделирования процессов в нейро-системах такое описание является "интегральным" или усредненным, учитывающими наличие у нейрона лишь двух стационарных состояний: возбуждения и покоя. Это, в частности, определяет пределы применимости полученных эффектов в моделях к реальным системам. Здесь основным моментом является соотношение характерных временных масштабов развития процессов во времени и в пространстве. Поскольку "во времени" мы имеем дело с усредненным описанием, то, для получения адекватной интерпретации, развитие процессов в пространстве должно быть сравнительно медленным. Для межэлементных связей разностного (диффузионного) типа это означает предел слабых связей. Среди изученных эффектов можно выделить явление формирования стационарных пространственных структур и их мультистабильность. Эффект был рассмотрен для широкого класса моделей, обладающих бистабильными свойствами (глава 4). Возможные волновые процессы (волновые фронты или интерфейсы) для таких систем ограничены областью провала распространения за счет высокой мультистабильности (глава 6). Явление формирование бинарных структур в битсбильных решетках может показаться, на первый взгляд, тривиальным эффектом. Поскольку каждое из устойчивых состояний бистабильного элемента является грубым или структурно устойчивыми, то в пределе бесконечно малых межэлементных связей элемент останется в окрестности одного из этих состояний. Однако, смещение элемента от невозмущенного состояния (в пределах поглощающей области) оказывается очень существенным для взаимодействия структур в многослойной систем. За счет этого, в частности, оказывается возможным эффект динамического копирования и динамического выделения контура объекта (глава 5). Фронты переключения в многослойных системах могут управляться за счет межслойных взаимодействий. В частности, такие волны можно инвертировать или локализовать с использованием, например, пин-контактов.

2) Вторая группа эффектов относится к возбудимым моделям. Элементы таких систем являются, как правило, моностабильными и генерируют импульсы возбуждения только при наложении достаточно больших возмущений, приходящих от внешних источников или за счет межэлементных взаимодействий. Такие системы являются непосредственными (в отличие от интегральных) эволюционными моделями нейронов и нейронных ансамблей и описывают процессы коллективной импульсной активности. Среди таких процессов отметим, прежде всего, явления генерации импульсного отклика на внешний информационный сигнал в модели со сложно-пороговой динамикой. Разработанная в рамках исходной биологической модели (*), описанной во Введении, система со сложно-пороговым возбуждением, демонстрирует широкий диапазон динамических режимов. Ключевым моментом здесь являются бифуркационные механизмы рождения периодических движений из петли сепаратрис (глава 1). Это приводит к эффектам мультипороговой генерации (глава 2) отклика, хаотическим процессам и фазовому кодированию сигнала отклика (глава 5). При объединении таких элементов в ансамбль реализуется широкий спектр волновых решений, свойства которых существенно отличаются от классических автоволн в возбудимых средах. Здесь отметим формирование фрактальных структур спайковой активности за счет существования нетривиального множества волновых решений. Процесс формирования таких структур является спонтанным при получении системой некоторого начального возмущения. При этом, каждый из элементов ансамбля, при отсутствии связи не имеющий колебательных решений, начинает генерировать незатухающие последовательности импульсов с определенными информационными характеристиками, определяемыми характерными масштабами волновых неустойчивостей. Отметим также появление у бегущих импульсов солитоноподобных свойств. При столкновении между собой и с границами системы они демонстрируют "упругие" свойства подобно классическим со-литонам в консервативных средах. С динамической точки зрения это также связано с наличием у элемента сложно-порогового поведения, обеспечивающего вторичное возбуждение (перезапуск). Заметим, что подобные "эластичные" свойства демонстрируют импульсы в нервных волокнах [8]. Эффекты коллективной динамики многослойных возбудимых систем включают процессы циркуляции возбуждения между слоями, формирование пространственно-распределенных генераторов импульсов с использованием пин-контактов, подавление спиральных волновых возбуждений в системах с двумерной геометрией слоя и др. Заметим также, что возбудимая динамика, пороговые свойства которой определяются сепаратрисами седлового состояния равновесия, типична для широкого класса моделей нелинейной физики. Это, например, некоторые модели полупроводниковых лазерных систем [157], модели кинетики химических реакций (реакция СО окисления Pt110 [185]), некоторые, известные ранее, модели нейронной возбудимости (модель Морриса-Леккарра [118]) и др.

3) Третью группу составляют явления и процессы, связанные с наличием у элемента системы собственной колебательной активности - автоколебаний. Такие процессы, как утверждают нейрофизиологи [134], играют определяющую роль в функционировании нейронных систем головного мозга. С радиофизической точки зрения, автоколебательные свойства элементов ансамбля означают, что такие системы обладают собственным временным масштабом и, следовательно, частотной селективностью к входным воздействиям. Еще одно важное свойство колебательных систем - способность к синхронизации, которое, например, является основой для коллективных процессов кластерообразования, формирования фазовых волн и др. В данной работе существенное внимание уделялось эффектам управления фазой колебаний, которая, например, для нейронных систем, является ключевой информационной характеристикой. Был обнаружен и исследован новый эффект фазовой авто-переустановки в ансамблях автоколебательных релаксационных осцилляторов (глава 2). Он заключается в том, что при воздействии импульсом на автоколебательную систему фаза колебаний может быть переустановлена к значению, не зависящему от начальных условий. Эффект подтверждается экспериментальными данными нейрофизиологов при исследовании динамики нейронов нижних олив [131]. За счет эффекта фазовой авто-переустановки колебания больших ансамблей могут быть эффективно (быстро, 1-2 периода собственных колебаний) синхронизованы между собой даже без непосредственного взаимодействия между элементами. Другим, не менее важным следствием эффекта авто-переустановки, является возможность формирования фазовых кластеров (структур колебательной активности) любой, наперед заданной пространственно-временной конфигурации. Такие структуры моделируют моторные паттерны в нейронных системах и могут служить основой для разработки нейродинамических систем многопараметрического управления (глава 8).

Отметим, что все описанные в работе эффекты кооперативной динамики многоэлементных систем изучались теоретически, с помощью математических моделей и экспериментально — с помощью построения соответствующих радиотехнических устройств. Анализ математических моделей включал как аналитическое исследование динамики в фазовом пространстве, построение бифуркационных множеств с помощью современных методов качественной теории нелинейных колебаний, так и компьютерное моделирование.

