Физические и численные модели магнитоплазменной аэродинамики тема автореферата и диссертации по механике, 01.02.05 ВАК РФ

Бочаров, Алексей Николаевич АВТОР
доктора физико-математических наук УЧЕНАЯ СТЕПЕНЬ
Москва МЕСТО ЗАЩИТЫ
2011 ГОД ЗАЩИТЫ
   
01.02.05 КОД ВАК РФ
Диссертация по механике на тему «Физические и численные модели магнитоплазменной аэродинамики»
 
Автореферат диссертации на тему "Физические и численные модели магнитоплазменной аэродинамики"

На правах рукописи

БОЧАРОВ Алексей Николаевич

ФИЗИЧЕСКИЕ И ЧИСЛЕННЫЕ МОДЕЛИ МАГНИТОПЛАЗМЕННОЙ АЭРОДИНАМИКИ

Специальность 01.02.05 - механика жидкости, газа и плазмы

Автореферат диссертации на соискание ученой степени доктора физико-математических наук

2 8 ИЮЛ 2011

Москва - 2011

4851804

Работа выполнена в Учреждении Российской академии наук Объединённый институт высоких температур РАН

Научный консультант: доктор физико-математических наук Битюрин Валентин Анатольевич

Официальные оппоненты: доктор физико-математических наук, член корреспондент РАН Суржиков Сергей Тимофеевич

доктор технических наук, профессор Медин Станислав Александрович

доктор физико-математических наук Луцкий Александр Евгеньевич

Ведущая организация: Учреждение Российской академии наук Институт теоретической и прикладной механики им. С. А. Христиановича СО РАН (ИТПМ СО РАН)

Защита состоится « 12 » октября 2011 г. в 11 часов на заседании диссертационного совета Д 002.110.03 при Учреждении Российской академии наук Объединённый институт высоких температур Российской академии наук по адресу: 125412, Москва, ул. Ижорская, 13, стр.2, Экспозиционный зал.

С диссертацией можно ознакомиться в библиотеке ОИВТ РАН.

Ваш отзыв на автореферат в 2-х экз., заверенный печатью организации, просим выслать по адресу: 125412, Москва, ул. Ижорская, 13, стр.2, ОИВТ РАН, учёному секретарю диссертационного совета Д 002.110.03.

Телефоны для справрк: (495) 484-26-38, (495) 484-28-44. Автореферат разослан » Ь/^О г-

Учёный секретарь

диссертационного совета Д 002.110.03 доктор физико-математических наук, пр$

. Вараксин

© Учреждение Российской академии наук Объединённый институт высоких температур РАН, 2011

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность работы

Развитие и разработка новых аэрокосмических технологий с неизбежностью требует поиска новых возможностей управления перспективными летательными аппаратами или в более широком смысле - управления высокоскоростными потоками. Поиск новых возможностей управления потоком непрерывно ведется в широком спектре научных направлений. И в этом большом списке научных направлений методы магнитоплазменной аэродинамики (МПА) вызывают большой интерес. Привлекательность МПА ассоциируется с возможностью изменения характеристик течения с помощью электрических и магнитных полей. Высокий интерес к воздействию магнитного поля на высокоскоростные, в том числе гиперзвуковые, течения обусловлен как возможностью управления характеристиками обтекания тел при входе в атмосферы планет или при полете перспективных гиперзвуковых аппаратов в верхних слоях атмосферы, так и возможностью использования энергетического потенциала потока. Исследование этих возможностей с необходимостью требует развития физических и вычислительных моделей, пригодных для анализа магнитогидродинамических (МГД) течений в высокоскоростных неравновесных потоках газа в условиях сильной неоднородности свойств среды.

Упомянутые выше направления исследований можно отнести к классу внешних течений, связанных с обтеканием тел. В то же время интенсивно исследуются методы и технологии, направленные на интенсификацию таких важных процессов, как смешение компонент топлива, зажигание и горение в современных и перспективных двигательных установках. Особый интерес в этом направлении вызывают в последнее время методы, связанные с применением плазменных технологий. Как правило, использование плазмы ассоциируется с энерговыделением и химическими превращениями, специфическими для плазмы. Рассматриваемая в работе новая идея использования магнитного поля для интенсификации процессов смешения и горения основывается не только на энергетическом и химическом потенциале плазменных технологий, но и на их динамическом потенциале, обусловленном движением плазменных образований в магнитном поле.

Традиционно высоким является интерес к использованию плазменных технологий в аэродинамике, связанный с потенциальным воздействием на интегральные и локальные характеристики обтекания тел: модификация скачков уплотнения, управление пограничными слоями и отрывом потока, воздействие на вихревые структуры в потоке и другие. Если роль нагрева за счет протекающих в плазме токов качественно ясна, то силовое воздействие заряженной

(неквазинейтральной) плазмы на поток вызывает все нарастающий интерес. Особый интерес вызывает воздействие на характеристики течения электростатических сил, возникающих в слоях объемного заряда. Но даже в квази-нейтральной (но неравновесной) плазме характеристики течения в значительной степени определяются величиной электрического поля, а не температурой и давлением, например. Поэтому исследования характеристик высокоскоростных потоков неравновесной плазмы представляют интерес вне зависимости от механизмов влияния плазмы на газодинамические параметры течения.

Актуальность исследований в различных направлениях магнитоплазменной аэродинамики определяется необходимостью поиска и разработки новых методов управления высокоскоростными потоками при том, что получение экспериментальной информации о характеристиках течения либо затруднено, либо невозможно. Поэтому разработка адекватных физических и численных моделей магнитоплазменной аэродинамики представляется необходимой и актуальной. Анализ новых технологий управления высокоскоростными потоками методами магнитоплазменной аэродинамики невозможен без проведения численных исследований свойств течений ионизованного газа в электрических и магнитных полях. Поэтому исследование фундаментальных свойств сверх- и гиперзвуковых течений много-компонентной химически реагирующей среды в сильных электрических и магнитных полях представляет самостоятельную и актуальную задачу.

Цели диссертации

1. Разработка физических и численных моделей течения много-компонентной химически реагирующей среды в сильных электрических и магнитных полях.

2. Исследование фундаментальных свойств гиперзвуковых магнитогидро-динамических течений и оценка применимости МГД технологий в аэрокосмических приложениях.

3. Исследование новых возможностей интенсификации процессов смешения и горения в высокоскоростных потоках с помощью электрических и магнитных полей.

4. Исследование механизмов воздействия неравновесных неквазинейтральных плазменных образований на характеристики высокоскоростных потоков газа.

Основные положения, выносимые на защиту

1. Разработан вычислительный комплекс для анализа неравновесных процессов в высокоскоростных газовых потоках в присутствии электрических и магнитных полей. Разработанный комплекс реализует замкнутое описание течений много-

компонентной химически реагирующей среды в сильных электрических и магнитных полях.

2. Предложена концепция электромагнитной тепловой защиты летательного аппарата. Предложен новый метод электромагнитной тепловой защиты, основанный на ускоренном МГД торможении аппарата в верхних слоях атмосферы. Предложена идея МГД генерации энергии на борту летательного аппарата.

3. Предложен метод интенсификации процессов перемешивания, зажигания и горения в предварительно несмешанных горючих смесях. Разработаны модели взаимодействия электрического разряда с потоком газа в магнитном поле. Проведено сравнение результатов численного и физического эксперимента, демонстрирующих базовую идею предложенного метода.

4. Выполнено исследование механизмов воздействия слабоионизованной плазмы на аэродинамические характеристики обтекаемых тел.

Научная новизна

Научная новизна диссертации определяется следующими основными результатами.

1. Установлены основные черты МГД взаимодействия в гиперзвуковых потоках слабоионизованной плазмы. Установлена роль неравновесных процессов, пространственной неоднородности свойств среды, анизотропии свойств в магнитном поле в МГД течениях вокруг теп.

2. Впервые рассмотрено гиперзвуковое МГД течение вокруг затупленного тела с учетом реальных термодинамических и переносных свойств воздуха. Показано, что для достаточно широкого класса условий, определяемых масштабами и скоростью аппарата, существует принципиальная возможность значительного снижения тепловых потоков на поверхности аппарата за счет организации МГД взаимодействия в головной части ударного слоя. Показано, что эффективность МГД теплозащиты существенно зависит от пространственной неоднородности параметров плазмы.

3. Рассмотрены новые предложения по МГД управлению высокоскоростными летательными аппаратами, связанные с организацией МГД взаимодействия в большом объеме плазмы ударного слоя. В частности, ускоренное МГД торможение аппарата в верхних слоях атмосферы предлагает иной подход к тепловой защите спускаемого аппарата: снижение скорости аппарата до входа в плотные слои атмосферы, где тепловые нагрузки становятся особенно велики. Показано, что существует принципиальная возможность увеличения гидродинамического сопротивления тела на порядок. Другим полезным следствием является генерация электрической энергии на борту летательного аппарата. Показана возможность извлечения электрической мощности

мегаваттного уровня при движении летательного аппарата в верхних слоях атмосферы Земли.

4. Предложена возможность МГД интенсификации процессов смешения, зажигания и горения в предварительно несмешанных потоках топлива. Суть предложения заключается в генерации МГД взаимодействия в плазме, существенно изменяющего кинематические характеристики всего потока. Высокие температуры в плазме - следствие нагрева от протекающих токов -способствуют ускорению молекулярного переноса и химических реакций на границах плазмы с холодным потоком.

5. Исследованы механизмы воздействия неравновесной неквазинейтральной плазмы (разряды постоянного тока и высокочастотные разряды) на характеристики обтекания тел. Установлена роль нагрева газа электронным и ионным током; установлено влияние, энергетическое и динамическое, слоев объемного заряда на характеристики течения. Показано, что в неравновесной плазме роль плазмохимических и электродинамических процессов может быть критически важной.

