Математические модели для анализа вращательного движения малых космических аппаратов тема автореферата и диссертации по механике, 01.02.01 ВАК РФ
Давыдов, Алексей Алексеевич
АВТОР
|
||||
кандидата физико-математических наук
УЧЕНАЯ СТЕПЕНЬ
|
||||
Москва
МЕСТО ЗАЩИТЫ
|
||||
2012
ГОД ЗАЩИТЫ
|
|
01.02.01
КОД ВАК РФ
|
||
|
На правах рукописи
Давыдов Алексей Алексеевич
МАТЕМАТИЧЕСКИЕ МОДЕЛИ ДЛЯ ИССЛЕДОВАНИЯ ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ МАЛЫХ КОСМИЧЕСКИХ АППАРАТОВ
Специальность 01.02.01 - Теоретическая механика
АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата физико-математических наук
005018552
Москва-2012
005018552
Работа выполнена в ФГУП «ГКНПЦ им. М.В. Хруничева».
Научный руководитель: доктор физико-математических наук,
профессор
Сазонов Виктор Васильевич
Официальные оппоненты: доктор физико-математических наук,
профессор
Мирер Сергей Александрович
кандидат технических наук Тимаков Сергей Николаевич
Ведущая организация: Институт проблем механики
им. А.Ю. Ишлинского РАН
Защита состоится «¿ 7 » .М^У^С- 2012 г. в часов на заседании Диссертационного совета Д.002.024.01 при Институте прикладной математики им. М.В. Келдыша РАН по адресу: 125047, Москва, Миусская пл., 4.
С диссертацией можно ознакомиться в библиотеке Института прикладной математики им. М.В. Келдыша РАН.
Автореферат разослан чсН »/^^^¿гЛ2012 г.
Ученый секретарь диссертационного совета доктор физико-математических наук
Г сЬс
Т.А. Полилова
ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ
Актуальность темы. Одна из задач ФГУП «ГКНПЦ им. М.В. Хруниче-ва» в последние годы - создание и эксплуатация малых космических аппаратов (МКА). На орбиту выведены МКА дистанционного зондирования Земли «Монитор-Э», геостационарные спутники связи «КазСат-1», «Экспресс-МД1» и «КазСат-2». В настоящее время в ГКНПЦ разрабатывается ряд новых МКА. Важной составной частью проектирования системы управления МКА является создание математической модели его вращательного движения и проверка с се помощью предлагаемых алгоритмов управления. Ряд интересных задач, требующих применения математических моделей вращательного движения, возникает при анализе результатов летных испытаний МКА. В частности, на их основе можно создать интегральные статистические методики, позволяющие восстановить реальное движение МКА относительно центра масс по неполной или косвенной телеметрической информации.
Цель диссертации состоит в разработке математических моделей вращательного движения конкретных МКА и создании на их основе статистических методик реконструкции такого движения по телеметрической информации. Модели и методики предназначены для повышения качества процесса проектирования МКА и расширения возможностей инженерного сопровождения летных испытаний.
Научная новизна полученных результатов обусловлена уникальностью рассматриваемых МКА и новыми постановками задач, возникшими при реконструкции вращательных движений МКА в нештатных ситуациях.
Практическая ценность диссертации состоит в использовании разработанных моделей и методик при проектировании и проведении летных испытаний нескольких МКА. Полученные результаты позволили дать практические рекомендации по парированию нештатной ситуации на МКА «Монитор-Э», реконструировать вращательное движение этого МКА и МКА «КазСат-1», создать несколько математических моделей разной сложности, использовавшихся при разработке алгоритмов управления вращательным движением новых МКА.
Апробация работы. Основные результаты диссертации докладывались и обсуждались на следующих семинарах и конференциях:
- X Всероссийском съезде по фундаментальным проблемам теоретической и прикладной механики (Нижний Новгород, 2011г.),
- XXXII, XXXIII и XXXV Академических чтениях по космонавтике (Москва, 2008, 2009 и 2011гг.),
- Международной конференции «Научные и технологические эксперименты на автоматических космических аппаратах и малых спутниках» (Самара, 2008г.).
- Научно-технической конференции «Системы управления беспилотными космическими и атмосферными летательными аппаратами» (Москва, 2010г.),
- Молодежных научно-технических конференциях «Аэрокосмическая техника: исследования, разработки, пути решения актуальных проблем» (Москва, 2007 и 2010гг.),
- Семинарах по механике космического полета им. В.А. Егорова на механико-математическом факультете МГУ. Руководители: чл.-корр. РАН В.В. Белецкий, доц. М.П. Заплетин и проф. В.В. Сазонов (Москва, 2008 и 2011гг.).
Публикации. По теме диссертации опубликовано 10 работ, в том числе 3 работы - в изданиях, входящих в перечень ВАК РФ.
Структура и объем диссертации. Диссертация состоит из введения, четырех глав и двух приложений.
СОДЕРЖАНИЕ РАБОТЫ
Во Введении описаны решаемые задачи и кратко изложено содержание диссертации.
В первой главе проведено исследование режима гашения угловой скорости малого космического аппарата (далее - КА) в нештатной ситуации, вызванной невозможностью измерения компоненты угловой скорости КА вдоль одной из его связанных осей. Измерения угловой скорости использовались при управлении вращательным движением КА с помощью двигателей-маховиков. В рабочих режимах КА отсутствие измерений компенсировалось информацией, получаемой от звездного датчика. Однако при гашении достаточно большой угловой скорости использование этого датчика было невозможно. Возникла необходимость исследовать функционирование штатного алгоритма гашения угловой скорости при отсутствии измерений одной из ее компонент.
В принятой математической модели КА считается гиростатом. Он представляет. собой твердое главное тело с расположенными на нем тремя двигателями-маховиками (симметричными роторами). Пусть система координат xix2xi образована главными центральными осями инерции КА. В этой системе тензор инерции КА задан матрицей diag(/,,/2,/3), H = (hi,h2,hs) - гиростати-ческий момент КА (суммарный кинетический момент маховиков), е> = (copco^cüj) - абсолютная угловая скорость главного тела. По физическому смыслу > 0 (/ = 1,2,3). Оси вращения махоников параллельны осям хп так что каждая компонента гиростатического момента fy создается собственным маховиком.