 
Список источников диссертации и автореферата по физике, доктора физико-математических наук, Казанцев, Виктор Борисович, Нижний Новгород

1. Абарбанель Г.Д.И., Рабинович М.И., Сельверстон А., Баженов М.В., Ху-эрта Р., Сущик М.М., Рубчинский J1.JL Синхронизация в нейронных ансамблях // УФН. 1996. Т. 166, N. 4

2. Андронов A.A., Витт, A.A., Хайкин, С.Э. Теория колебаний. -М.: Физма-тизд, 1959, 916 С.

3. Андронов A.A., Леонтович Е.А., Гордон И.И., Майер А.Г. Теория бифуркаций динамических систем на плоскости. М.: Наука, 1967.

4. Арнольд В.И. (ред.) Современные проблемы математики. Фундаментальные направления / Москва. ВИНИТИ. 1986, Т.5, 284с.

5. Андреев Ю.В., Вельский Ю. JL, Дмитриев A.C., Куминов Д.А., Динамические системы с хаосом как среда для записи, хранения и обработки информации // Изв. ВУЗов, Радиофизика. 1994. Т.37, С. 1003-1019.

6. Анищенко, B.C. Сложные колебания в простых системах. Механизмы возникновения, структура и свойства хаоса в радиофизических системах. -М.: Наука, 1990.

7. Анищенко B.C., Вадивасова Т.Е., Астахов В.В. Нелинейная динамика хаотических и стохастических систем. Саратов: Изд-во Сарат. ун-та, 1999. 368 С.

8. Асланди, О.В., Морнев, O.A. Отражение бегущих импульсов возбуждения // Биофизика. 1996. Т. 41, N 4. С. 953-959.

9. Астахов В.В., Безручко Б.П, Кузнецов С.П., Селезнев Е.П. Особенности возникновения квазипериодических движений в системе диссипативно связанных нелинейных осцилляторов под внешним периодическим воздействием.//Письма в ЖТФ. 1988. Т. 14, В. 1. С.37-41.

10. Астахов В.В., Безручко Б.П, Пономаренко В.И, Селезнев Е.П. Квазиоднородные стохастические движения и их разрушение в системе связанных нелинейных осцилляторов. // Изв. вузов, Радиофизика. 1989. Т.31, №5. С.627-630.

11. Афраймович B.C., Некоркин В.И. Решеточные динамические системы. Учебное пособие / Изд-во Нижегородского университета. Н.Новгород, 1994.

12. Баутин H.H., Леонтович Е.А. Методы и приемы качественного исследования динамических систем на плоскости. М.: Наука, 1976.

13. Безручко Б.П., Селезнев Е.П., Смирнов Е.В. Эволюция бассейнов притяжения аттракторов симметрично связанных систем с удвоением периода. //Письма в ЖТФ. 1995. Т.21, В.8. С.12-17.

14. Безручко Б.П., Прохоров М.Д., Селезнев Е.П. Особенности устройства пространства параметров двух связанных неавтономных неизохронных осцилляторов. Письма в ЖТФ 1996. Т.22, В. 6. С.61-66.

15. Безручко Б.П., Прохоров М.Д. Управление пространственно-временным хаосом в цепочке бистабильных осцилляторов. // Письма в ЖТФ, 1999, Т. 25, В. 12, С. 51-57.

16. Безручко Б.П., Прохоров М.Д., Селезнев Е.П. Виды колебаний, мульти-стабильность и бассейны притяжения аттракторов симметрично связанных систем с удвоением периода. Изв. ВУЗов "Прикладная нелинейная динамика" 2002. Т. 10, N. 4, С. 47-68.

17. Белых В.Н. Качественные методы теории нелинейных колебаний / Учеб. пособие. Горький: Горьк. гос. ун-т, 1980. С. 99.

18. Белых В.Н., Веричев H.H. О динамике взаимосвязанных ротаторов // Изв. ВУЗов. Радиофизика. 1988, N. 6.

19. Белых В. Н., Осипов Г.В. Автоматическая синхронизация колебаний в ансамблях регулярных и хаотических осцилляторов // Радиотехника и электроника. 2004. Т. 49, № 8. С. 951-955.

20. Борисюк Г.Н., Борисюк Р.Н., Казанович Я.Б., Лузянина Т.Б., Турова Т.С., Цембалюк Г.С. Осцилляторные нейронные сети. Математика и приложения // Математическое моделирование. 1992, Т. 4, N 1, С. 65-77.

21. Васильев В.А., Романовский Ю.М., Яхно В.Г. Автоволновые процессы. -М.: Наука, 1987,240 С.

22. Волков Е.И., Локальное подавление генерации импульсов в кольце из трех релаксационных осцилляторов.// Биофизика, 1998, Т. 43, В. 3, С. 535-540.

23. Гласс Л., Мэкки М. От часов к хаосу. Ритмы жизни.- М.: Мир, 1991.- 248 с.

24. Гуртовник A.C., Неймарк Ю.И. Синхронизмы в системе циклически слабосвязанных осцилляторов // Динамика систем: Динамика и управление, сб. науч.тр. под ред. Ю.И. Неймарка -Н.Новгород, гос. ун-т, 1991, С. 8497.

25. Дмитриев A.C. Хаос и обработка информации в нелинейных динамических системах // Радиотехника и электроника. 1993. Т.38, №1, С. 1-24.

26. Дмитриев A.C., Куминов Д.А. Хаотическое сканирование и распознавание образов в нейроподобных системах с обучением // Радиотехника и электроника. 1994. Т.39, С. 633-641.

27. Дмитриев A.C. Хаотическая синхронизация как информационный процесс // Изв. ВУЗов, Радиофизика. 1998. Т. 41, № 12. С. 1497-1509.

28. Дмитриев A.C., Панас, А.И. Динамический хаос: новые носители информации для систем связи. М.: Издательство Физико-математической литературы. 2002.252 С.

29. Жаботинский А.М., Концентрационные автоколебания М.: Наука. 1974. 250 С.