Теоретическая и практическая ценность

Теоретическая и практическая ценность работы заключается в следующем. Впервые численно рассмотрено МГД течение вокруг тел в условиях реальной атмосферы Земли; установлено влияние анизотропии переносных свойств в магнитном поле на характеристики обтекания; установлено влияние градиентов свойств течения и неравновесных эффектов на характеристики обтекания.

Предложен ряд новых МГД технологий для аэрокосмических приложений. В работе численно продемонстрирован их потенциал с точки зрения улучшения аэродинамических характеристик течения. В частности, в рамках концепции традиционной электромагнитной теплозащиты установлена возможность значительного снижения тепловых нагрузок на поверхности летательного аппарата; в альтернативной концепции теплозащиты (МГД парашют) показана возможность ускоренного МГД торможения спускаемого аппарата; в рамках концепции МГД интенсификации смешения показана возможность значительного ускорения процессов смешения и зажигания в высокоскоростных потоках холодного газа.

Результаты численных экспериментов легли в основу постановки экспериментальных исследований МГД взаимодействия в гиперзвуковых потоках; численное моделирование являлось основным инструментом анализа и интерпретации экспериментальных результатов. Результаты численных экспериментов легли в основу постановки физического эксперимента и анализа экспериментальных результатов по МГД интенсификации смешения и зажигания.

Впервые численно рассмотрено высокоскоростное течение слабоионизованного неквазинейтрального газа вокруг аэродинамических тел. Установлено влияние основных механизмов воздействия плазменных образований на аэродинамические характеристики течения. С помощью численного моделирования дано объяснение ряду "аномальных" характеристик электрического разряда в потоке, обнаруженных ранее в экспериментах.

Основные публикации

По теме диссертации опубликована 97 работ, включая 17 работ в журналах, рекомендованных ВАК для опубликования научных результатов докторских диссертаций. Список основных публикаций приводится в конце автореферата.

Достоверность результатов

Достоверность результатов основывается на сравнении результатов решения многочисленных тестовых задач по проверке принципиальных элементов разработанных моделей с известными численными и аналитическими решениями вычислительной газовой динамики, аэротермодинамики, электродинамики. В ряде случаев имеется хорошее согласие численных результатов с имеющимися экспериментальными данными.

Апробация работы

Результаты диссертации докладывались на международных и российских конференциях, симпозиумах и семинарах: 13-17 Международных конференциях по МГД преобразованию энергии ( 13 - Beijing, 1999; 14 - Maui, Havaii, 2002; 15 -Москва; 2005; 16 - Miami, FL, 2007; 17 - Shonan Vilage Center, Japan, 2009); 30 - 38 Plasmadynamics and Lasers Conferences (1999 - 2009, Reno, Nevada); 39 - 47 AIM Aerospace Sciences Meeting (2001 - 2009, Reno, Nevada); 4th International Symposium Atmospheric Reentry Vehicles & Systems, (2005, Arcachon-France ); 1-10 Workshop on Magneto-Plasma-Aerodynamics (Moscow, 2001 - 2010); 1st International ARA Days (Arcachon, France, 2006) и др.

Личный вклад автора

Автор принимал участие в разработке концепций, постановке задач, анализе результатов; им разработаны соответствующие физические и численные модели. Автором выполнены все численные расчеты и получены все результаты работы.

Структура и объем диссертации

Диссертация состоит из Введения, шести глав, Заключения и Приложения. Основной текст занимает 297 страниц, содержит 204 рисунка, 1 таблицу и 263 ссылки.

ОСНОВНОЕ СОДЕРЖАНИЕ ДИССЕРТАЦИИ

В Главе 1 диссертации предлагается анализ методов магнитоплазменной аэродинамики (МПА) с точки зрения механизмов воздействия на высокоскоростные течения газа и ожидаемых аэродинамических эффектов. Представлен краткий обзор достижений в исследовании влияния электрических и магнитных полей на характеристики сверхзвуковых и гиперзвуковых течений. Предложена классификация физических и вычислительных моделей МПА, применяемых и разрабатываемых в настоящее время.

Начиная с 1950х годов, магнитогидродинамическое (МГД) взаимодействие вызывает большой интерес с точки зрения аэродинамики. Первые исследования были направлены на выяснение фундаментальных аспектов влияния магнитного поля на характеристики гиперзвуковых течений ионизованного газа вокруг различных тел [1-5]. Были установлены основные аэродинамические эффекты, инициируемые магнитным полем.

В середине 1990х был предложен ряд новых идей по использованию МГД технологий в аэродинамике [6]: в частности, извлечение энергии из гиперзвукового потока и МГД интенсификация процессов смешения в двигательных установках. Идея создания бортовых МГД генераторов была впервые рассмотрена в начале 1990х [7]. Кроме того, на основе идеи бортового генератора не так давно был предложен иной подход к снижению тепловых потоков на поверхности летательного аппарата с помощью магнитного поля (электромагнитная тепловая защита) [8, 9]: ускоренное МГД торможение до входа в слои атмосферы, наиболее опасные с точки зрения тепловых нагрузок. Анализу этих направлений и их развитию собственно и посвящена значительная часть диссертации.

Интерес к применению слабо ионизованной плазмы в аэродинамике начал формироваться в начале 1980х. Тогда в первых работах [10, 11] по прохождению ударных волн по слабо ионизованному газу были отмечены эффекты увеличения скорости волны, уширения фронта, и ряд других. В большинстве случаев влияние слабоионизованной плазмы на поток проявляется в выделении энергии от протекающих по области разряда токов. С точки зрения механики воздействие теплового механизма на характеристики течения можно считать принципиально изученным [12-16].

Из так называемых нетепловых механизмов большой интерес вызывали процессы разделения заряда во фронте ударной волны [10, 17], возникающие при прохождении волны по плазме. Потенциально слои объемного заряда воздействуют на структуру фронта волны (и течение в целом) благодаря появлению электростатической силы. В последнее время большой интерес вызывают исследования возможности управления потоком с помощью электростатической силы [18-20].

Наконец, можно выделить класс воздействий, который нельзя, по-видимому, отнести к энергетическому или динамическому виду воздействия. Речь идет о плазмохимических превращениях, которые могут иметь место в высоких электрических полях [21]. К этому виду воздействия на высокоскоростные течения привлечено большое внимание в связи с поиском средств стимулирования и ускорения процессов зажигания и горения топливных смесей в современных и перспективных двигательных установках (Plasma-Assisted Combustion). Кроме того, интенсивно исследуются и методы генерации собственно плазмы, в основе которых лежат механизмы химического воздействия на среду. В этих работах большое внимание уделяется исследованию химико-кинетических механизмов, специфических для высоких электрических полей [22 - 27].

Пожалуй, наибольшую сложность в изучении возможностей методов магнитоплазменной аэродинамики представляют крайне ограниченные возможности получения экспериментальных данных. Поэтому теоретический анализ процессов, протекающих в высокоскоростных потоках ионизованного газа в электромагнитных полях, представляется чуть ли не единственным средством исследований. Сложность и взаимозависимость физических процессов выдвигает на первый план численное моделирование как средство получения количественной информации. Описание большинства значимых физических процессов в газовой фазе возможно на базе решения системы уравнений (см., например, [28, 29]), включающей уравнения переноса массы, импульса и энергии для среды в целом, уравнений переноса массы, импульса и энергии для каждой компоненты среды, и уравнений Максвелла. При этом подразумевается, что среда является сплошной, т.е. характерный пространственный масштаб рассматриваемых явлений много больше длины свободного пробега частиц.

В большинстве практических приложений магнитоплазменной аэродинамики, не связанных с распространением электромагнитных волн, скорость света может быть исключена из рассмотрения, и система уравнений Максвелла упрощается (индукционное приближение, например, [28, 30]). Частным случаем индукционного приближения является система уравнений идеальной магнитной гидродинамики. Построение физических и вычислительных моделей идеальной МГД представляло и представляет фундаментальную задачу как с точки зрения исследования физических явлений в магнитных полях, так и с точки зрения вычислительной физики [31, 32].

При решении многих практически важных задач можно ограничиться моделью МГД для так называемых малых магнитных чисел Рейнольдса (например, [30]) При необходимости собственное магнитное поле, индуцируемое токами в плазме, может быть получено из закона Био-Савара. Заметим также, что существует крайне ограниченное количество работ, в которых рассматриваются МГД процессы в газах с

реальными свойствами. По мнению автора, последнее обстоятельство играет если не решающую, то важнейшую роль при анализе аэродинамических эффектов, порождаемых электрическими и магнитными полями в газо-плазменных потоках. В задачах плазменной аэродинамики основные проблемы связаны с описанием характеристик неравновесной плазмы, особенно при наличии объемного заряда, например, в приэлектродных областях. Но даже в квазинейтральной плазме кинетические процессы играют большую роль.

Модели, разработанные и используемые в данной работе для анализа МГД процессов, можно отнести к классу моделей неравновесной газовой динамики в приближении малых магнитных чисел Рейнольдса. Для задач плазменной аэродинамики в данной работе разработаны и рассматриваются модели, идеологически близкие к моделям [33].

Глава 2 посвящена исследованию МГД взаимодействия при гиперзвуковом обтекании тел. Экспериментальные исследования проводились на гиперзвуковой МГД установке ЦАГИ. Цель исследований - установление основных факторов, определяющих структуру МГД течений вокруг аэродинамических тел, и экспериментальная проверка ряда новых предложений по МГД управлению гиперзвуковыми потоками.