В режиме гашения угловых скоростей управление кинетическим моментом маховиков описывается уравнениями h, = kl&i (i = 1,2,3), где kt - положительные параметры. В нештатной ситуации измерения величины со, отсутствовали, и махояик, создававший компоненту гиростатического момента А,, не управлялся. Значение этой компоненты не менялось: й3 = hM = const. В
этой ситуации вращательное движение КА описывается уравнениями
/,ш, I А-,03, = (/2 - /3)са2к>з I /^Юз /г,0оз2, 12аз2+к2а2 = (73 - У, )ю3со| + /г30со, — /г,со3, (1)
/3со3 = (/, -12)со,со2 + /г,ш2 - /^ш,, /г, = , /г2 = £2со2.
Здесь не учитываются действующие на КА внешние механические моменты и влияние вращательного движения КА на изменение собственных кинетических моментов маховиков. Такие упрощения оправданы быстротечностью процесса гашения угловой скорости и значительной величиной приложенных к маховикам управляющих моментов.
Система (1) имеет первый интеграл
С2 =(/, ю, +А,)2 +(/2ш2 + А,)2 +(/3ш3 (2)
выражающий постоянство модуля кинетического момента КА в его движении относительно центра масс, и два семейства стационарных решений
-а>2 = й)3=0, к2 = к2а; (3)
= а>2 ~ 0 > ~ <^30, й] = й2 = 0. (4)
Здесь /?10, /г20и £О30 - произвольные постоянные, которые с постоянной (7 в решении (3) связаны соотношениями: ¡г20 + й^о + Щй = й2, (/3й>30 + /г30)2 = й2. В случае решения (4) примем О = 1ъсого + /г30.
Исследование устойчивости стационарных решений (3), (4) выполнено вторым методом Ляпунова. При построении функций Ляпунова использован тот факт, что производная функции 2Т = + /2ю2 + /Зю2 по времени в силу системы (1) имеет вид t = -£,ю2 - к2ш\ . Вследствие существования у системы (1) первого интеграла (2) асимптотическая устойчивость решений (3), (4) невозможна. Можно доказать только их условную асимптотическую устойчивость или асимптотическую устойчивость по части переменных. Ограничимся случаем С Ф 0.
Начнем с решения (4). Будем говорить, что это решение условно асимптотически устойчиво, если любое решение системы (1), начальные условия которого лежат в достаточно малой окрестности точки (4) и на той же самой поверхности интеграла (2), стремится к (4) при / +оо. Чтобы исследовать такую устойчивость, можно с помощью интеграла (2) при С = 13й>30 + /г30 исключить со3 из системы (1) и исследовать обычную асимптотическую устойчивость стационарного решения сох = <э2 = 0, А, = Ь2 = 0 получившейся системы. В данном случае нет необходимости выполнять это понижение порядка в явном виде. Достаточно исследовать поведение функции Т на поверхности
б
интеграла (2) в окрестности точки (4) и воспользоваться результатами Е.А. Барбашина и H.H. Красовского1. На этой поверхности
2 TG = I3a& + Irf + l2co\ - taJT1 [(/,0, +hlf+ (I2co2 + h2f] + ■■ ■.
Здесь многоточие означает члены третьей и более высокой степени относительно &>,, а>2, \ и h2. Возьмем функцию Ляпунова в виде V = 2Та - I3cOj0. Ее производная по времени в силу системы, полученной из (1) исключением а3, имеет вид V = - 2кга)\. Условие положительной определенности квад-
ратичных слагаемых V выражается неравенством Ga)30 <0. Множество V = 0 при о30 Ф 0 не содержит целых траекторий новой системы кроме ее тривиального стационарного решения. По теореме Барбашина - Красовского при Ga>30 < 0, кх > 0, к2 > 0 это тривиальное решение асимптотически устойчиво. Если же G aiзо >0, >0, к2 >0, то согласно теореме Красовского рассматриваемое тривиальное решение неустойчиво.
При исследовании устойчивости стационарного решения (3) использовано обобщение теорем Барбашина - Красовского для задачи устойчивости по части переменных2. Фазовые переменные системы разбиваются на две группы -переменные у = (ю,,ю2,со3), z = (h),h2). В решениях системы (1) евклидовы нормы |[ у || и || z || ограничены. При I > тах(/,,/2,/3) > 0 имеет место неравенство Т >11| у ||2. Множество Т = 0 в случае, к{> 0, к2 > 0 и | /г,01 + | к,01>0 не содержит целых траекторий системы (1) кроме решения (3). Следовательно, по теоремам 19.1 и 19.2, из книги Румянцева и Озиранера это решение асимптотически у-устойчиво. Иными словами, в любом решении системы (1) с начальными условиями из достаточно малой окрестности точки (3) у(t) —» 0 при t —> +оо.
Посредством численного интегрирования системы (1), в диссертации построены оценки областей притяжения стационарных решений (3), (4). Для этого система (1) представлена в виде: у = Y(y,z), z = Z(y,z). Здесь использованы векторные обозначения, введенные выше. Для любого решения системы (1) существует конечный предел K = lim(||y(f)||-||z(/)||). Значения к>0
имеют решения из области решения (4), значения к < 0 - решения из области притяжения решения (3). Величина к вычислялась приближенно для большого числа решений системы (1). Решения, для которых к«0, лежат вблизи границы, разделяющей искомые области притяжения. Как показали расчеты, эта граница располагается в малой окрестности некоторой гладкой поверхности. Указанное обстоятельство позволило получить оценки областей притя-
1 Барбашип Е.Л. Функции Ляпунова. М.: Наука, ¡970.
2 Румянцев В.В., Озиранср A.C. Устойчивость и стабилизация движения по отношению к части переменных. М.: Наука, 1987.