30. Капранов М.В. Взаимодействующие многосвязные СФС // Системы фазовой синхронизации / Под ред. Шахгильдяна В.В., Белюстиной Л.Н. -М.: Радио и связь. 1982. С. 55-73.

31. Кринский В.И., Михайлов, A.C. Автоволны. М.: Знание, 1984.ь 33. Кринский В.И., Медвединский А.Б., Панфилов A.B. Эволюция автоволновых вихрей // Математика и Кибернетика. 1986. Т.8.

32. Кузнецов С.П., Динамический хаос (курс лекций).-М.: Издательство Физико-математической литературы. 2001, 296 с.

33. Кузнецов С.П., Кузнецов, А.П., Рыскин, Н.М. Нелинейные колебаниякурс лекций).-М.: Издательство Физико-математической литературы, 2002.

34. Ланда, П.С., Нелинейные колебания и волны. М.: Наука, 1997.

35. Лихарев К.К., Ульрих Б.Т. Системы с джозефсоновскими контактами. -М.: Изд-во МГУ. 1978. 446 С.

36. Логинов A.C., Ржанов А.Г., Еленский В.Г. Многоэлементные полупроводниковые лазеры // Зарубежная радиоэлектроника. 1986, N. 8, С. 49-64.• 39. Лоскутов А.Ю., Михайлов A.C. Синергетика. М.: Наука, 1991.

37. Лоскутов А.Ю. Нелинейная динамика и сердечная аритмия. // Изв. ВУЗов Прикладная нелинейная динамика. 1994. Т. 2(3-4), С. 14-25.

38. Малинецкий, Г.Г., Потапов, А.Б. Современные проблемы нелинейной динамики, М.: Едиториал УРСС, 2002.

39. Меерович Л. А., Зеличенко Л. Г., Импульсная техника М.: Наука. 1953

40. Некоркин В.И. Бегущие импульсы в двухкомпонентной активной среде с диффузией //Радиофизика. 1988. Т.31, №1. С.41

41. Неймарк, Ю.И. Метод точечных отображений в теории нелинейных колебаний. М.:Наука, 1972. 472 С.

42. Неймарк, Ю.И., Ланда, П.С. Стохастические и хаотические колебания.1. М.: Наука, 1987.

43. Николлс Дж., Мартин Р., Валлас Б., Фукс П. От нейрона к мозгу. Изд-во УРСС. 2003. 672 С.

44. Пиковский А., Розенблюм М., Курте Ю. Синхронизация. Фундаментальное нелинейное явление. М.: Техносфера. 2003,496 С.

45. Пономаренко В.П., Матросов В.В. Самоорганизация временных структур в мультиравновесной автогенераторной системе с частотным управлением //ЖТФ. 1997. Т. 67. В.З.

46. Потапов А.Б., Али М.К. Нелинейная динамика обработки информации в нейронных сетях//Новое в синергетике: Взгляд в третье тысячелетиеМ.: Наука. 2002 / ред. Г.Г. Малинецкцкий, С.П. Курдюмов.

47. Рабинович М.И., Трубецков Д.И. Введение в теорию колебаний и волн. -М.: Наука. 1984

48. Рабинович М.И., Фабрикант А.Л., Цимринг Л.Ш. Конечномерный пространственный беспорядок // УФН. 1992. Т. 162, N. 8.

49. Романовский, Ю.М., Степанова, Н.В., Чернавский, Д.С. Математическое моделирование в биофизике. М.: Наука. 1975.

50. Романовский, Ю.М., Степанова, Н.В., Чернавский, Д.С. Математическая биофизика. М.: Наука. 1984.

51. Рубин А.Б. Биофизика: В 2 т. Т. 2: Биофизика клеточных процессов: Учебник для вузов. 2-е изд., испр. и доп. - М.: Книжный дом "Университет", 2000.

52. Скотт Э. Волны в активных и нелинейных средах в приложении к электронике. Советское радио. 1977. 368 С.

53. Фейгин, М.И. Вынужденные колебания систем с разрывными нелинейно-стями. М.: Наука. 1994. 288 С.

54. Фейгин, М.И., Чирикова, О существовании пониженной управляемости судов, неустойчивых на прямом курсе // Изв. АН СССР. Механика твердого тела. 1985. N2. С. 73-78.

55. Хакен, Г. Информация и самоорганизация. Макроскопический подход к сложным системам. М.: Мир. 1991.

56. Ханин, Я.И. Динамика квантовых генераторов.- М.: Сов. радио, 1975.

57. Хорн Р., Джонсон Ч. Матричный анализ / Пер. с англ.-М.: Мир, 1989. 655 С.

58. Шильников, Л.П. Новый тип бифуркации в многомерных динамических системах// Математический сборник. 1969. Т. 10, С. 1368.

59. Шильников Л.П. К вопросу о расширенной окрестности грубого состояния равновесия типа седло-фокус // Математический сборник. 1970. Т. 10. С. 91.

60. Abarbanel H.D.I, Rabinovich M.I. Neurodynamics: nonlinear dynamics and neurobiology // Cur. Opin. Neurobiol. 2001. V. 11, P. 423-430.

61. Abbott L. F., Kepler Т. B. Model neurons: From Hodgkin Huxley to Hopfield. In L. Garrido (Ed.), Statistical mechanics of neural networks. 1990. Vol. 368, pp. 5-18 // Lecture notes in physics, Berlin: Springer.

62. Afraimovich, V.S., Nekorkin, V.I., Osipov, G.V., Shalfeev, V.D. Stability, Structures and Chaos in Nonlinear Synchronization Networks. World Scientific, Singapore, 1995. 246 P.

63. Afraimovich, V. S., Verichev, N. N. and Rabinovich, M. I. // Izv. Vyssh. Uchebn. Zaved. Radiofiz. 1986. V. 29, P. 795.

64. Afraimovich, V.S., Glebsky, L.Yu., Nekorkin, V.I. Stability of stationary states and topological spatial chaos in multidimensional lattice dynamical systems // Random Comput. Dyn. 1994. V. 2. P. 287-303.

65. Ahissar M., Vaadia E Oscillatory activity of single units in a somatosensory codex of an awake monkey and their possible role in texture analysis // Proc Natl Acad Sci USA. 1990. V. 87, P. 8935-8939.