Численными экспериментами установлено, что все ключевые особенности МГД течений вокруг тестовых моделей могут быть описаны в рамках модели течения, основанной на решении уравнений Навье-Стокса, уравнений квазистационарной электродинамики с обобщенным законом Ома и моделью совершенного газа. Основным элементом вычислительной модели является описание электрофизических свойств среды: концентрации электронов, как основных носителей заряда, и их подвижности. Такой вывод о выборе модели течения в тестовой секции установки был сделан на основе анализа характеристик течения в тракте установки с привлечением более сложной модели термохимически неравновесного воздуха, представленной в Главах 3 и 4 диссертации.

Схема течения в тракте гиперзвуковой МГДУ ЦАГИ [34] представлена на рис.1.

Первичный подогрев потока осуществляется дуговым

подогревателем мощностью около 250 кВт. Перед входом в МГД ускоритель в поток вводится присадка (эвтектика МаК), обеспечивающая работу ускорителя. Мощность МГД ускорителя оценивается в 600 кВт, при этом коэффициент преобразования энтальпии оценивается как п = 0.5, т.е.

Рис.1. Принципиальная схема течения в тракте экспериментальной гиперзвуковой

МГД Установки ЦАГИ. 1 - дуговой подогреватель, 2 - ввод присадки, 3 - МГД ускоритель, 4 -вторичное сопло, 5 - тестовая секция.

половина вложенной мощности идет на увеличение внутренней энергии газа (условно на нагрев) и половина - на увеличение кинетической энергии потока.

В разделе 2.1 (см. также [35]) были выполнены расчеты течения в тракте установки на основе модели неравновесного газа, в которых работа ускорителя моделировалась распределенной плотностью энергии и плотностью силы. Основные результаты этих расчетов таковы. На входе в тестовую секцию центральная часть струи размером 8 - 10 см представляет собой гиперзвуковое течение с числом Маха порядка 8-15, скоростью потока 5000 - 7500 м/с. На основе анализа данных о течении в тракте Установки была построена физико-математическая модель МГД течения в тестовой секции. Модель основана на решении двумерных уравнений переноса массы, импульса и полной энергии в приближении совершенного газа. Электродинамическая часть модели может быть сведена к задаче о нахождении электрического потенциала во внешнем магнитном поле и при наличии связи плотности электрического тока и поля в виде обобщенного закона Ома. Расчетами установлено, что для анализа МГД эффектов в тестовой секции может быть принята модель замороженной ионизации (Я-модель проводимости), причем мольную долю электронов можно считать постоянной всюду. Такая модель дает результаты, качественно отличающиеся от результатов, полученных с моделью равновесной ионизации (Е-модель проводимости).

Разработанная модель была применена для исследования МГД течения вокруг цилиндра с током, создающим азимутальное магнитное поле в плоскости течения. Рассматривались следующие параметры набегающего потока: статическое давление Ро = 33 Па, статическая температура То = 552 К, скорость Уо = 5000 м/с, плотность ро = 1.725-Ю"4 кг/м3, число Маха М0 = 9.44. Основные результаты этих исследований, представленные в разделе 2.2, можно суммировать следующим образом. Ключевыми факторами, определяющими интенсивность МГД взаимодействия в окрестности цилиндра, являются эффект Холла, условия замыкания токов в плазме (граничные условия) и, вообще говоря, неравновесные процессы в набегающем разреженном потоке. Установлено, что область ударного слоя перед наветренной поверхностью цилиндра является, вопреки ожиданиям и общепринятым представлениям, зоной МГД ускорения. Следствие - отсутствие "положительных" эффектов: увеличение отхода ударной волны, снижение теплового потока в стенку. На рис.2а показано положение фронта головной ударной волны для трех принципиальных моделей течения. Видно, что только при отсутствии эффекта Холла (кривая 3) можно было ожидать заметного отхода волны от поверхности цилиндра. Даже в случае идеальных с точки зрения эффективности МГД взаимодействия условий в секции (кривая 2, внешняя граница - идеальный изолятор) отход волны отсутствует. Классический случай отхода волны, сопровождающийся значительным снижением теплового потока на поверхности,

можно было получить в двух случаях: при отсутствии эффекта Холла или при наличии эффекта Холла для модели равновесной ионизации присадки. В то же время было установлено, что интенсивное МГД взаимодействие имеет место в следе за цилиндром (рис.26). Это проявляется в увеличении температуры газа и увеличении угла раскрытия ударной волны. В экспериментальных исследованиях наблюдалось увеличение интенсивности свечения в следе и увеличение угла раскрытия волны. Оба эффекта - отсутствие воздействия магнитного поля на поток в окрестности критической точки цилиндра и взаимодействие в следе - являются следствием неравновесной ионизации во всей области течения и сильного эффекта Холла.

Последнее обстоятельство - наличие МГД взаимодействия в следе за цилиндром - наводит на мысль попытаться использовать этот факт для получения «положительного» влияния магнитного поля на поток. С этой целью в разделе 2.3 было рассмотрено обтекание клина с встроенной магнитной системой. Обнаружено, что структура зон МГД взаимодействия принципиально не отличается от той, что была найдена при обтекании цилиндра: зона ускорения потока непосредственно над магнитной системой, зоны генерации - вверх и вниз по потоку. Принципиальным отличием от обтекания цилиндра является то, что нижняя по потоку обширная зона генерации производит "положительный" эффект: торможение потока за счет МГД взаимодействия приводит к повышению давления и к увеличению угла раскрытия косой ударной волны, рис.За. Этот эффект позволяет, например, воздействовать на положение косого скачка на входе в воздухозаборник летательного аппарата. Экспериментальные исследования подтвердили увеличение угла косого скачка с включением магнитного поля, рис.4.

Для качественного прогноза МГД эффектов в условиях реальной атмосферы (отсутствует ионизация в набегающем потоке) оба типа течения были рассмотрены для другого предельного случая неионизованной присадки в набегающем потоке. Показано, что в этом случае режим МГД взаимодействия существенно ближе к режиму малого холловского тока (а не электрического поля, как в случае течения в экспериментальной секции). При обтекании цилиндра наблюдается значительное увеличение отхода ударной волны (рис.2а, кривая 3) и снижение теплового потока в

волны (а). О - В = 0; 1 - В = 1.5 Тл, Р-модель проводимости, эквипотенциальная граница; 2 - В = 1.5 Тл, модель проводимости, изолированная граница; 3 - В = 1.5 Тл, Р-модель проводимости, без эффекта Холла. Распределение температуры (б), В =

1.5 Тл, Р-модель проводимости, эквипотенциальная граница. Линии-В=0.

а) б)

Рис.3. Распределение давления (Па) для Р-модели (замороженной) проводимости (а) и Е-модели (равновесной) проводимости (б), В> = 2 Тл. Черная линия показывает положение косого скачка при В- = 0.

а) б)

Рис.4. Визуализация течения над клином: без магнитного поля (а) и с магнитным полем (б). Поток - справа налево.

стенку. При обтекании клина наблюдается увеличение угла косого скачка, значительно большее по сравнению со случаем неравновесной ионизации, рис.36.

В Главе 3 рассматриваются МГД эффекты, возникающие при гиперзвуковом МГД обтекании тел в условиях реальной атмосферы Земли на высотах 50 - 80 км. Основная цель исследований - оценка возможности снижения тепловых нагрузок на поверхности летательного аппарата с помощью магнитного поля (электромагнитная тепловая защита).

I В разделе 3.1 представлена двумерная модель МГД течения термохимически

неравновесного воздуха, соответствующая условиям верхней атмосферы Земли. Модель основана на совместном решении уравнений Навье-Стокса для среды в целом, уравнений переноса массы компонент с учетом много-компонентной диффузии и конечной скорости химических реакций, уравнений электродинамики в приближении малых магнитных чисел Рейнольдса с учетом эффекта Холла.

Течение воздуха описывается в рамках сплошной среды моделью химически неравновесного одно-температурного газа. Внутренние степени свободы частиц газа находятся в равновесии с поступательными, и для характеристики

термодинамического состояния газа используется понятие температуры (поступательной). Будем описывать характеристики потока системой уравнений:

^ + У(ри) = 0, (1)

о/

Н^ + У(ри'и) + = ~дР'дг + (2)

^.. + у + Р) и) + уЧ + У(иг) = (3) 5/

^ + и) + УГ/=®/, (4) 81

(5)

5 д д Г7 д 1 8 4

— = ех— + е —,У = — + — — у,Р = 1Р:, (6)

дг дх ■ ду дх у( ду

Здесь I - плотность электрического тока, Е - напряженность электрического поля, ф - электрический потенциал, сг - коэффициент электропроводности, В -вектор индукции магнитного поля, р - параметр Холла, р,- - массовые плотности компонент, р - плотность среды, и = ((Л,1/у) - массовая скорость, Р -газокинетическое давление, е° - полная энергия на единицу массы, е„ еу -единичные базисные вектора, V - оператор дивергенции, £=0 для декартовой системы координат и £=1 для цилиндрической. Связь полной энергии с давлением Р и температурой Г определяется соотношениями:

е

и2 , Р

= е+ е = А- --, /.^УД, А,(Г) = Й,/ + \С,АТ) <ГГ

2 р

•г,/

р=1.р1.Р,=РАТ.я1=~, (7)

Здесь е - внутренняя энергия на единицу массы, Л - внутренняя энтальпия на единицу массы, /?,- - внутренняя энтальпия отдельного компонента среды, У/ = р/р -массовая доля /-того компонента, Ь,г - энтальпия образования компонента при комнатной температуре (Тге/ = 298.15 К), СР{Т) - теплоемкости при постоянном давлении, Я, - газовая постоянная /'-той компоненты, РР - универсальная газовая постоянная. Для каждого компонента СР,{Т) и /V аппроксимируются кусочно-полиномиальными функциями температуры на основе табличных данных.