жения стационарных решений в пространстве каких-либо трех параметров задачи (начальных условий решения и параметров системы (1)) при фиксированных значениях остальных параметров. Пример построения искомых областей в пространстве Л3[й;2(0),й>з(0),/гз0] приведен на рис. 1. Здесь изображена поверхность, которая аппроксимирует границу, разделяющую эти области.
Рис. 1. Граница, разделяющая области притяжения стационарных решений;
/- область притяжения решения (3), II- область притяжения решения (4).
Проведенные расчеты выявили сравнительно большой размер области притяжения стационарного решения (4). В этой области не обеспечивается полное гашение угловой скорости КА, что говорит о достаточно высокой вероятности реализации такого события. Однако было установлено, что при й1(0) = /г2(0) = /г30 =0 движение КА всегда стремится к благоприятному стационарному решению (3). Следовательно, если процесс гашения начать после естественного выбега маховиков, то полное гашение угловой скорости КА будет обеспсчсно. Этот вывод подтвержден летными испытаниями.
Чтобы показать адекватность описания реального вращательного движения К А системой (1), с помощью решений этой системы была выполнена аппроксимация имеющихся телеметрических значений компонент угловой скорости и гиростатического момента, полученных в нештатной ситуации. При построении аппроксимации данных, ряд параметров системы выступал в роли параметров согласования.
Телеметрическая информация об угловой скорости КА и гиростатиче-ском моменте КА в обработанном виде представляет собой последовательно-
сти чисел tn, а,\"\ со<"\ h\"\ А<"> А(n = l,2,...N). Здесь ш<л) и hf - при-
ближенные значения величин со,., А в момент времени tn, /, <t2 <... < tN. Считалось, что данные телеметрии относятся к системе координат х1хгх2. В принятой модели А, = /Zj0 = const, поэтому последовательность данных А*'0 аппроксимировалась постоянной Aj0.
Аппроксимация телеметрических данных строилась методом максимального правдоподобия. Телеметрические данные сглаживались соответствующими компонентами фазового вектора в решении системы (1), доставляющем минимум функционалу
Функционал составлен в предположении, что ошибки в данных независимы, стандартные отклонения ошибок в данных одного типа одинаковы, но неизвестны. Член с Фр введен для учета априорной информации об уточняемых
параметрах Я = / /3, ц = (У2 - /3) / , «-,=£,//,, кг=кг11х и регуляризации задачи поиска минимума. Параметрами регуляризации служили положительные коэффициенты №,,1^. Все уточняемые величины были объединены в вектор q. При этом Ф = Ф(д). Аппроксимирующее решение отвечало значению ц, = аг§ттФ(<7). Минимизация Ф(д) выполнялась в несколько этапов. Сначала методом случайного поиска находилась грубая оценка д., затем она уточнялась методами Марквардта и Гаусса-Ньютона. Точность аппроксимации телеметрических данных и разброс в определении компонент характеризовались соответствующими стандартными отклонениями.
На рис. 2 представлен пример аппроксимации телеметрических данных для одной из реализаций режима гашения угловых скоростей КА. Здесь по оси абсцисс отложено время в секундах от начала исследуемого интервала. Сплошные кривые — графики решения системы (1), маркерами обозначены точки (¿„.(о^) и которые изображают аппроксимируемые телемет-
рические данные. Как видно из рисунка, движение КА стремится к стационарному решению (3). Оттенки параметров системы (1) для приведенного интервала близки к значениям, рассчитанным по проектной документации. Стандартные отклонения ошибок аппроксимации и уточняемых параметров
Ф = 2ЛПпФш+ЗЛПпФЛ + 1пФ
2
Ф, = 1 + wt[(X -Х0)2 + (ц - ц0)2] + w2£(К,. - к,0)2.
достаточно малы. Основываясь на результатах аппроксимации, в диссертации сделан вывод об адекватности системы (1).
Во второй главе решается задача реконструкции вращательного движения КА «Монитор-Э» по телеметрическим данным о токе солнечных батарей. КА считается твердым телом, геоцентрическое движение центра масс которого - Кеплерово эллиптическое. Система уравнений вращательного движения КА образована динамическими уравнениями Эйлера для компонент угловой скорости в связанной системе координат, образованной главными центральными осями инерции КА, и кинематическими уравнениями Пуассона для элементов первой и третьей строк матрицы перехода от связанной системы к орбитальной системе. Уравнения Эйлера записаны с учетом действия на КА гравитационного и восстанавливающего аэродинамического моментов.
Фактическое вращение КА аппроксимировано решениями уравнений его вращательного движения, которые найдены из условия наилучшего сглаживания с их помощью телеметрических данных о токе, снимаемом с солнечных батарей (СБ). При построении аппроксимации, наряду с начальными условиями движения КА, уточнялся ряд параметров системы уравнений движения, характеризующих отношения главных центральных моментов инерции КА, положение в связанной системе координат центра давления и направление в этой системе нормали к рабочей поверхности СБ.
Ток, вырабатываемый СБ, примерно пропорционален косинусу угла падения солнечных лучей на их светочувствительную поверхность. Эта зависимость задается формулами
где /0 = 45 А - ток, вырабатываемый СБ на орбите Земли при перпендикулярном падении солнечных лучей на их плоскость, 8 - орт направления «Земля -Солнце», п - орт нормали к рабочей поверхности СБ.
Телеметрическая информация о токе СБ представляет собой последовательность чисел гп, 1п (п = 1,2,..., Щ. Здесь 1п - приближенное значение тока в момент времени </2 <...<;дг. Обработка этих данных выполнялась методом наименьших квадратов. На решениях уравнений вращательного движения КА, заданных на отрезке < / < ¿д,, был определен функционал
Аппроксимацией фактического движения КА на этом отрезке считалось решение, доставляющее такому функционалу минимум. Минимизация Ф проводилась по начальным условиям решения в точке и параметрам уравнений движения. Уточняемые величины были объединены в вектор ц. Тогда Ф = Ф(д), д. - ащттФ(д) - искомая оценка вектора д.