66. Andronov A.A. Leontovich E.A., Gordon I.I., Mayer A.G., Kuznetsov Y.A. Elements of Applied Bifurcation Theory. -Springer-Verlag, Berlin, 1995.

67. Arena P., Fortuna L., Branciforte L. Reaction—diffusion CNN Algorithms to Generate and Control Artificial Locomotion // IEEE Trans. Circuits and Systems. 1999. V. 46(2), P. 253-260.

68. Ashwin P., Buescu J., Stewart I. Bubbling of attractors and synchronization of chaotic oscillators // Phys. Lett. A. 1994. V. 193, P. 126-139.

69. Ashwin P., Terry J. On riddling and weak attractors // Physica D. 2000. Vol. 142, P. 87-100.

70. Babloyantz A., Lourenco C. Computation with chaos: a paradigm for cortical activity // Proc. Nat. Acad. Sci. USA. 1994. V. 91, P. 9027-9036.

71. Belykh V.N., Belykh I.V., Hasler M. Hierarchy and stability of partially synchronous oscillations of diffusively coupled dynamical systems // Phys. Rev. E. 2000. V. 62, P. 6332-6344.

72. Belykh V. N., Mosekilde E. One-dimensional map lattices: Synchronization, bifurcations, and chaotic structures // Phys. Rev. E. 1996. V. 54, P. 3196-3203.

73. Belykh V. N., Belykh I. V., Hasler M. Hierarchy and stability of partially synchronous oscillations of diffusively coupled dynamical systems // Phys. Rev. E. 2000. V. 62, P. 6332-6345.

74. Behrendt R.P. Hallucinations: Synchronisation of thalamocortical c oscillations underconstrained by sensory input // Consciousness and Cognition. 2003. V. 12, P. 413-451.

75. Biktashev, V. N. in Computational Biology of the Heart, edited by A. V. Pan-filov and A. V. Holden Wiley, Chichester, 1997, P. 155-170.

76. Bland, B.H. The physiology and pharmacology of hippocampal formation theta rhythms // Prog. Neurobiol. 1986. V. 26, N 1, P. 1- 54.

77. Borisyuk R.M., Hoppensteadt F.C. Memorizing and recalling spatial-temporal patterns in an oscillatory model of the hippocampus // BioSystems. 1998. V. 48, P. 3-10.

78. Borisyuk R., Hoppensteadt F. Oscillatory models of the hippocampus: A study of spatio-temporal patterns of neural activity // Biol. Cybern. 1999. V. 81. P. 359-371.

79. Borisyuk R.M., Kazanovich Y.B. Oscillatory neural network model of attention focus formation and control // BioSystems. 2003. V. 71, P. 29-38.j 84. Brenner N., Strong S.P., Koberle R., Bialek W., de Ruyter van Steveninck R.R.

80. Chua L.O. Global unfolding of Chua's circuits // IEICE Trans. Fundamental Electron. Commun. Comput. Sci. 1993, V. 5, P. 704-737.

81. Crounse K.R., Chua L.O. Methods for Image processing and Pattern formation in Cellular Neural Networks: A Tutorial // IEEE Trans. Circuits and Systems.k1995. V. 42, P. 583-601.

82. Cruz J. M., Chua L. O. Design of high speed high density CNN's in CMOS technology // Int. J. Circuit Theory and Applications. 1992. V. 20, P. 555-572.

83. Eckhom R., Frien A., Bauer R., Woelbern, M., Kehr H. High frequency (60-90

84. Hz) oscillations in primary visual codex of awake monkey // Neuroreport. 1993. V.4. P. 243-246.

85. Eguia M. C., Rabinovich M. I., Abarbanel H. D. I. Information transmission and recovery in neural communications channels // Phys Rev E. 2000. V. 62. P. 7111-7122.

86. Ekeberg O. A combined neuronal and mechanical model of fish swimming // Biol. Cybern. 1993. V. 69, P. 363.

87. Ermentrout B. Neural networks as spatio-temporal pattern-forming systems // Rep. Prog. Phys. 1998. V. 61. P. 353-430.

88. Ermentrout G.B., Kopell N. Frequency plateaus in a chain of weakly coupled oscillators // SIAM Journal Math. Anal. 1984. V. 15, P. 215-237.

89. Feigin A.M, Konovalov I.B. On the Possibility of Complicated Dynamic Behavior of Atmospheric Photochemical Systems: Instability of the Antarctic Photochemistry during the Ozone Hole Formation // J. Geophys. Res. 1996.V. 101, P. 26023-26038.

90. FitzHugh R. Impulses and physiological states in theoretical models of nerve membranes // Biophysical Journal. 1961. V. 1, P. 445-466.

91. Freeman W.J. Neurodynamics: An Exploration in Mesoscopic Brain Dynamics, Perspectives in Neural Coding Springer. 2000

92. Fujisaka H., Yamada T. Stability theory of synchronized motion in coupled-oscillator systems // Prog. Theor. Phys. 1983. V. 69. N 1, P. 32-47.

93. Gaponov-Grekhov A.V., Rabinovich M.I. Nonlinearities in Action. Oscillations, Chaos, Order, Fractals. Springer-Verlag, Berlin. 1992.

94. Golomb D., Hansel D., Shraiman B., Sompolinsky H. Clustering in globally coupled phase oscillators // Physical Review A. 1992. V. 45, N. 6. P. 35163530.

95. Glass L., Guevara M, Shrier A., Perez R. Bifurcation and chaos in periodically stimulated cardiac oscillator // Physica D. 1983. P. 89-101.

96. Glass L., Nagai Y., Hall K., Talajic M., Nattel S. Predicting the entrainment of reentrant cardiac waves using phase resetting curves // Phys Rev E. 2002. V. 65.

97. Glendinning P. Stability, Instability and Chaos.- Cambridge University Press, Cambridge. 1994.

98. Gray C.M., Singer W. Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex // Proc Natl. Acad. Sci. USA. 1989. V. 86, P. 1698-1702.