Диффузионные потоки массы П, тепловой поток д и тензор вязких напряжений определяются соотношениями:

г,. =-pD,~ , q = + IW , г, (8)

где D¡ - эффективный коэффициент диффузии /'-той компоненты, Л - коэффициент теплопроводности, q - молекулярный коэффициент вязкости, 5¡¡ - символ Кронеккера.

Коэффициенты переноса в выражениях для потоков, а также интегралы столкновений вязкого и диффузионного типа, необходимые для расчета коэффициентов переноса, рассчитывались как в [36]. Коэффициент электропроводности задается обычным образом.

сг= enefje, fje = е-е- = 4 , те = v;1 .ve=Zvcj , vej = rijUeQCJ, (9) me t¡

Здесь e - заряд электрона, ne - числовая плотность электронов, /je, - подвижность электронов, ve - средняя частота столкновения электронов, n¡ - числовая плотность частиц j-го сорта, ие - средняя тепловая скорость электронов, Qe¡ - сечение столкновений электронов с частицами j-го сорта, которые рассчитываются на основе данных по интегралам столкновений диффузионного типа.

Скорость производства массы /-той компоненты за счет химических реакций определяется согласно закону действующих масс:

r=l V Ы1 /=1 )

с^РфЛ]г=а-Ть-^{-Еа1т). (10)

Здесь с,- - мольная концентрация /'-той компоненты, W¡ - молекулярная масса компоненты. vV и v"/,r - стехиометрические коэффициенты реагентов и продуктов в г-той реакции. k¡r и кьг -константы скорости прямой и обратной реакции, а, Ь, Еа -параметры реакции, Еа - энергия активации, Nr - число реакций, N - число компонент.

В рамках этой модели в разделе 3.2 рассмотрена классическая задача о гиперзвуковом обтекании затупленного тела (сферо-конус) во внешнем магнитном поле типа поля диполя. Рассматриваемая область изображена на рис.5. Магнит представляет собой виток с током, так что в области течения магнитное поле близко по структуре к полю диполя. Радиус сферической части - 10 см, угол полу-раствора

Рис.5. Вид расчетной области и положение витка с током.

м

о.2

0.15 sir

Рис.6. Распределение давления вдоль линии торможения (а), температуры (6), мольной доли электронов (в): 0 - В*=0; 1 - В*=0.5Тл, 2 - В*=0.75Тл; 3 - В*=1.2Тл, 2° - В*=0.75Тл (без эффекта Холла).

внутренний радиус витка - 5 см. Параметры набегающего потока

конуса - 15' следующие:

р0=1.6-1(Г4 кг/м3, р0 = 11 Па, У0 = 7500 м/с, Т0 = 238 К, М = 24.2. Рассматривалась кинетическая схема, состоящая из 80 реакций для 10 компонентов (N2, 02, N0, Ы, О, N0*, !\Г, 0+, е) [36].

Качественно течение соответствует классическим представлениям о течении ионизованного газа в магнитном поле. В плазме за ударной волной на масштабах порядка размера токового витка индуцируется азимутальный электрический ток, что в свою очередь приводит к появлению электромагнитной силы ЦВ]. Во всей зоне взаимодействия сила имеет компоненту, направленную против потока. Действие электромагнитной силы приводит к увеличению отхода ударной волны от тела (рис.6) и, как следствие, к снижению в среднем градиента температуры в ударном слое. В результате почти на всей поверхности сферической части наблюдается заметное снижение плотности теплового потока в стенку (рис.7).

Даже в условиях сильного эффекта Холла (параметр Холла ре ~ 101 - 102) можно ожидать интенсивного МГД взаимодействия в плазме за ударной волной при вполне достижимых значениях магнитной индукции. Главный результат -возможность применять МГД метод для управления гиперзвуковым потоком,

например, для создания электромагнитной тепловой защиты.

Ч..1 МВт/М'

В разделе

возможность электромагнитной

О 1 2 л«

Рис.7. Распределение плотности теплового потока по поверхности тела. Обозначения те же, что на рис.6.

3.3 исследуется организации тепловой защиты поверхности спускаемого аппарата на примере входа в атмосферу возвращаемой капсулы аппарата Stardust [37]. Высокие скорости движения спускаемого аппарата (8 - 12 км/с), большие размеры (D = 2R - 0.8м) предопределяют появление новых черт в

картине МГД течения вокруг аппарата. А именно, степень ионизации в ударном слое может достигать значений 10-20 %, что на два порядка превышает уровень, характерный для предыдущей задачи. Причем, термодинамическое состояние плазмы близко к равновесному при температурах 10000 - 12000К. В таких условиях можно ожидать: а) весьма интенсивное МГД взаимодействие (оценка параметра МГД взаимодействия Sm ~ 1 - 50) при значительном снижении влияния эффекта Холла; б) возможность заметного влияния собственного магнитного поля, индуцируемого токами в плазме (оценка магнитного числа Рейнольдса Rem — 2 — 15).

Как и в предыдущей задаче, рассматривалось магнитное поле, создаваемое магнитной катушкой. Рассматривалось два вида магнитной системы: катушка с внутренним радиусом Rm = 0.14м (магнит МС1), расположенная в носовой части аппарата (рис.86), и катушка с внутренним радиусом Rm = 0.28м (магнит МС2), расположенная вблизи максимального поперечного сечения (рис.8в). Результаты, представленные на рис.9, являются типичными для всех исследованных режимов в точках траектории аппарата (рассматривалось шесть точек траектории в диапазоне высот H = 81 -51 км и соответствующим им скоростям движения V = 12385 - 7936 м/с). В первую очередь следует отметить значительное снижение плотности теплового потока на поверхности аппарата при амплитудах магнитного поля, на порядок ниже тех, что рассматривались в предыдущем разделе. При этом магнитная система большего размера (МС2) обеспечивает большее снижение теплового потока на поверхности тормозного щита по сравнению с магнитной системой МС1. Но имеет место повышение, точнее - появление, теплового потока на поверхности кормовой части аппарата. При использовании меньшей магнитной системы МС1 характерно возникновение рециркуляционной зоны ниже по потоку от магнитной системы, что сопровождается провалом в распределении теплового потока. Причем, этот провал тем глубже, чем ниже роль вязких эффектов, т.е. на меньших высотах. Однако, снижение теплового потока в носовой (сферической) части аппарата ниже, чем в случае МС2, и имеет место повышение теплового потока в районе миделя.

Важным отличительным свойством, характерным для всех рассмотренных режимов, является эффект насыщения теплового потока. Снижение теплового потока происходит до некоторого значения магнитной индукции (своего для каждого режима). При превышении этого значения распределение теплового потока либо

Ф # |Ц

Рис.8. Распределение концентрации электронов njno вокруг капсулы Stardust для высоты H = 65км. а) В* = 0, (б) В* = 0.2Тл, магнитная система МС1 (Ят=0.14м), (в) В* = 0.2Тл, магнитная система МС2 (Ят=0.28м).

О 1 2 S/R

Рис.9. Распределение плотности теплового потока по поверхности капсулы для Н= 71 км, У=12063м/с: а) - магнитная система МС1, 6) - магнитная система МС2.1 - В*=0, 2 -В*=0.05Тл, 3 - В*=0.1Тл. R = DI2 = 0.4м -радиус максимального поперечного сечения.

т, к

30000 Ь 2 а)

20000 JAУ фУ î

10000 • о .! ;i «

МВт'"! меняется слабо, либо возможен

даже рост теплового потока. Насыщение теплового потока слабо коррелирует с монотонным увеличением отхода ударной волны от поверхности тела с ростом магнитной индукции, как это видно на рис.10. Таким образом, общепринятая точка зрения на то, что снижение теплового потока обусловлено снижением среднего градиента температуры в ударном слое в результате отхода ударной волны, в данном случае не совсем верна. Воздействие магнитного поля на тепловые потоки эффективно лишь в области больших градиентов температуры и концентраций, т.е. вблизи стенки. С увеличением толщины ударного слоя температура в большей части слоя стремится к равновесному значению, и перепад температур, определяющий тепловой поток в стенку, стабилизируется.

На рис.11 представлены интегральные характеристики МГД взаимодействия: полный тепловой поток и полное гидродинамическое сопротивление аппарата. В целом, прослеживаются тенденции, обсуждавшиеся выше: с ростом магнитного поля полный тепловой поток падает, но эффект насыщения также проявляется. Проявляется также тенденция увеличения эффективности электромагнитного охлаждения с ростом высоты: одинаковое снижение полного теплового потока достигается на больших высотах при меньших магнитных полях. Что касается полного сопротивления тела, то, как видно на рис.116, его поведение неоднозначно. Для магнитной системы меньшего размера МС1 полное сопротивление снижается в рассмотренном диапазоне значений магнитной индукции. Для системы большего размера МС2 полное сопротивление растет с ростом магнитного поля, причем тенденции к насыщению не наблюдается.

0 0.2 0.4 x/R, 0 0.2 0.4 x/R

Рис.10. Распределение температуры (а) и концентрации электронов пе/пО (б) вдоль линии торможения для Н=71км. Сплошные-магнитная система МС1, пунктир - МС2. 0 -В*=0, 1 - В*=0.05Тл, 2 - В*=0.1Тл. Rs = 0.23м - радиус сферической части капсулы.