Минимизация функционала (5) выполнялась в несколько этапов.
11 = агссоз(8-п), I = /0 тах(г|,0),
N
(5)
а>}"\ ©,(/„), град/с
- ........1.......>-Г'Т "!...... -1...........
1 ! ! ! ! ! !
- —у : | ; : I ! ! !
! 1 ! | ! ; ! ! т
................ .............|--------- |
! : 1
; \ ; -......|.......... ......--4~......4........... .......!........... 1
1— .•■••--1.......--------- ! ! 1 \ \
---------- * 1: !
—.......-
! ; 1 !
! ! ! ! ;
- — ——:* -".
—■--
— ! ! 1 1 1 1 ;
1 ! \ ! ! ' :
! ( ; ' : I : :
! 1 ! 1 ! 1 ! 1
! г-^^! |
■"""Т 1 ! 1 ;
—¡^
7 : } |
/,,(/„), Нмс
Рис. 2. Результаты аппроксимации телеметрических данных.
Сначала методом случайного поиска находилась грубая оценка <у,, затем эта оценка уточнялась методом Левенберга-Марквардта и - на заключительном этапе - методом Гаусса-Ныотона. Для поиска начального приближения ц, была введена параметризация начального углового положения КА, сокращающая число варьируемых параметров, и использован ряд дополнительных приемов. Точность аппроксимации телеметрических данных и разброс в определении компонент вектора ц, характеризовались соответствующими стандартными отклонениями, рассчитываемыми в рамках метода наименьших квадратов.
Реконструкция движения КА по данным о токе СБ была выполнена на нескольких интервалах времени. Полученные значения стандартных отклонений показали, что точность определения некоторых уточняемых параметров зависит от сложности реализовавшегося вращательного движения КА. Чем сложнее движение - тем выше точность.
На рис. 3 приведены результаты аппроксимации телеметрических данных о токе солнечных батарей решениями уравнений вращательного движения КА для одного из рассмотренных интервалов времени.
На рисунке приведено четыре графика. По оси абсцисс (единой для всех графиков) отложено время в секундах от начала реконструируемого интервала. По оси ординат на графиках (сверху вниз): данные измерений 1п (сплошная кривая) и расчетные значения 1йт]п (обозначены маркерами) тока СБ, угловые скорости о, 23 К А вокруг осей 1, 2 и 3 связанной с КА системы координат.
Полученные результаты позволили объяснить ряд эффектов, наблюдавшихся во время неуправляемого движения спутника и определить методику выведения КА из нештатной ситуации.
Третья глава так же, как и вторая, посвящена задаче реконструкции вращательного движения малого спутника по телеметрическим данным о токе СБ. КА - геостационарный спутник связи «КазСат-1» - считается гиростатом, совершающим свободное движение. Принятая система уравнений вращательного движения КА образована уравнениями, выражающими теорему об изменении кинетического момента спутника в его движении относительно центра масс, и кинематическими соотношениями Пуассона для элементов матрицы перехода от некоторой инерциальной системы координат к связанной системе координат, образованной главными центральными осями инерции КА. Гиро-статический момент КА на интервале реконструкции движения считался постоянным. Поскольку длина таких интервалов не превышала нескольких часов, ось 1 инерциальной системы координат выбиралась параллельной орту 8 направления «Земля - Солнце».
Решения уравнений, аппроксимирующие фактическое движение КА относительно центра масс, выбирались из условия минимума функционала (5), где /0 = 102А.
Инвариантность этого функционала и уравнений движения относитель-
но поворота вокруг оси 1 инерциалыюй системы координат позволила уменьшить число уточняемых параметров. Функционал (5) и уравнения движения инвариантны также относительно трех дискретных преобразований симметрии, что потребовало привлечения априорной информации о реальных значениях гиростатического момента для устранения неоднозначности в реконструкции движения.
Рис. 3. Пример аппроксимации телеметрических данных.
На рис. 4, организованном аналогично рис. 3, приведен пример аппроксимации телеметрических данных о токе СБ решениями уравнений вращательного движения КА для одного из обработанных интервалов времени. Реконструкция движения на нескольких интервалах времени позволила установить, что вращательное движение КА представляло собой суперпозицию быстрого вращения корпуса КА вокруг оси, малоподвижной в связанной системе координат (данная ось близка по направлению к ректору гиростатического момента), и медленного вращения этой оси вокруг вектора полного кинетического момента КА-гиростата.
Рис. 4. Данные измерений 1п, аппроксимирующие значения тока СБ и угловые скорости КА <э, 2 з.
Четвертая глава посвящена разработке математической модели вращательного движения МКА (далее - КА). КА рассматривается как система твердых тел, сочлененных шарнирами. Уравнения движения КА записываются в виде уравнений Эйлера-Лагранжа3. Расчетная схема КА представлена на рис. 5. Здесь имеется 7 элементов: 1) главное тело, 2) корневое звено СБ, 3-6) панели СБ, 7) вращающееся зеркало целевой аппаратуры (ЦА). Соединение элементов системы, за исключением ЦА, осуществляется через двухстепенные шарниры, допускающие поворот одного элемента относительно другого вокруг двух взаимно перпендикулярных осей. Конструктивно все шарниры в системе - одностепенные. Дополнительные степени свободы введены для моделирования деформаций конструкции КА.
С каждым элементом конструкции связана своя система координат Ь,х,у.=., качало которой лежит в точке Ь,, совпадающей с центром вращения
3 Лурье А.И. Аналитическая механика. М, Физматгиз, 1961.
соответствующего шарнира (см. рис. 5). При полностью раскрытых панелях солнечных батарей и отсутствии возмущений соответствующие оси всех систем координат совпадают по направлению. В уравнениях учитывались три вращательные степени свободы главного тела, вращательная степень свободы ЦА, а также степени свободы в шарнирах. Обозначения перечисленных степеней свободы приведены на рис. 5. В шарнирах, за исключением оси вращения ЦА, присутствуют упругость и вязкое трение. Массово-инерционные и геометрические характеристики всех элементов системы считались известными.