99. Grillner S. Neural Networks for Vertebrate Locomotion // Scientific American. 1996. P. 64.

100. Guckenheimer J., Holmes P. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields Springer, New York. 1986.

101. Hastings S.P., The existence of homoclinic and periodic orbits for the Fitz

102. Hugh-Nagumo equations // Q. J. Math. 1974. V. 27, P. 369-378.

103. Hindmarsh J.L., Rose R.M. A model of neuronal bursting using three coupled first order differential equations // Proc. R. Soc. Lond. B Biol. Sci. 1984. Vol. 221, P. 87-102.

104. Hebb D. The Organization of Behavior: A Neuropsychological Theory.1. Wiley, New York. 1949.

105. Henze D.A., Buzsak, G. Single cell contributions to network activity in thehippocampus //International Congress Series. 2003, V. 1250, P. 161.

106. Hodgkin A. L., Huxley A. F. A quantitative description of membrane current and its application to conduction and excitation in a nerve // Journal of Physiology (London). 1952. V. 117, P. 500-544.

107. Hopfield J.J. Neural Networks and Physical Systems with Emergent Collective Computantional Abilities // Proc. Nat. Acad. Sci. USA. 1982. V.79, P.ir2554-2559.

108. Hopfield J. J. Neurons with graded response have collective computational properties like those of two-state neurons // Procs Natl Acad Sci USA. 1984. V.81, P. 3088-3092.

109. Hoppensteadt F.C., Izhikevich E.M. Oscillatory Neurocomputers with Dynamic Connectivity // Phys Rev Lett. 1999. V. 82, P. 2983-2986.

110. Izhikevich E.M. Neural excitability, spiking and bursting // Int. J. Bifurc. Chaos. 2000. V. 10, N 6. P. 1171-1266.

111. Kandel E.R., Schwartz J.H., Jessell T.M. (Eds.) Principles of Neural Sci® ence. Third Edition. Prentice-Hall Intern. Inc. 1991.1135 P.

112. Karma A. Spiral breakup in model equations of action potential propagation in cardiac tissue // Phys. Rev. Lett. 1993. V. 71. P. 1103-1106.

113. Kazanovich Y., Borisyuk R. Object selection by an oscillatory neural network // BioSystems. 2002. V. 67. P. 103-111.

114. Keener J.P. Propagation and its failure in coupled systems of discrete excit-l able cells // SIAM J. Appl. Math. 1987. V. 47. P. 556.

115. Koch C. Biophysics of computation: information processing in single neu• rons.- Oxford University Press. 1998.

116. Korn H., Faure P. Is there chaos in the brain? II. Experimental evidence and related models // C. R. Biologies. 2003. V. 326, P. 787-840.

117. Kuramoto Y. Chemical Oscillations, Waves and Turbulence. Springer, Berlin. 1984.

118. Lampl I., Yarom Y., Subthreshold oscillations and resonant behavior: twot:manifestations of the same mechanism//Neuroscience. 1997. V. 78. P. 325341.

119. Lang E.J., Sugihara I., Welsh J.P., Llinas R. Patterns of spontaneous purkinje cell complex spike activity in the awake rat // J Neurosci. 1999. V. 19, N7.1. P. 2728-2739.

120. Lestienne R. Spike timing, synchronization and information processing on the sensory side of the central nervous system // Progress in Neurobiology. 2001. V. 65, P. 545-591.

121. Leznik E., Makarenko V.I., Llinas R. Electrotonically Mediated Oscillatory

122. Patterns in Neuronal Ensembles: An In Vitro Voltage-Dependent Dye-Imaging Study in the Inferior Olive // J. Neurosci. 2002. V. 22. P. 2804-2815.

123. Linsker, R. Perceptual neural organization: some approaches based on network models and information theory // Ann. Rev. Neurosci. 1990. V. 13. P. 257-281.

124. Llinas R, Baker R, Sotelo C. Electrotonic coupling between neurons in cat• inferior olive // J Neurophysiol. 1974. V. 37. P. 560-571.

125. Llinas, R. I of the Vortex. From Neurons to Self. The MIT Press Cambridge, Massachusetts 2002. 302 P.

126. Llinas R.R., Ribary U. Rostrocaudal scan in human brain: a global characteristic of the 40-Hz response during sensory input / in: E. Basar, T. Bullock (Eds.), Induced Rhythms in the Brain, Birkhauser, Boston. 1992. P. 147- 154,l Chap. 7.

127. Llinas R. Consciousness and the thalamocortical loop // International Con• gress Series. 2003. V. 1250. P. 409- 416.

128. Llinas R., Yarom Y. Oscillatory properties of guinea-pig inferior olivary neurones and their pharmacalogical modulation: An in vitro study // J. Physiol., Lond. 1986. V. 376. P. 163.

129. MacKay R.S., Sepulchre, J.-A. Multistability in networks of weakly coupled bistable units It Physica D. 1995. V. 82. P. 243-254.

130. Magee J.C. A prominent role for intrinsic neuronal properties in temporal coding // Trends Neurosci. 2003. V. 26.

131. Mann-Metzer P., Yarom Y. Electrotonic Coupling Interacts with Intrinsic ^ Properties to Generate Synchronized Activity in Cerebellar Networks of Inhibitory Interneurons // The Journal of Neurosci ence. 1999. V. 19, N. 9, P. 32983306.

132. Manrubia S. C., Mikhailov A. S., Zanette D. H. Emergence of Dynamical Order. Synchronization Phenomena in Complex Systems (World Scientific Lecture Notes in Complex Systems Vol. 2) Singapore: World Scientific. 2004.

133. Manrubia S.C., Mikhailov, A.S. Mutual synchronization and clustering in ^ randomly coupled chaotic dynamical networks // Phys. Rev. E. 1999. V. 60. P.1579-1589.i 143. Murray J.D. Mathematical Biology.- Springer: Berlin. 1993. 767 P.

134. Nekorkin V.I., Chua L.O. Spatial disorder and wave fronts in a chain of coupled Chua's circuits // Int. J. Bifiirc Chaos. 1993. V. 3, P. 1282-1292.

135. Nekorkin V.I., Makarov V.A. Spatial chaos in a chain of coupled bistable• oscillators // Physical Review Letters. 1995. V. 74, N. 24. P. 4819-4822.