Обсуждавшаяся в начале раздела 3.3 возможность влияния собственного магнитного поля, индуцированного токами в плазме, была проверена решением уравнений переноса совместно с расчетом собственного поля по закону Био-Савара. Собственное магнитное поле не меняет качественно структуру течения. Его воздействие на течение аналогично действию базового магнитного поля с пониженной амплитудой. Действие собственного поля

проявляется, главным образом, в уменьшении отхода ударной волны (т.е. уменьшении зоны взаимодействия). Но, как следует из обсуждавшегося выше эффекта стабилизации среднего градиента температуры, уменьшение отхода ударной волны практически не влияет на уровень тепловых потоков.

Глава 4 посвящена исследованию новых предложений по использованию МГД метода в аэрокосмических приложениях. А именно, рассматривается иной подход к организации тепловой защиты поверхности летательного аппарата, основанный на ускоренном электромагнитном торможении аппарата в верхних слоях планетарной атмосферы - МГД парашют. Предложены первые оценки энергетической эффективности бортового МГД генератора, работающего при спуске аппарата в верхних слоях атмосферы. Рассматриваются результаты исследований по созданию и тестированию экспериментального бортового МГД генератора.

В разделе 4.1 диссертации рассматривается идея ускоренного торможения аппарата в атмосфере, впервые предложенная в [8, 9]. Влияние магнитного поля на гидродинамическое сопротивление тела рассматривается в постановке, близкой к той, что рассматривалась в Главе 2. Параметры потока соответствуют течению в тестовой секции Установки ЦАГИ, рассмотренного во второй главе. В разделах 4.2 и 4.3 рассматривается аналогичная задача для условий реальной атмосферы Земли [38, 39].

Идея ускоренного МГД торможения исходит из возможности (управляемого) торможения на участке попета, где увеличение тепловых потоков на поверхности тела за счет МГД взаимодействия не является критичным. Вход спускаемого аппарата в плотные слои атмосферы может уже происходить при скоростях, обеспечивающих приемлемо низкий уровень тепловых нагрузок. Отвлекаясь от

V/

0.1 0.2 0.3 04

а)

01 0.2 03 04

6)

Рис.11. Изменение полного теплового потока (а) и полного сопротивления (б) в

зависимости от характеристического магнитного поля для магнитной системы МС1 (сплошные) и МС2 (пунктир). 1 -Н=55км, 2 - Н=60км, 3 - Н=65км, 4 - Н= 71 км, 5 - Н=81км.

Рис. 12. Эскиз бортового МГД генератора (а) и вид расчетной области в плоскости течения ху (б).

принципиальной возможности

извлечения энергии из потока, МГД парашют не требует использования элементов конструкции, выступающих в поток. За счет организации взаимодействия в большом объеме, например, над и под крылом, можно теоретически использовать магнитные системы, создающие весьма умеренные магнитные поля. Однако возможность организации эффективного МГД взаимодействия в реальном газе над протяженным телом требует

специального рассмотрения,

обусловленного низкими давлениями, и,

как следствие, низкими скоростями химических процессов, а также неравновесными

■ явлениями.

МГД парашют рассматривается как коротко-замкнутый МГД генератор, . V 'ЧГ; рис.12. Отличие вычислительной модели, используемой в данной задаче, от той, что применялась для исследования МГД взаимодействия на экспериментальной установке,

заключается в модели проводимости. Здесь считается, что набегающий холодный поток не ионизован (в отличие от экспериментальных условий), и мольная доля нейтральной присадки составляет 1%. Таким образом, качественно моделируется ионизация воздуха за сильной ударной волной. Для параметров набегающего потока, рассмотренных в разделе 2.2 диссертации (Р0 = 33 Па, Т0 = 552 К, Уо

и и.Ч и.О 1.1 1.0 £

Магнитная индукция, Тл = 5000 м/с, ро = 1.725-10 КГ/м , Мо =

Рис.14. Зависимость коэффициента 9 щ рассмотрено обтекание плоской

сопротивления от величины

характеристического магнитного поля пластины с цилиндрической носовой и

для двух значений угла атаки. кормовой частью. Длина пластины -

Рис.13. Поле давления для В* = О (слева) и В* = 2 Тл (справа). Угол атаки -ЗОград.

с.

а=зо° 'V

а=о

9.6 см, радиус закругления - 0.8 см. Магнитная система, схематично показанная на рис.126, представляет собой два линейных проводника с током, создающих магнитное поле, нормальное к поверхности в центральной части профиля. Расчеты были выполнены для нескольких углов атаки. Пример поля давления для угла атаки а = 30° представлен на рис.13. Интегральный эффект воздействия магнитного поля на течение представлен на рис.14 зависимостью коэффициента сопротивления модели экспериментального масштаба от величины характерной магнитной индукции (которая достигается только на поверхности проводников). Основной эффект заключается в увеличении полного гидродинамического сопротивления почти на порядок, что, собственно, и характеризует потенциал МГД управления течением. Другая особенность заключается в том, что при больших полях (В* > 1 Тл) форма тела и угол атаки не играют особой роли: характеристики торможения определяются МГД взаимодействием в большом объеме.

Раздел 4.2 посвящен оценке эффекта для условий реальной атмосферы Земли. Рассмотрено два варианта магнитной системы, отличающихся размерами зоны взаимодействия почти на порядок (расстояние между проводниками 0.3м в варианте 1, 2м - в вариантах 2 и 3). Для варианта 1 установлена возможность существования периодических решений, причина которых - конечная скорость химических реакций, в первую очередь - реакций ионизации. При достаточно сильном МГД взаимодействии поток над магнитной системой тормозится, так что [UB] - 0. Зона генерации электрического поля смещается во внешнюю часть ударного слоя, к фронту волны. При небольших размерах тела времени пребывания газа в этой зоне недостаточно для обеспечения необходимого уровня ионизации, способного поддержать МГД взаимодействие вблизи фронта волны. В этом заключается отличие от модельной задачи, обсуждавшейся выше, где полная ионизация присадки происходила немедленно за фронтом волны. В случае магнита большего размера время пребывания газа во внешней зоне ударного слоя возрастает почти на порядок. Этого оказывается достаточно для непрерывного поддержания взаимодействия.

Рассматривались параметры потока, соответствующего точке траектории спускаемой капсулы аппарата Stardust на высоте 60км, а именно: Р0 = 16.6 Па, Т0 = 238.5 К, V0 = 11137 м/с, ро = 2.34-10"4 кг/м3, М0 = 36.

двух вариантов магнитной системы при В*= 1 Тл. Сплошные кривые - изобары для варианта 3 магнитной системы, штри-ховые - для варианта 2. Положение проводников: 3+, 3' - вариант 3; 2+, 2' - вариант 2

Характерные параметры газа за фронтом волны на оси симметрии следующие: давление - 28 кПа, максимальная температура - 25000К, максимальная плотность электронов пе = 4.4-1015 см"3, или пе/п = 0.03. На поверхности тела в центре магнитной системы пе = 7.4-1013 см"3, или Пе/п = 0.004.

На рис.15 показано поле давления для вариантов 2 и 3, отличающихся положением проводников относительно передней кромки. Интенсивность МГД взаимодействия в обоих вариантах вполне приемлема и обеспечивает эффективное торможение.

Однако, с ростом амплитуды базового магнитного поля ток в плазме становится сопоставим с током в проводниках магнитной системы. Соответственно, магнитное поле, индуцируемое токами в плазме, становится заметным и может влиять на структуру МГД течения над пластиной. Таким образом, оценка масштаба взаимодействия при больших значениях магнитного поля требует учета влияния собственного магнитного поля. В этой связи отметим работу [40], где выполнен анализ МГД взаимодействия при больших магнитных числах Рейнольдса и показано, что собственное магнитное поле снижает интенсивность взаимодействия. Оценка эффектов собственного поля выполнена в разделе 4.3. Рассматривались только стационарные состояния, при этом индуцированное магнитное поле находилось по закону Био - Савара. Интегральный эффект собственного поля для вариантов 2 и 3 показан на рис.16. Достижение интенсивности торможения на уровне D„/Do - 8 требует увеличения базового поля примерно в три раза для магнита 3 и в два раза для магнита 2 по отношению к модели малых магнитных чисел Рейнольдса.

Завершением цикла исследований МГД взаимодействия в гиперзвуковых потоках стала экспериментальная демонстрация возможности извлечения электрической энергии из гиперзвукового потока (раздел 4.4.1) и оценка идеи бортового МГД генератора для условий верхней атмосферы Земли [41] (раздел 4.4.2). Были проведены численные и экспериментальные исследования МГД взаимодействия в модельном поверхностном МГД генераторе, представляющем собой огнеупорную пластину с встроенной магнитной системой и расположенной на огневой поверхности

10-,

0.2 0.4 0.6 0.8 Рис.16. Зависимость электромагнитной составляющей

сопротивления от магнитного поля. 1,2- вариант 2 магнитной

системы без учета и с учетом индуцированного магнитного поля соответственно; 3,4- вариант 3 магнитной системы без учета и с

учетом индуцированного магнитного поля соответственно.

электродной системой. Организация эксперимента и параметры потока в тестовой секции обсуждались в Главе 2. С помощью моделирования была найдена конфигурация, обеспечившая в экспериментах энергосъем на уровне бОВт/ЗОсм2.

Численные оценки возможности извлечения электрической мощности при спуске летательного аппарата в атмосфере выполнены с помощью модификации базовой вычислительной модели, основанной на приближении локального термодинамического равновесия в плазме. Для условий течения, рассмотренных в разделе 4.2, рассматривается схема генератора, сочетающая классический линейный генератор с идеей воздухозаборника. Продемонстрирована принципиальная возможность извлечения энергии в таком генераторе на уровне 3МВт, что соответствует 5% преобразования потока полной энтальпии.