В диссертации введены обозначения [ot]„, означающие, что некоторый вектор vk, связанный с к-м элементом, задан в системе координат bnxnynzn tiro элемента. При этом для перехода от одной системы координат к другой использовались матрицы перехода Ал так, что [ак]п = Лпк[ак\. Все эти матрицы выражались в виде произведений матриц Аы к, которые задавались в явном виде.
Выражение для кинетической энергии движения рассматриваемой системы относительно общего центра масс записано в виде
- /Ы ¿ к=\
где [ojj =(со№,сом,сй34)г- вектор угловой скорости к-то элемента в собственной системе координат, [vt], =[»Д -[«cli ~ скорость центра масс k-го элемента относительно общего центра масс системы,
KL =— m = ¿X> L';i]i=0-
m *=1 м
Выражение для кинетической энергии вращательного движения КА можно преобразовать к виду
Т=-хтМх, 2
где М = М{ц) - симметричная матрица порядка 14, х = ((о1],со21,со31,д)7',
9=(ф2>^2>Фз>^3'Ф4'^4'Ф5>^5'Фб'®б'(Р7)Г - ВвКТОр обобщенных КООрДШШТ.
Матрица М(ц) вычислялась с использованием специально разработанного набора процедур4. Процедуры оперировали с двумя типами векторов и скаляров. К первому типу векторов (скаляров) относятся обычные векторы (скаляры). Для них невозможно или нет необходимости выделить явную зависимость от обобщенных скоростей. Примером векторов первого типа являются радиус-векторы центров вращения Ь, и центров масс с, элементов системы (см. рис. 5). Ко второму типу относятся векторы (скаляры), зависящие как от обобщенных координат, так и от обобщенных скоростей, причем зависимость от последних должна быть линейной и заданной в явном виде. Примерами векторов второго типа могут служить скорости отдельных точек системы и угловые скорости элементов системы.
Векторы и скаляры первого типа будем обозначать соответственно а и а. Векторы и скаляры второго типа обозначим а и а ; а - матрица 3x14, а -матрица 1x14 (фактически вектор-строка). Вектор скаляр второго типа можно преобразовать в вектор и скаляр первого типа по формулам а = ал, а = ах. Реальный механический смысл имеют только векторы первого типа. Векторы второго типа используются только для получения матрицы М(ц), найти которую можно, выполнив над векторами второго типа обычные векторные операции. Эти операции реализованы как операции над специальными матрицами. Имеются также процедуры, выполняющие переход от одной систем координат Ьпхпупгп к другой.
Используя введенные типы векторов, можно записать
ы ы\
и для вычисления входящих в последнюю формулу величин получить удобный и достаточно компактный программный код. Это код входит составной частью в процедуру расчета правых частей уравнений движения КА. Фазовыми переменными этих уравнений служат обобщенные импульсы р-Мх, обобщенные координаты с/ и кватернион, задающий матрицу перехода от системы Ъ1х^у1г1 к базовой (инерциальной или орбитальной) системе координат. Процедура формируется с учетом требуемой конфигурации КА и степени детализации модели. Принятый подход обеспечил простоту программного кода
4 Балабан И.Ю., Боровик Г.К., Сазонов В.В. "зык программирования правых частей уравнений движения сложных механических систем. Препринт ИПМ им. М.В. Келдыша РАН, 1998, №62.
разработанной модели и его автономность, т. е. возможность использования на вычислительной машине без привлечения сторонних математических библиотек и пакетов программ.
Для выбора матрицы Б упругих связей в шарнирах были исследованы малые собственные колебания линейной системы
М0х + 1>1 = 0, £> = Шаё(0,0,0, </«, ..., йп, 0),
х=(е„е2,е3,ф2,92)...,ф6А,ф7)г,
9, - компоненты вектора бесконечно малого поворота системы , М0 -
матрица кинетической энергии системы, вычисленная для равновесной конфигурации. С помощью вычислительных процедур линейной алгебры были вычислены собственные частоты выписанной системы. Расчеты были проведены при одной и той же матрице В и разных матрицах М0. Вначале были найдены частоты при очень больших инерционных характеристиках главного тела. Такая конфигурация КА означает глухую заделку шарнира между корневым звеном СБ и главным телом в неподвижную стенку. Эта расчетная схема согласуется со схемой, принятой при расчете собственных частот конструкции СБ методом конечных элементов. Проведение расчетов при указанном выборе матрицы М0 по разработанной модели позволило выбрать правильные значения коэффициентов жесткости в шарнирах и при расчетах с реальными инерционными характеристиками КА вычислить собственные частоты системы.
В заключении приведены основные результаты диссертации.
ОСНОВНЫЕ РЕЗУЛЬТАТЫ РАБОТЫ
1. Разработана математическая модель управляемого вращательного движения МКА «Монитор-Э» в режиме гашения угловой скорости при условии отсутствия измерений компоненты угловой скорости относительно одной из связанных осей аппарата. Найдены стационарные решения модельных уравнений движения и исследована их устойчивость. Построена оценка областей притяжения стационарных решений модельных уравнений. Дана рекомендация, обеспечивающая успешное гашение угловой скорости МКА.
2. Разработаны и реализованы в виде программы для персонального компьютера две интегральные статистические методики реконструкции вращательного движения МКА по телеметрической информации опоеделенного вида. Одна из этих методик позволила по данным измерений двух компонент угловой скорости МКА и суммарного кинетического момента двигателей-маховиков реконструировать вращательное движение МКА в нескольких реализациях указанного в п. 1 режима гашения угловой скорости. Реконструкция подтвердила адекватность разработанной математической модели и эффективность выданной рекомендации. С помощью второй методики выполнена
реконструкция вращательного движения МКА «Монитор-Э» и «КазСат-1» по телеметрическим значениям тока, снимаемого с солнечных батарей. Созданное программное обеспечение использовано в инженерном сопровождении летных испытаний указанных МКА при парировании нештатных ситуаций.