136. Nekorkin V.I., Velarde M.G. Synergetic phenomena in active lattices. -Springer-Verlag, 2002, 357 P.

137. Nicolis G., Prigozhin I., Self-Organization in Non-Equilibrium Systems. -N.Y., Wiley, 1977.

138. Otsuka K. Self-Induced Phase Turbulence and Chaotic Itenerancy in Coupled i Laser Systems // Phys. Rev. Lett. 1990. V. 65, N. 3. P. 329-332.

139. Panfilov A.V., Holden A.V. Vortices in a system of two coupled excitable fi• bers // Phys. Lett. A. 1990. V. 147. P. 463-466.

140. Panfilov A.V., Muller S.C., Zykov V.S., Keener, J.P., Elimination of spiral waves in cardiac tissue by multiple electrical shocks. Phys Rev E. 2000. V. 61. P. 4644-4647.

141. Pecora L. M., Carroll, T. L. Synchronization in chaotic systems // Phys. Rev. Lett. 1990. V. 64. P. 821-824.i

142. Pecora L. M., Carroll T. L. Driving systems with chaotic signals // Phys. Rev. A. 1991. V. 44. P. 2374-2383.

143. Peinado A. Traveling Slow Waves of Neural Activity: A Novel Form of Net-^ work Activity in Developing Neocortex // J. Neurosci. 2000. V. 20. P. RC54,16.

144. Perez-Munuzuri A., Perez-Munuzuri V., Perez-Villar V., Chua, L.O. Spiral waves on a 2-D array of nonlinear circuits // IEEE Trans. Circuits Syst. 1993. V. 40, N. 11. P. 872-877.

145. Pivka L. Autowaves and Spatio-Temporal Chaos in CNNs Part I,II // IEEE• Trans. Circ. Syst. 1995. V. 42, N. 10. P. 638-664.

146. Prechtl J.C., Cohen L.B., Pesaran B., Mitra P.P., Kleinfield D. Visual stimuli induce waves of electrical activity in turtle cortex // Proc. Natl. Acad. Sci. USA. 1997. V. 94. P. 7621-7626.

147. Plaza F., Velarde, M.G. Avalanche-collapse mechanism: a model for excitability // Int. J. Bifurcation Chaos. 1996. V. 6. P. 1873-1881.

148. Rieke F, Warland D, de Ruyter van Stevenick R, Bialek W: Spikes: Exploring the Neural Code. Cambridge, MA: MIT Press. 1997.

149. Rinzel J., Ermentrout B. Analysis of neural excitability and oscillations. In C. Koch, & I. Segev (Eds.) / Methods in neuronal modeling: From ions to networks (2nd ed.). 1998. Chap. 7. P. 251-292.

150. Rulkov N.F. Regularization of Synchronized Chaotic Bursts // Phys Rev Lett.2001. V. 86. P. 183-186.

151. Saarloos W., Hohenberg P.C. Fronts, pulses, sources and sinks in generalized complex Ginzburg-Landau equation//Physica D. 1992. V. 56. P. 303-367.

152. Safaric R., Jezernik K., Pec M. Neural network control for direct-drive robot mechanisms // Engineering Applications of Artificial Intelligence. 1998. V. 11. P. 735-745.

153. Skaggs W.E., McNaughton B.L., Wilson M.A., Barnes C.A. Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences // Hippocampus. 1996. V. 6, N 2. P. 149- 172.

154. Sompolinsky H., Kim J. W. On-line Gibbs learning. I. General theory. // Phys Rev E. 1998. V. 58. P. 2335-2347.

155. Scott A. Neuroscience: a mathematical premier. Springer-Verlag, Berlin,2002.

156. Strogatz S. H. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering. Addison-Wesley, Reading, MA. 1994.

157. Tiesinga, P. H. E. Information transmission and recovery in neural communication channels revisited // Phys Rev E. 2001. V. 64. P. 012901.

158. Tsodyks M.V., Skaggs W.E., Sejnowski T.J., McNaughton B.L. Population dynamics and theta rhythm phase precession of hippocampal place cell firing: a

159. K spiking neuron model // Hippocampus. 1996. V. 6, N. 3. P. 271-280.

160. Tu, P.N.V. Dynamic Systems. An Introduction with applications in economics ^ and biology. Springer, Berlin. 1994.

161. Volkov E. I., Ullner E., Zaikin A. A., Kurths J. Frequency-dependent stochastic resonance in inhibitory coupled excitable systems // Phys. Rev. E. 2003. V. 68. P. 061112.

162. Volkov E. I., Volkov D. V. Multirhythmicity generated by slow variable diffusion in a ring of relaxation oscillators and noise-induced abnormal interspikevariability // Phys. Rev. E. 2000. V. 65. P. 046232.

163. Welsh J.P., Llinas, R. Some organizing principles for the control of movement based on olivocerebellar physiology (Eds. de Zeeuw C. I., Strata P. and

164. Voodg) // Progress in Brain Research. 1997. V. 114.

165. Welsh J.P., Lang E.J., Suglhara I., Llinas, R. Dynamic organization of motor control within the olivocerebellar system // Nature. 1995. V. 374. P. 453-457.

166. West A. H. L., Saad D. Role of biases in on-line learning of two-layer networks // Phys Rev E. 1998. V. 57. P. 3265-3291.

167. Winfree A. T. The Geometry of Biological Time. Springer-Verlag, Berlin. 1980.

168. Winful H.G., Rahman L. Synchronized Chaos and Spatiotemporal Chaos in

169. Arrays of Coupled Lasers // Phys. Rev. Lett. 1990. V. 65, N. 13. P. 1575-1578.

170. Wu J.-J., Guan L., Tsau Y. Propagating Activation during Oscillations and Evoked Responses in Neocortical Slices // J. Neurosci. 1999. V. 19. P. 50055015.

171. Yoshino K., Nomura Т., Pakdaman K., S. Sato, K. Synthetic analysis of periodically stimulated excitable and oscillatory membrane models // Phys Rev E. 1998. V. 59. P. 956-959.

172. De Zeeuw C.I., Lang E.J., Sugihara I., Ruigrok T.J., Eisenman L.M., Mugna-ini E., Llinas R. Morphological correlates of bilateral synchrony in the rat cerebellar cortex // J Neurosci. 1996. V. 16. P. 3412-3426.