В Главе 5 рассматривается еще одна возможность применения МГД метода -предложенная недавно идея интенсификации смешения и горения в предварительно несмешанных потоках топлива и окислителя [42, 43]. Выполнение устойчивого, эффективного смешения и сжигания газообразных топлива и окислителя в сверхзвуковом потоке в пределах камеры сгорания разумного размера - одна из важных проблем при создании перспективных быстро-проточных камер сгорания. Основная задача Главы 5 - исследование влияния МГД взаимодействия на интенсивность перемешивания компонентов горючей смеси, их зажигание и горение.

В разделе 5.1 излагается метод интенсификации процесса горения в предварительно несмешанной системе топливо - окислитель. Метод заключается в воздействии на смесь разрядом в магнитном поле. Этим достигаются две цели. 1) Пондеромоторная сила порождает вихревое движение газа на масштабах, в принципе, больших размера токопроводящей зоны. Кинематический эффект силы состоит в значительном усилении процесса перемешивания реагентов на временах, меньших характерных времен диффузии. 2) Собственно разряд на контактной границе двух реагентов обеспечивает заметное снижение времени зажигания плюс некоторое ускорение смешения за счет повышения коэффициентов диффузии при высоких температурах.

Предложение об МГД интенсификации основывается на кинематическом рассмотрении процессов смешения [42, 44, 45]. Для характеристики интенсивности процесса вводится понятие реакционного объема - области, потенциально доступной для химических превращений. Для демонстрации возможности метода в разделе 5.1.1 рассмотрена модельная задача о смешении и зажигании водорода в воздухе с помощью электрического разряда в магнитном поле. Постановка задачи показана на рис.17. Электромагнитная сила движет разрядный канал поперек контактной границы, обеспечивая зажигание горючего и рост контактной границы. Реакционный объем в данном случае трактуется как слой смешения вблизи

контактной границы, в котором компоненты топлива и окислителя могут встретиться. Рис.18 демонстрирует значительный рост реакционного объема при наличии МГД взаимодействия в сравнении с другими вариантами воздействия на реагирующую смесь, в которых основным механизмом является молекулярный перенос.

Как и в задаче предыдущего раздела, где рассматривалась МГД интенсификация смешения при движении разряда поперек контактной границы, в задаче раздела 5.1.2 показано значительное возмущение потока и продольной контактной границы под действием

электромагнитной силы. Масштаб возмущения и интенсивность перемешивания существенно больше, чем тот, что обеспечивается лишь молекулярной диффузией. К тому же он больше, чем масштаб области, на которую воздействует

А!г ¡V ■ ; ;

к; ■И

Рис.17. Начальное состояние системы топливо-окислитель и разряда.

400-

200

; 100

^ 4

/

/

«вяг = — 3 —-2

О 20 40 60 80 Время, рс

Рис.18. Зависимость реакционного объема V, от времени для 4 вариантов.

1 - только диффузия, Т=300К; 2 -

только диффузия, температура

водорода 3000К; 3 - диффузия +

горение, начальная температура

водорода 3000К; 4 - диффузия + горение + МГД, начальная температура водорода 3000К.

электромагнитная сила. Это важное для целей перемешивания обстоятельство обусловлено генерацией вихревого движения в потоке. В обоих случаях подтверждается базовая идея об интенсификации процессов смешения в потоках газов с помощью МГД взаимодействия. Но было установлено, что такие факторы как конечная скорость реакций и электродинамика могут играть заметную роль в процессе смешения. Другими словами, становится очевидной необходимость достаточно точного описания характеристик собственно разрядного канала. Этому вопросу посвящен раздел 5.2.

В разделе 5.2.1 представлена физическая и численная модель неравновесного электрического разряда в газовом потоке при наличии внешнего магнитного поля [46]. Также как и модель термохимически неравновесного газа (Глава 3), предложенная модель разряда основана на решении уравнений переноса массы компонентов с учетом конечных скоростей химических реакций, переноса импульса при наличии электромагнитной силы, переноса энергии компонентов и

полной энергии с учетом тепловыделения от протекающих токов и с учетом энергообмена между компонентами смеси. Система жидкостных уравнений дополняется уравнением сохранения заряда в слабо ионизованной квазинейтральной плазме и обобщенным законом Ома. Отличие от модели, изложенной в Главе 3, заключается в моделировании переноса колебательной энергии двухатомных компонентов в предположении больцмановского распределения колебательной энергии по уровням. Обмен колебательно-поступательной энергией учитывается на основе модели Ландау - Теллера. В кинетических схемах учитывается зависимость констант скоростей реакций диссоциации от колебательной температуры в соответствии с модификацией модели Магго\от1 -Тгеапог [47]. Разработанная модель была применена для исследования процессов смешения и зажигания горючих смесей с помощью разряда в магнитном поле (раздел 5.3).

Практическое решение подобных задач на существующих компьютерных комплексах требует больших затрат времени. Поэтому для анализа рассматриваемых явлений предпринята попытка разработать простую с точки зрения вычислительных затрат модель, которая качественно улавливает основные физические факторы, но при этом позволяет рассматривать интересующие процессы в реальном пространстве. Такая модель, условно названная инженерной моделью дугового разряда и представленная в разделе 5.2.2, основывается на лагранжевом описании основных процессов. По сути это та же модель, но применяемая не к элементарному объему сеточной области (в идеале, к бесконечно малому), а к макрообъему, внутри которого применяется разумная интерполяция искомых переменных, в простейшем случае - кусочно-постоянная. Тогда все параметры разряда интерпретируются как средне-объемные, определяемые из уравнений макробаланса, а поля внутри канала могут быть достроены в зависимости от выбранного метода интерполяции.

Обе модели были применены для постановки и предварительного анализа лабораторного эксперимента по проверке основных идей концепции МГД интенсификации смешения. В разделе 5.3 обсуждаются результаты численного и экспериментального анализа процессов смешения во внешнем магнитном поле. Принципиальная схема эксперимента представлена на рис.19. Разряд осуществляется между тонким центральным электродом и внешним цилиндрическим в плоскости, перпендикулярной основному потоку. Магнитное поле, создаваемое соленоидом, направлено вдоль потока. С помощью инженерной модели удалось выявить основные черты такого разряда. Как видно на рис.20 (магнитное поле направлено от плоскости рисунка, ток - от центра к периферии), разряд имеет форму спирали, непрерывно раскручивающейся вокруг центрального электрода. В этом проявляется основная особенность МГД взаимодействия.

Рис.19. Принципиальная схема экспериментов.

1 - основной поток; 2- инжектируемый поток; 3-линии индукции магнитного поля; 4 - проволочный электрод; 5 - кольцевой электрод; 6 - электрический разряд

4 л У ем

Электромагнитная сила всегда направлена перпендикулярно току и магнитному полю. На начальной стадии это приводит к движению канала разряда вправо. Но условия прилипания на поверхности центрального электрода вызывают искривление формы канала (кривая 2 на рис.20), что в свою очередь вызывает изменение направления силы. Непрерывное изменение направления силы

обусловливает спиралевидную форму канала. Причем спираль быстро раскручивается вблизи центрального электрода. Желаемый эффект

интенсификации перемешивания

заключается в непрерывном росте завихренности во всем поле течения, что представляет собой потенциал ускоренного перемешивания реагентов горючей смеси. Непрерывный рост контактной поверхности разряд/поток представляет собой потенциал ускоренного зажигания. Подчеркнем, что основные особенности взаимодействия разряда с внешним холодным потоком в магнитном поле были найдены с помощью недорогой (с точки зрения вычислительных

затрат) инженерной модели.

Двумерная модель 5.2.1 в приближении локального термодинамического равновесия, показала те же ключевые особенности в поведении разряда, что и инженерная модель (рис.21). Некоторые новые черты взаимодействия, найденные с помощью двумерной модели, проявляются в окрестности центрального электрода. Они свидетельствуют об интенсивной диффузии (массы и энергии, в первую очередь), обусловленной быстрым вращением канала разряда и среды в целом вблизи центрального электрода. На рисунках 21, соответствующих поздним стадиям эволюции разряда, область вблизи центрального электрода выглядит достаточно однородной. Хорошо выделяются лишь внешние области разрядной спирали.

Экспериментальные исследования [48, 49], поставленные по результатам моделирования, полностью подтвердили базовые идеи, лежащие в основе интенсификации смешения в магнитном поле. Кадры скоростной фотосъемки

Рис.20. Эволюция разрядного канала для тока 5А в лагранжевой модели оазояла.

|»>'>М5 |«139М5 I» 247(15 1» 462(15 г* 1280(15

Рис.21. Эволюция относительной концентрации электронов Пц/По в рассматриваемой области в приближении ЛТР.

Рис.22. Кадры скоростной видеосъемки взаимодействия электрического разряда с внешним магнитным полем В=0,05 Тл в воздушном потоке 10 м/с (кадры представлены через каждые 0,42 мс). Внешний электрод - катод, /к.3=1А.

разряда, представленные на рис.22, демонстрируют спиралевидный характер разряда. Четкость форм разрядной спирали (в сравнении с рис.21) объясняется тем, что разряд находится в потоке газа. Поэтому, проекция изображения (фотографии) соответствует различным по глубине сценам. Кроме того, играют роль неравновесные процессы в плазме, в первую очередь, процессы протекания тока в приэлектродных областях.

В Главе 6 рассматриваются вопросы, типичные для задач современной плазменной аэродинамики и отмеченные в Главе 1. Основное внимание уделяется механизмам воздействия электрических разрядов на характеристики течения.