3. Разработана математическая модель вращательного движения проектируемого МКА, учитывающая влияние на это движение нежесткости сочленений панелей солнечных батарей и наличия на борту вращающейся целевой аппаратуры. Использован специальный математический аппарат для программирования процедуры расчета правых частей уравнений движения MICA. Принятый подход обеспечил достаточную простоту программной реализации разработанной модели и одновременно ее программную автономность, т. е. возможность использования на вычислительной машине без привлечения сторонних математических библиотек и пакетов программ. Проведено исследование малых колебаний системы в окрестности заданного равновесного положения. Выбраны параметры упругих связей шарнирных сочленений панелей солнечных батарей и определены собственные частоты колебаний модели в окрестности равновесного положения.
СПИСОК ОПУБЛИКОВАННЫХ РАБОТ ПО ТЕМЕ ДИССЕРАТЦИИ
1. A.A. Давыдов, В.В. Сазонов. Определение параметров вращательного движения КА «Монитор-Э» по телеметрическим данным о токе солнечных батарей. Космические исследования, 2009, т. 47, № 5, стр. 434-443.
2. A.A. Давыдов. Определение параметров вращательного движения малого спутника связи по данным измерений тока солнечных батарей. Космические исследования, 2011, т. 49, № 4, стр. 345-354.
3. A.A. Давыдов. Определение параметров вращательного движения КА по телеметрическим данным о токе солнечных батарей. Вестннк нижегородского университета им. Н.И. Лобачевского, 2011, №4, часть 2.
4. A.A. Давыдов, В.В. Сазонов. Исследование режима гашения угловой скорости космического аппарата в нештатной ситуации. Препринт ИПМ им. М.В. Келдыша РАН, № 73, 2011.
5. А.А Давыдов, В.В. Сазонов Определение параметров вращательного движения КА «Монитор-Э» но телеметрическим данным о токе солнечных батарей. Препринт ИПМ им. М.В. Келдыша РАН, № 85, 2008.
6. A.A. Давыдов, В.В. Сазонов Определение, параметров вращательного движения малого спутника связи по данным измерений тока солнечных батарей. Препринт ИПМ им. М.В. Келдыша РАН, №32, 2009.
7. A.A. Давыдов, B.B. Сазонов Определение параметров вращательного движения КА «Монитор-Э» по данным о токе солнечных батарей. Актуальные проблемы российской космонавтики: Труды XXXII Академических чтений по космонавтике. Под общей редакцией А.К. Медведевой. М.: Комиссия РАН по разработке научного наследия пионеров освоения космического пространства, 2008.
8. A.A. Давыдов. Определение параметров вращательного движения малых спутников по данным измерений тока солнечных батарей. Труды международной конференции «Научные и технологические эксперименты на автоматических космических аппаратах и малых спутниках», Самара, Издательство СНЦ РАН, 2008.
9. A.A. Давыдов. Определение параметров вращательного движения малого спутника связи по данным измерений тока солнечных батарей. Сборник трудов молодежной научно-технической конференции «Аэрокосмическая техника: исследования, разработки, пути решения актуальных проблем», М.: Компания Спутник+, 2008.
10. A.A. Давыдов. Определение параметров вращательного движения малого спутника связи по данным измерений тока солнечных батарей. Актуальные проблемы российской космонавтики: Труды XXXIII Академических чтений по космонавтике. Под общей редакцией А.К. Медведевой. М.: Комиссия РАН по разработке научного наследия пионеров освоения космического пространства, 2009.
Подписано в печать 24.01.2012Г- Заказ № ц. 055(02)2 формат бумаги 60X90 1/16. Тираж 100 экз.
© Огоечитшо и Емлпзие прикладной матемазвки РАЕ
Москва, Миусская пл. 4
61 12-1/570
На правах рукописи
Давыдов Алексей Алексеевич.
МАТЕМАТИЧЕСКИЕ МОДЕЛИ ДЛЯ АНАЛИЗА ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ МАЛЫХ КОСМИЧЕСКИХ АППАРАТОВ
Специальность 01.02.01 - Теоретическая механика.
ДИССЕРТАЦИЯ на соискание учёной "степени кандидата физико-математических наук
Научный руководитель:
доктор физико-математических наук,
профессор В.В. Сазонов
Москва-2012
Содержание
Введение...............................................................................................................4
Глава 1. Исследование режима гашения угловой скорости космического
аппарата в нештатной ситуации.......................................................10
1.1. Уравнения вращательного движения КА и их стационарные
решения..................................................................................................11
1.2 Устойчивость стационарных решений.................................................13
1.3. Области притяжения стационарных решений....................................16
1.4 Реконструкция фактических реализаций режима гашения угловой скорости.................................................................................................19
1.5 Исследование стационарных вращений К А с учётом инерционных
характеристик маховиков....................................................................23
Глава 2. Определение параметров вращательного движения К А ДЗЗ п о телеметрическим данным о токе солнечных батарей....................27
2.1. Математическая модель вращательного движения КА.....................27
2.2. Метод определения вращательного движения КА.............................29
2.3. Реализация метода Гаусса-Ньютона....................................................31
2.4. Поиск начального приближения..........................................................33
2.5. Результаты определения вращательного движения К А....................35
Глава 3. Определение параметров вращательного движения малого
спутника связи по данным измерений тока солнечных батарей.. 40
3.1. Математическая модель вращательного движения КА.....................40
3.2. Метод определения вращательного движения КА.............................42
3.3. Реализация метода Левенберга-Марквардта.......................................45
3.4. Поиск начального приближения..........................................................46
3.5. Результаты определения вращательного движения КА....................48
Глава 4. Разработка модели вращательного движения.................................52
4.1 Вывод уравнений движения...................................................................53
4.2 Расчёт собственных частот модели.......................................................61
5. Заключение....................................................................................................64
6. Приложение 1................................................................................................66
6.1 Программа для мониторинга состояния КА........................................66
7. Приложение 2................................................................................................70
7.1. Программная реализация модели КА..................................................70
7.2 Методика использования.......................................................................70
7.3 Реализация тестовой задачи........................... ........................................71
7.4 Пример использования программного интерфейса библиотеки.......72
8. Список литературы.......................................................................................74
9. Таблицы и рисунки.................................... ...................................................79
Введение
В диссертации излагаются некоторые результаты работы автора, полученные как в ходе проектирования космических аппаратов, так и в процессе инженерного сопровождения лётных испытаний КА. Объектом исследования является вращательное движение малых космических аппаратов (МКА) и их динамические характеристики, обусловленные как конструктивными особенностями МКА, так и рядом обстоятельств, имевших место в ходе проведения летных испытаний МКА.