173. De Zeeuw C.I., Simpson J.I., Hoogenraad C.C., Galjart N., Koekkoek S.K., Ruigrok T.J. Microcircuitry and function of the inferior olive // Trends Neurosci. 1998. V.21.P. 391-400.

174. Zimmermann M.G., Firle S.O., Natiello M.A., Hildebrand M., Eiswirth M., Bar M., Bangia A.K., Kevrekidis I.G. Pulse bifurcation and transition to spatiotemporal chaos in an excitable reaction-diffusion medium // Physica D. 1997. V. 110. P. 92-104.

175. Zhigulin V.P., Rabinovich M.I., Huerta R., Abarbanel H. Robustness and enhancement of neural synchronization by activity-dependent coupling // Phys. Rev. E. 2003. V. 67. P. 021901.

176. Zwillinger D. Handbook of Differential Equations. Academic Press, London. 1989.

177. Список работ по теме диссертации

178. AINekorkin V.I., Kazantsev V.B. Spatio-temporal dynamics of a one-dimensional array of Chua's circuits // Procs of Int Symposium on Nonlinear Theory and its Applications (NOLTA 95), Las Vegas, USA, 1995. P. 591-594.

179. A3Nekorkin V.I., Kazantsev V.B., Chua L.O. Chaotic attractors and waves in a one-dimensional array of modified Chua's circuits // Int. J. Bifurcation and Chaos. 1996. Vol.6, N. 7, P. 1295-1317.

180. А4Казанцев В.Б. Пространственный беспорядок, структуры и волны в цепочках взаимосвязанных осцилляторов Чуа // Труды научной конференции по радиофизике / Ред. А.В. Якимов. Н.Новгород, 1996. С. 13.

181. A5Nekorkin V.I., Makarov V.A., Kazantsev V.B., Velarde M.G. Ordered and spatially chaotic patterns in lattice electronic systems // Proc. Fourth Int. Workshop on Nonlinear Dynamics of Electronic Systems (NDES), Seville, Spain, 1996. P. 207-212.

182. A6Nekorkin V .1., Kazantsev V.В., Velarde M.G. Travelling waves in a circular array of Chua's circuits // Int. J. Bifurcation and Chaos. 1996. Vol. 6, N. 3, P. 473-484.

183. A7Nekorkin V.I., Kazantsev V.B., Velarde M.G. Mutual synchronization of two lattices of bistable elements // Phys. Lett. A. 1997. Vol. 236, P. 505-512.

184. A8 Velarde M.G., Nekorkin V.I., Kazantsev V.B., Ross J. The emergence of form by replication//Proc. Nat. Acad. Sci. USA. 1997. Vol. 94, P. 5024-5027.

185. A9Kazantsev V.B., Nekorkin V.I., Velarde M.G. Pulses, fronts and chaotic wave trains in a one-dimensional Chua's lattice // Int. J. Bifurcation and Chaos. 1997. Vol. 7, N. 8, P. 1775-1790.

186. A10 Некоркин В.И., Казанцев В.Б. , Веларде М.Г. Динамическое копирование в многослойных бистабильных решетках // Известия вузов. Прикладная Нелинейная Динамика, 1997, т. 5, N 5, С. 56-68.

187. A13 Nekorkin V.I., Kazantsev V.B., Velarde M.G. Patterns and waves in interacting lattice bistable systems // Procs. of 5th Int. Spec. Workshop Nonlinear Dynamics of Electronic Systems (NDES), Moscow, Russia, 1997. P. 324-329.

188. A14 Nekorkin V.I., Makarov V.A., Kazantsev V.B., Velarde M.G. Spatial disorder and pattern formation in lattices of coupled bistable systems // Physica D. 1997. V. 100. P. 330-342.

189. A15 Nekorkin V.I., Kazantsev V.B., Rabinovich M.I., Velarde M.G. Controlled disordered patterns and information transfer between coupled neural lattices with oscillatory states // Phys. Rev. E. 1998. Vol. 57, N.3. P. 3344-3351.

190. A16 Казанцев В.Б., Некоркин В.И. Информационный транспорт в активных электронных волокнах. Часть I. Уединенные волны // Известия вузов. Прикладная Нелинейная Динамика. 1998. т. 6, N 3. С. 49-66.

191. А17 Казанцев В.Б., Некоркин В.И. Информационный транспорт в активных электронных волокнах. Волокно-система "реакция-диффузия" // Известия вузов. Прикладная Нелинейная Динамика. 1998. т. 6, N 3. С. 67-73.

192. А18 Nekorkin V.I., Kazantsev V.B., Velarde M.G., Chua L.O. Pattern interaction and spiral waves in a two-layer system of excitable units // Phys. Rev. E. 1998. Vol. 58, N.2. P. 1764-1773.

193. A19 Казанцев В.Б., Некоркин В.И., Велардэ М.Г. Модель нейрона с осцил-ляторной активностью ниже порога возбуждения // Изв. ВУЗов. Радиофизика. 1998. т. XLI, N 12. Р. 1623-1635.

194. А20 Казанцев В.Б., Некоркин В.И., Артюхин Д.В. Динамика импульсов возбуждения в двух связанных нервных волокнах // Изв. ВУЗов. Радиофизика. 1998. т. XLI, N 12. Р. 1593-1603.

195. А21 Nekorkin V.I., Kazantsev V.B., Velarde M.G. Replication of patterns and controlled spiral waves in coupled lattices of Chua's circuits // Procs. of Int.

196. Symposium on Nonlinear Theory and its Applications (NOLTA 98), GransMontana, Switzerland, 1998. P. 315-316.

197. A22 Nekorkin V.I., Kazantsev V.B., Artyuhin D.V., Velarde M.G. Wave propagation along interacting fiber-like lattices // Eur. Phys. J. В. 1 999. V. 1 1, P. 677-685.

198. A23 Nekorkin V.I., Kazantsev V.B., Velarde M.G. Image transfer in multi-layered assemblies of lattices of bistable oscillators // Phys. Rev. E. 1999. V. 59. P. 4515-4522.