Раздел 6.1 посвящен разработке физической и вычислительной модели, пригодной для описания основных процессов, которые могут иметь место в потоках слабоионизованного газа. Модель основана на совместном решении уравнений переноса массы, импульса и энергии в сплошной среде, уравнений переноса заряженных частиц (электронов и ионов) в диффузионно - дрейфовом приближении и уравнения Пуассона для электрического поля. Основные положения модели были изложены в работах [50, 51]. Принципиальным элементом модели, отличающим ее от большинства вычислительных моделей МПА, является отказ от требования квази-нейтральности плазмы.

Систему уравнений (1)—(10), приведенную выше, запишем в виде, более удобном для решения задач плазменной аэродинамики.

^ + У(Ри) = 0, (11)

^ + У(р1Ы]) + Ут = -— + Р, (12)

С1 дг

+ +Р)и) + УЧ + У(иг) = ^, (13)

3/

I/2 Р 1 ви

+ —, (у- 1)е = ~, Р = =

2 р 3 0X1

. ВТ д 3 д „ 3 1 д г Я = -Я—, — = ех —+ е —, У = — +—— Зг Зг дх ду дх у* ду

Здесь обозначения те же, что и в (1)-{10).

Параметры плазмы - концентрации ионов и электронов, напряженность электрического поля - находятся из уравнений переноса для концентраций и уравнения Пуассона для напряженности поля:

+ (14)

£УЕ = ?(и,-и ), Е = -— (15)

Зг ■

Зг (16)

Т Т

= 19.1 —,« = 0.104 —, О,- = /Аз77д, Ов = (17)

В (14)—(17) индекс в = /,е обозначает ионную и электронную компоненту соответственно; п, - концентрация ионов, пе - концентрация электронов, Е - вектор напряженности электрического поля, <р - электрический потенциал, д - заряд электрона, е - диэлектрическая проницаемость среды, Q - источниковый член, описывающий рождение и гибель заряженных частиц и определяемый ниже, q¡ =+1, qв =-1. д-, //е - подвижности ионов и электронов, О/, Ое - коэффициенты диффузии, кв - константа Больцмана. В (17) принят во внимание тот факт, что концентрации заряженных частиц малы по сравнению с плотностью нейтрального газа. Поэтому вкладом кулоновских столкновений можно пренебречь и учитывать только столкновения заряженных частиц, ионов и электронов, с нейтралами.

Температура электронов Те считалась функцией приведенного электрического поля, Ег = Е/п, где п = Р/квТ - концентрация нейтральных частиц. Зависимость Те{Е/п) для воздуха рассчитывалась как и в [55-57]:

Те = 0.44716, если Е, > 50, Те = 0.0167Ег - в противоположном случае. Здесь электронная температура определяется в электрон-вольтах, а приведенное поле - в Таунсендах (1Тд = 1021 Вм2).

Плотность электрического тока выражается через потоки частиц как ]=1+]е =?(Г,-Ге).

Источниковые члены в уравнениях (12}—(14) определяются следующим образом

Р = д(л,-Пе)Е. 1Г = {чА.+тЪ)Ъ.й = а{Ег\Т.\-рп,п,. (18)

Здесь Р представляет собой силу, действующую на нейтральный газ со стороны плазмы, дописывает тепловыделение от протекающих ионного и электронного токов. Коэффициент неупругих потерь г\в рассчитывался на основе модели [56]. Для т/, принята оценка тц - 1. описывает ионизацию электронным ударом и электрон-ионную рекомбинацию. Коэффициенты ионизации сг и рекомбинации /3 являются, вообще говоря, функциями приведенного поля и электронной температуры.

Граничные условия для уравнений Н4Ы16У

На поверхности катода (Еп<0) задаются условия, моделирующие вторичную электронную эмиссию на катоде:

дп

—•■=0,(Гвп) = -г.(Г,п).<р = <рк. (19)

дп

Здесь, п - единичный вектор внешней нормали к поверхности, уе -коэффициент вторичной эмиссии, ув = 0.05 - 0.1. На анодной поверхности (Еп>0) задаются следующие условия:

дп

—- = 0, дп/дп = 0 либо П/ = 0, (р = фа . (20)

дп

Напряжение V = фа - ¥>к определяется из условий внешней цепи: У + Я01 = Е0,1= НаВ. (21)

•г.

В (21) Я0 - сопротивление нагрузки, /-полный ток в катод, Ео - значение ЭДС источника, в), - поверхность катода. На оси симметрии задаются нулевые нормальные градиенты для всех переменных. На участках границы, достаточно удаленных от зон основного интереса, также задаются нулевые нормальные к границе градиенты.

Методология согласованного описания системы поток - плазма.

Дискретный аналог системы (11)—(20) получается интегро-интерполяционным методом (Приложение 1 диссертации). На каждом газодинамическом шаге по времени система плазменных уравнений (14)—(15) решается со своим, «плазменным» временным шагом, который обычно существенно меньше газодинамического. При интегрировании уравнений плазмы поле течения считается фиксированным. На каждом «плазменном» шаге по времени дискретный аналог системы (14)—(15) представляет систему нелинейных алгебраических уравнений, полученных с применением полностью неявной схемы при аппроксимации каждого из уравнений. Разрешение нелинейности выполняется с применением внутренних итераций, поскольку линеаризованные аналоги (14)—(15) решаются раздельно.

На каждой внутренней итерации линеаризованные аналоги уравнений переноса и поля представляют 9-ти диагональные разреженные системы, каждая из которых решается многосеточным методом с методом факторизации в качестве сглаживающей процедуры. Выбор сеточного уровня для сглаживания невязки определяется по контролю скорости сходимости (см., например, [59]). Обычно использовалось 2 цикла для решения уравнений переноса, от 2 до 8 циклов - для решения уравнения Пуассона и от 2 до 15 внутренних итераций требовалось для получения решения на каждом «плазменном» шаге по времени. Поскольку на газодинамическом шаге выполняется несколько плазменных шагов, источниковые члены в уравнениях газовой динамики трактуются как осредненные по газодинамическому шагу. Типичные значения газодинамического временного шага -2-Ю"9 - 4-10"8 с, плазменного - 5-Ю"11 - 10"9 с. Типичные времена установления стационарных решений - 0.5 мс.

Для ускорения сходимости (когда речь идет о стационарных решениях) систему «плазменных» уравнений можно интегрировать, используя метод локального временного шага, т.е. в каждой точке выбирается свой шаг, диктуемый лишь соображениями устойчивости счета и сходимости. При интегрировании системы (14)-(15) критической величиной шага по времени является £/ст (z -диэлектрическая проницаемость среды, а - коэффициент электропроводности). Также для ускорения сходимости решения к стационарному состоянию часто использовалась процедура замораживания «плазменных» источников в уравнениях газовой динамики. Плазменные уравнения при этом не решаются, а источниковые члены в уравнениях (11)-(13) считаются постоянными во времени. Затем решается полная система с разрешением всех характерных времен, и процедура повторяется.

Проверка вычислительной модели проводилась сопоставлением решений ряда задач о тлеющем разряде между двумя плоскими электродами с решениями, полученными в работах [51, 52]. Представлены результаты, свидетельствующие о хорошем количественном согласии всей совокупности расчетных данных сданными, представленными в цитированных работах.

Задача, рассмотренная в разделе 6.2, представляется автору весьма полезной и поучительной. Во-первых, рассматривается постановка, типичная для большого круга задач плазменной аэродинамики - воздействие электрического разряда на характеристики обтекания тела. Во-вторых, проводится сравнение различных механизмов воздействия (механического, теплового) разряда на поле течения. В-третьих, показывается, как факторы, не принципиальные на первый взгляд, могут качественно изменить представление о взаимодействии плазмы с потоком.

В значительной степени разработка вычислительной модели стимулировалась результатами экспериментальных исследований [20,53]. Один из основных вопросов, на который предполагалось найти ответ, - вопрос о нетепловых механизмах влияния разряда на характеристики течения. Наконец, основная интрига экспериментальных результатов заключалась в качественном изменении характеристик обтекания при смене полярности тестового электрода. Численным моделированием предполагалось найти ответ и на этот вопрос. В разделе 6.2.1 рассматривается обтекание тестового сферического электрода (катода) в базовой постановке, воспроизводящей геометрию сопла и экспериментальной секции. Принципиальным элементом в данной постановке является наличие центрального тела в сопле. В разделе 6.2.2 рассматривается модификация той же задачи в предположении, что поток на срезе сопла является сверхзвуковым всюду, т.е. влиянием центрального тела с гидродинамической точки зрения пренебрегается. Наконец, в разделе 6.2.3 обсуждается анодный режим работы тестового электрода.

Расчет параметров нейтрального газа и плазмы выполняется в области, частично показанной на рис.23. Ввиду симметрии показана только верхняя часть всей области. На сферу диаметром 10 мм (в центре рисунка), расположенную в откачиваемой камере, слева натекает поток из сопла, внутри которого находится тело в виде сужающегося конуса (здесь и далее - центральное тело). В работах [20,53] внутри центрального тела размещалась электронная пушка. Размеры области справа и вверх от рассматриваемой сферы выбраны так, чтобы граничные условия на этих границах не оказывали существенного влияния на параметры

потока и плазмы в центральной части области. На левой (входной) границе задаются сверхзвуковые условия: р = 0.38 кг/м3, (Л = 420 м/с, иу = 0, Р = 0.33-105 Па (М - 1.2). Характерной особенностью

течения в приближении ламинарного Рис.23. Фрагмент расчетной области и покжа является то_ чт0 рассматриваемая начальное распределение числа Маха

(поток направлен слева направо). сФеРа находится в слое смешения, Размеры указаны в миллиметрах. обусловленного наличием центрального

тела (рис.23). Поэтому вблизи оси симметрии течение между центральным телом и сферой является дозвуковым.