Актуальность темы. Одним из направлений деятельности ФГУП ГКНПЦ им. М.В. Хруничева в последние годы является разработка и эксплуатация МКА. Результатом работы стало создание МКА дистанционного зондирования Земли «Монитор-Э», геостационарных спутников связи «КазСат-1», «Экспресс-МД1», «КазСат-2». В настоящее время в ГКНПЦ ведётся разработка ряда перспективных МКА. Основой для создания всех перечисленных МКА стала разработанная в ГКНПЦ космическая платформа «Яхта» [1]. Платформа спроектирована в негерметичном исполнении и является универсальной, то есть на ее основе может быть создан широкий спектр МКА различного назначения, функционирующих как на низких, так и на высокоэллиптических и геостационарных орбитах. Тематика производства космических аппаратов является новой для предприятия, поэтому в ходе разработки перспективных МКА, платформа существенно модернизируется: применяются новые конструктивные решения, корректируется аппаратный состав платформы, совершенствуется алгоритмическое обеспечение бортовой системы управления. Это обстоятельство определяет повышенное внимание ко всем аспектам проектирования и эксплуатации МКА, одним из которых является исследование динамических характеристик МКА и его вращательного движения. Задача анализа динамических характеристик МКА тесно связана с разработкой математи-
ческой модели вращательного движения МКА. Другая, не менее важная задача, возникающая при проведении лётных испытаний МКА - исследование его фактического вращательного движения. Наряду с практическим подтверждением корректности разработанной математической модели МКА, особенный интерес данные исследования представляют в случае, когда штатные измерительные средства МКА по каким либо причинам недоступны. В этом случае исследование вращательного движения МКА является источником дополнительной информации, позволяющей, например, спрогнозировать дальнейшее движение МКА, дать оценку энергобаланса и температурного состояния МКА и т.д.
Цель диссертации состоит в разработке математических моделей вращательного движения конкретных МКА и создании на их основе статистических методик реконструкции такого движения по телеметрической информации. Модели и методики предназначены для повышения качества процесса проектирования МКА и расширения возможностей инженерного сопровождения летных испытаний.
Содержание работы. Работа состоит из четырех глав, каждая из которых посвящена решению конкретной задачи, возникшей при проектировании или эксплуатации реальных МКА. Рассмотренные задачи тематически объединяет тот факт, что все они посвящены исследованию вращательного движения созданных на предприятии МКА, выполненных на единой аппаратной платформе и относящихся к одному и тому же классу малых космических аппаратов. Все приведённые задачи можно рассматривать как составную часть сквозного процесса исследования и доводки программно-аппаратной платформы МКА и совершенствования технологических возможностей предприятия по проектированию и сопровождению летных испытаний МКА. Далее в тексте для краткости будем использовать сокращение КА для обозначения малых космических аппаратов.
В первой главе рассматривается нештатная ситуация на космическом аппарате (спутнике Земли), связанная с отсутствием измерений компоненты угловой скорости КА относительно одной из его связанных осей. Измерения угловой скорости используются при управлении вращательным движением КА с помощью двигателей-маховиков. Возникает задача исследования функционирования штатных алгоритмов управления при отсутствии части необходимых измерений. В диссертации эта задача решена для алгоритма, обеспечивающего гашение угловой скорости КА. Исследование функционирования алгоритма сводится к исследованию устойчивости стационарных решений системы нелинейных дифференциальных уравнений. Подобный класс задач хорошо изучен и широко представлен в литературе [2-10]. В частности, вопросы исследования систем с вращающимися массами изложены в [9]. В настоящей работе, с использованием разработанной В.В. Румянцевым и A.C. Озиранером теории устойчивости по части переменных [11] и теоремы Барбашина-Красовского [4, 5] показано, что эффективная работа исследуемого алгоритма возможна не при всех начальных условиях движения. В общем случае реализуется один из двух возможных финальных режимов, описываемых устойчивыми стационарными решениями уравнений движения. В одном из них компонента угловой скорости КА относительно оси, для которой отсутствуют измерения, отлична от нуля. С помощью численных расчетов получены оценки областей притяжения этих стационарных решений. Предложен простой способ, позволяющий вывести начальные условия режима гашения угловой скорости из области притяжения нежелательного решения. Для проверки адекватности исследуемой модели была проведена реконструкция нескольких имевших место реализаций этого режима. Реконструкция выполнена посредством аппроксимации решениями уравнений вращательного движения КА телеметрических значений компонент угловой скорости и суммарного кинетического момента двигателей-маховиков. Аппроксимация выполнена
методом наименьших квадратов [12-14] с помощью методики, разработанной на основе подхода, предложенного в [15, 16]. Практическое применение и работоспособность данного подхода показаны в большом числе работ, например [17-21] и др.