199. A24 Nekorkin V.I., Kazantsev V.B., Velarde M.G. Spike-burst and other oscillations in a system composed of two coupled, drastically different elements // Eur. Phys. J. B. 2000. V. 16. P. 147.

200. A25 Kazantsev V.B., Nekorkin V.I., Artyuhin D.V., Velarde M.G. Synchronization, re-entry, and failure of spiral waves in a two-layer discrete excitable system // Phys. Rev. E. 2001. V. 63. P. 016212.

201. A26 Nekorkin V.I., Kazantsev V.B., Morfii S., Bilbault J.-M., Marquie P. Theoretical and experimental study of two discrete coupled Nagumo chains // Phys. Rev. E. 2001. V. 64. P. 036602.

202. A27 Казанцев В.Б., Некоркнн В.И. Принципы контроля и координации движений на основе динамики нейронов головного мозга // Изв. ВУЗов "Прикладная нелинейная динамика". 2001. Т. 9, N 1. С. 38-48.

203. А28 Kazantsev V.B. Selective communication and information processing by excitable systems // Phys Rev E. 2001. V. 64. P. 056210.

204. A29 Nekorkin V.I., Kazantsev V.B., Velarde M.G. Synchronization in two-layer bistable coupled map lattices // Physica D. 2001. V. 151. P. 1-26.

205. A30 Kazantsev V.B., Nekorkin V.I. Spiral waves in a two-layer excitable lattice // Procs. of Int. Workshop on Nonlinear Dynamics of Electronic Systems (NDES 2001), Delft, The Netherlands, 2001. P. 125-128.

206. A31 Kazantsev V.B., Nekorkin V.I. A behavior-based model of inferior olive neuron // Procs. of Int. Conf. "Progress in Nonlinear Science", v. 3 "Nonlinear

207. Oscillations, Control and Information". Nizhny Novgorod, Russia, 2002. P.68-73.

208. A32 Mal'kova E.V., Kazantsev V.B. Integrate-and-Fire Neuron Model with a Thershold Manifold // Procs. of Int. Conf. "Progress in Nonlinear Science", V. 3 "Nonlinear Oscillations, Control and Information". Nizhny Novgorod, Russia, 2002. P.213-218.

209. A33 Nekorkin V.I., Kazantsev V.B. Autowaves and solitons in a three-component reaction-diffusion system // Int. J. Bifurcation and Chaos. 2002. V. 12, N 11. P. 2421-2434. A34 Velarde M.G., Nekorkin V.I., Kazantsev V.B., Makarenko V.A., Llinas R.

210. A40 Kazantsev V .В., N ekorkin V .1., В inczak S., В ilbaut J .M. S piking p atterns emerging from wave instabilities in а оne-dimensional neural lattice / / Phys. Rev. E. 2003. V.68. P. 017201.

211. А41 Bilbault J.M., Binczak S., Kazantsev V.B., Nekorkin V.I. Experimental bifurcations in a modified FitzHugh-Nagumo cell // Procs. Of the 11th Workshop on Nonlinear Dynamics of Electronic Systems (NDES), Schuls, Switzerland,2003. P. 33-36.

212. А43 Клиныпов В.В., Казанцев В.Б., Некоркин В.И. Фазовые кластеры в сети генераторов Ван-дер-Поля // Труды научной конференции по радиофизике, посвященной 90-летию со дня рождения В.С.Троицкого / Ред. А.В.Якимов. Нижний Новгород: ТАЛАМ, 2003. С.112.

213. А44 Courbage М., Kazantsev V.B., Nekorkin V.I., Senneret М. Emergence of chaotic attractor and anti-synchronization for two coupled monostable neurons // Chaos. 2004. V. 12. P. 1148-1156.

214. A45 Kazantsev V.B., Nekorkin V.I., Makarenko V.I., Llinas R. Self-referential phase reset based on inferior olive oscillator dynamics // Proc. Natl. Acad. Sci. USA. 2004. V.101, N52. P. 18183-18188.

215. A46 Клиныпов B.B., Казанцев В.Б., Некоркин В.И. Фазовые кластеры в ансамбле генераторов Ван-дер-Поля // Изв. ВУЗов Прикладная нелинейная динамика. 2004. Т. 12, N 6. Р. 129-143.

216. А47 Казанцев В.Б. Динамическое преобразование импульсных сигналов в нейронных системах // Изв. ВУЗов ПНД Прикладная нелинейная динамика. 2004. Т. 12, N6. Р. 118-128.

217. А49 Казанцев В.Б. Интегро-резонансные свойства нейронов с подпорого-выми колебаниями // Материалы VII международной школы «Хаотические автоколебания и образование структур 2004". Саратов: Изд-во Гос-УНЦ «Колледж», 2004. С.89-90.

218. А52 Jacquir S., Binczak S., Bilbault J.-M., Kazantsev V.B., Nekorkin V.I. Study of electronic master-slave MFHN neurons // Procs of NDES2004 (International IEEE Workshop on Nonlinear Dynamics of Electronic Systems), Evora, Portugal, 2004. P. 182-185.

219. A53 Kazantsev V.B., Nekorkin V.I., Binczak S., Jacquir S., Bilbault J.M. Spiking dynamics of interacting oscillatory neurons // Chaos. 2005. V. 15, P. 023103.

220. A54 Казанцев В.Б., Некоркин В.И. Фазово-управляемые колебания в нейро-динамике //В кн. Нелинейные волны 2004.- Нижний Новгород: ИПФ РАН, 2005, С. 345-361.

221. А55 Некоркин В.И., Дмитричев А.С., Щапин Д.С., Казанцев В.Б. Динамика модели нейрона со сложно-пороговым возбуждением // Математическое моделирование. 2005. Т. 17, N 6, С. 75-91.

222. А56 Папко В.В., Казанцев В.Б., Некоркин В.И. Модель нейрона с подпо-роговыми колебаниями // Методические указания и описания к лабораторной работе. Н. Новгород, ННГУ. 2001, 26 с.

223. А57 Казанцев В.Б., Некоркин В.И., Горшков, К.А. Нелинейные волны в дискретных средах // Методические указания и описания к лабораторной работе. Н. Новгород, ННГУ, 2001. 20 с.