Во второй главе реконструируется неуправляемый полёт КА в нештатной ситуации. Этот полёт проходил при отсутствии штатной телеметрической информации о параметрах вращательного движения. Для определения вращательного движения КА была использована доступная косвенная информация - телеметрические значения электрического тока, снимаемого с солнечных батарей (СБ). Идея использовать данные о токе, снимаемом с СБ, как источник информации для определения вращательного движения КА не нова [22-25]. В приведённых публикациях, данные о токе СБ используются для непосредственного определения текущей ориентации КА, часто - с целью использования полученных данных в алгоритмах системы управления. При этом предъявляются определённые требования к пространственной конфигурации панелей СБ, а сами данные об упомянутом токе используются, как правило, в сочетании с какой-либо дополнительной информацией, например — измерений магнитометра. В настоящей работе представлена методика иного рода, предназначенная для использования при пост-обработке телеметрической информации на Земле. К достоинствам разработанной методики можно отнести отсутствие каких-либо требований к пространственной конфигурации СБ, отсутствие необходимости в дополнительных данных о движении КА. В качестве недостатков можно указать невозможность использовать данную методику в контуре управления КА вследствие ее вычислительной сложности и наличия режимов вращения, при которых определение этого вращения по данной методике становится невозможным.
Разработанная интегральная статистическая методика обработки телеметрических данных также является развитием подхода, предложенного
в [15, 16]. Для ее реализации разработана математическая модель движения КА с учетом действия на последний гравитационного и восстанавливающего аэродинамического моментов. Данные, собранные на отрезке времени длиной несколько десятков минут обрабатываются совместно методом наименьших квадратов с помощью интегрирования уравнений вращательного движения КА. Методика позволила определить фактическое вращательное движение КА в нештатной ситуации, уточнить значения моментов инерции КА и углов, задающих положение СБ в связанной с КА системе координат.
В третьей главе исследовано свободное движение КА - спутника связи, находящегося на геостационарной орбите. Как и в задаче предыдущей главы, непосредственная телеметрическая информация о параметрах вращательного движения КА отсутствовала. Для определения вращательного движения спутника по току, снимаемому с СБ, разработана математическая модель, в которой учитывается наличие ненулевого кинетического момента двигателей маховиков, установленных на борту КА. Телеметрические измерения тока СБ, полученные на интервале времени длиной несколько часов, обрабатывались совместно методом наименьших квадратов с помощью интегрирования уравнений вращательного движения КА. В результате обработки имеющихся данных измерений реконструировано фактическое вращательное движение КА и получены оценки суммарного кинетического момента двигателей-маховиков на значительном числе отрезков времени. Методика была использована для мониторинга описываемой нештатной ситуации.
Четвёртая глава диссертационной работы посвящена разработке математической модели вращательного движения малого КА с учётом подвижности сочленений панелей СБ и наличия на борту КА вращающейся части целевой аппаратуры и системы управляющих двигателей маховиков. Ряд обстоятельств потребовал разработки новой модели вращательного
движения по сравнению с моделями, описывающими динамику ранее созданных на предприятии КА. К указанным обстоятельствам можно отнести следующее: масса вращающейся части целевой аппаратуры составляет значительную часть массы всего КА, панели СБ оснащены механическими приводами с электродвигателями, позволяющими в полете существенно изменять пространственную конфигурацию СБ. К особенностям разрабатываемой модели следует также отнести требование простоты ее программной реализации, обусловленное необходимостью использования модели в разных организациях и на разных аппаратных платформах.
В разработанной модели КА представлен механической системой, состоящей из семи шарнирно сочленённых твердых тел: корпуса К А, корневого звена солнечной батареи, её 4-х панелей и вращающегося зеркала. Вопросы динамики подобных систем представлены в литературе [26-34]. Наличие двигателей-маховиков в модели учитывается в виде имеющегося у КА дополнительного кинетического момента. В шарнирах действуют упругие восстанавливающие моменты так, что в равновесной конфигурации корневое звено, панели и ось зеркала лежат в одной плоскости. Для равновесной конфигурации определены собственные частоты системы. Для построения процедуры расчёта матрицы кинетической энергии предложен специальный векторный аппарат. Применение данного аппарата для описания динамики роботов-манипуляторов приведено в работе [35]. Такой подход позволил обеспечить достаточную простоту программной реализации разработанной модели, и одновременно её «программную автономность», то есть возможность реализации на вычислительной машине без привлечения сторонних математических библиотек и пакетов программ. Указанное обстоятельство существенно, так как позволяет применять разработанную модель как для наземной отработки системы управления, так и для использования её в качестве «эталонной модели движения», реализуемой на бортовой вычислительной машине КА.
Глава 1. Исследование режима гашения угловой скорости космического аппарата в нештатной ситуации
На малом космическом аппарате дистанционного зондирования Земли - малом спутнике, находившимся на солнечно-синхронной орбите с высотой 600 км, - возникла нештатная ситуация, в результате которой была утрачена возможность измерения компоненты угловой скорости КА относительно одной из его связанных осей. Измерения угловой скорости использовались при управлении вращательным движением КА с помощью двигателей-маховиков. В рабочих режимах КА отсутствие измерений компенсировалось и нформацией, получаемой от звездного датчика. Однако при гашении достаточно большой угловой скорости использование этого датчика было невозможно. Возникла необходимость исследовать функционирование штатного алгоритма гашения угловой скорости при отсутствии измерений одной из ее компонент. Ниже эта задача изучена с двух точек зрения.
Во-первых, исследованы дифференциальные уравнения, описывающие процесс гашения угловой скорости КА в нештатной ситуации. Показано, что такое гашение возможно не всегда. Произвольное вращательное движение КА со временем переходит в один из двух возможных финальных режимов, описываемых устойчивыми стационарными решениями уравнений движения. В одном из них компонента угловой скорости КА относительно оси, для которой отсутствуют измерения, отлична от нуля. С помощью численных расчетов получены оценки областей притяжения этих стационарных решений. Найден простой способ, позволяющий вывести начальные условия режима гашения угловой скорости из области притяжения нежелательного решения.
Во-вторых, проведена реконструкция нескольких фактических реализаций режима гашения угловой скорости КА в нештатной ситуации. Реконструкция выполнена посредством аппроксимации телеметрических
значений компонент угловой скорости и суммарного кинетического момента двигателей-маховиков решениями уравнений вращательного движения КА.
1.1. Уравнения вращательного движения КА и их стационарные решения
КА представляет собой гиростат. Он состоит из твердого главного тела, на котором установлены три двигателя-маховика [34]. Каждый маховик имеет относительно главного тела одну ст