На рис.24 представлены распределения концентрации ионов, характеризующие три режима горения разряда. Первый режим реализуется при невысоких значениях ЭДС и тока (рис.24а). На рис.246 показано распределение ионной концентрации для значения ЭДС 2250В. Видно, что начинает формироваться канал между лобовой точкой сферы и центральным электродом. Наконец, рис.24в представляет распределение ионной концентрации для сильноточного режима разряда. При малых и умеренных токах нагрев газа наблюдается в катодных слоях. В сильноточном разряде определяющим становится нагрев газа в квазинейтральном плазменном канале между сферой и центральным электродом.

Распределения основных параметров плазмы вдоль оси разряда показаны на рис.25 и рис.26 для трех форм разряда. Вблизи катода (рис.26) имеется слой положительного объемного заряда толщиной 0.4 - 0.8 мм, внутри которого действует электростатическая сила. Для рассматриваемой конфигурации сила всегда направлена к поверхности катода. Несмотря на то, что плотность силы достаточно велика (порядка 105 Н/м3), ее интегральный эффект незначителен по сравнению с тепловым эффектом.

На рис.27 представлена вольт-амперная характеристика разряда. Левая ветвь (до токов примерно 26 мА) соответствует разряду, полностью локализованному в подветренной части сферы. "Расщепление" разряда начинается вблизи максимума напряжения, еще на левой ветви. Скачкообразный переход на правую ветвь ВАХ сопровождается переключением цепи тока с кромки сопла на центральный электрод и развитием канала между сферой и центральным электродом. Правая, растущая ветвь характеристики соответствует разряду, локализованному, в основном, в лобовой части катода. Отметим, что расчетная ВАХ качественно (и неплохо количественно) соответствует экспериментальной характеристике, полученной в [20]. Незакрашенные кружки на ВАХ соответствуют состояниям, полученным при балластном сопротивлении 100 кОм, все остальные состояния (также как и экспериментальные точки) получены при сопротивлении 10 кОм.

Рис. 24. Распределение концентрации ионов п/лгег для токов 26 мА (а), 41.5 мА(б) и 340 мА(в). Пгег= Ю12 ст

л. 10"". см'

X. мм

Рис.25. Распределение концентрации электронов (кривые по,

П1, п2) и напряженности электрического поля (кривые во, е», ег) вдоль оси разряда для токов 41.5, 147, 430 мА

V, в

D/Dq

Л : I п „ 10' , см '

О 200 400 I. мА

Рис.27. Расчетные вольт-амперные

характеристики разряда: 1 -балластное сопротивление 10 кОм, 2 - балластное сопротивление 100 кОм. 3 - эксперименталь-ная ВАХ. Относительное гидродинамическое

сопротивление модели, D/Do: 4-течение с центральным телом (Do = 50 мН), 5 - течение без центрального тела (Do = 30 мН, М = 1.6).

X, мм -1.0 -0.5 0.0

Рис.26. Распределение концентрации электронов (кривые еь е2, е3) и ионов (кривые /), ¡г, ¡з) вдоль оси разряда для токов 41.5, 248 и 430 мА вблизи катода

Принципиальные факторы,

определяющие структуру разряда, следующие. При невысоких значениях полного тока (меньше 20 мА), соответствующих, в основном, левой растущей части вольт-амперной характеристики, влияние разряда на течение сводится к нагреву газа в катодном слое и, как следствие, к небольшому повышению донного давления. При больших токах влияние разряда на поток определяется энерговкладом от электронной компоненты тока в квази-нейтральном столбе, при этом роль катодного слоя в энергетическом плане относительно невелика. Энерговклад определяет снижение сопротивления сферы примерно на 25%, что заметно меньше экспериментальных

данных [20,53]. Это объясняется тем, что энергия от протекающих токов подводится в дозвуковой поток.

Степень влияния разряда на поток, полученная в задаче 6.2.1, существенно отличается от той, что была зафиксирована в эксперименте [20]. В частности, в [20]

отмечается снижение

гидродинамического сопротивления модели в несколько раз. Было предположено, что основная причина такого расхождения заключается в том, что набегающий на сферу лоток является сверхзвуковым всюду, включая приосевую зону. В разделе 6.2.2 был выполнен расчет самостоятельного разряда между центральным телом (анодом) и сферой (катодом). При этом предполагалось, что поток является сверхзвуковым, как если бы центрального тела не было. Однако, центральное тело присутствует как электрод (проницаемый для потока).

Структура разряда в этой модельной задаче отличается от той, что рассматривалась выше. Отличие заключается в том, что перед сферой располагается скачок уплотнения, отсутствующий в течении с центральным телом. Нагрев газа в столбе разряда перед скачком вызывает смещение скачка вверх по потоку, между сферой и скачком уплотнения образуется обширная рециркуляционная зона. Причем, основной вклад в нагрев вносит область разряда вблизи тонкого ответного электрода (анода) диаметром Змм, где плотность тока (электронного) высока ввиду малой площади поверхности анода. В принципе плотность тепловыделения от протекающего ионного тока высока и в катодном слое. Однако, рециркуляция течения в ударном слое существенно "сглаживает" интенсивное тепловое воздействие ионного тока на газ и стенку.

Принципиальное отличие от течения с центральным телом состоит в том, что подвод энергии осуществляется в сверхзвуковой поток. Это приводит к увеличению отхода ударной волны от поверхности сферы (почти в 3 раза для сильноточного разряда), и к значительному падению давления на лобовой части поверхности сферы. На рис.28 показаны распределения давления по поверхности сферы для нескольких значений тока разряда. Почти двукратное снижение давления на лобовой части поверхности является причиной значительного снижения гидродинамического сопротивления сферы. Слабые изменения донного давления практически не оказывают влияния на сопротивление. Кривая 5 на рис.27 демонстрирует снижение гидродинамического сопротивления сферы более чем в 2 раза при токе 336 мА, что уже сопоставимо с экспериментальными данными.

Давление. Па

Рис.28. Распределение давления по поверхности сферического катода для сверхзвукового течения (течение без центрального тела). О - I = 0, 1 - I = 20мА. 2 - I = 93мА. 3 - I = ЗЗбмА.

Как следует из результатов предыдущих двух задач, существенным является тепловой механизм влияния разрядной плазмы на характеристики обтекания тела. В этом случае изменение полярности электродов не должно, казалось бы, внести в картину течения что-либо принципиально новое, поскольку характер течения определяется нагревом нейтрального канала. Экспериментальные результаты [20] говорят о качественном изменении картины обтекания тестового электрода (теперь уже - анода): гидродинамическое сопротивление не только не падало с ростом тока, но даже несколько возрастало. Для выяснения этих «аномалий» в разделе 6.2.3 рассмотрена та же задача, что и в разделах 6.2.1 и 6.2.2. Отличие заключается в том, что сферический электрод является анодом, а ответным электродом - катодом - являются и центральный электрод, и стенки металлического сопла. Расчеты показали, что при анодном режиме тестового сферического электрода разряд осуществляется, главным образом, между тестовым электродом и соплом. Основной вклад в полное сопротивление цепи вносят катодные слои вблизи кромок сопла. Они же являются зонами высокого энерговыделения. Нагрев газа вблизи кромок сопла происходит во внешней части струи, что не затрагивает разряд и поток в окрестности тестового электрода. Кроме того разряд вблизи самого тестового электрода является значительно более однородным, чем при катодном режиме. Плотность тепловыделения в столбе разряда существенно ниже, чем в случае катодного режима. Следствием перестройки катодных слоев в рассматриваемой области является весьма слабое влияние разряда на гидродинамическое сопротивление модели. При одинаковом полном токе в катодном режиме работы электрода греется, в основном, сверхзвуковая зона столба разряда, что и определяет снижение сопротивления. В анодном режиме греется, главным образом, внешняя часть холодной струи.

Задача, рассмотренная в следующем разделе 6.3, имеет много общего с задачами раздела 6.2. Рассматривалось обтекание сферически затупленного цилиндрического катода сверхзвуковым потоком воздуха (давление - ЮООПа, число Маха - 3.2). Моделировались условия эксперимента [54]. В данной задаче рассматривалась модель среды [49, 50] и опробована новая модель "быстрого нагрева" в воздухе [55 - 57]. Влияние разряда на обтекание модели определяется теми же факторами, которые были установлены в предыдущей задаче. Решающим является нагрев газа перед фронтом ударной волны. Обе модели среды качественно верно отражают поведение разряда в высокоскоростном потоке, хотя модель среды [50, 51] лучше воспроизводит экспериментальную вольт-амперную характеристику, чем модель [55 - 57]. Вероятно, лучшего соответствия можно достигнуть, применяя полную плазмохимическую модель [56] с учетом высокой скорости движения газа.

Одним из интересных и перспективных способов создания плазмы в газовых потоках является генерация плазмы с помощью высокочастотного генератора (ВЧ генератора), работающего на частотах от сотен килогерц до десятков мегагерц. Особенностью ВЧ генератора является наличие лишь одного электрода, который может быть расположен внутри тепа и не иметь прямого контакта со средой. Роль ответного электрода могут выполнять, например, элементы установки или элементы конструкции, расположенные внутри обтекаемого тела. В разделе 6.4 рассматривается физическая и математическая постановка задачи о ВЧ разряде в потоке газа, основанная на совместном решении уравнений Навье-Стокса для нейтрального газа и переноса заряженных частиц, ионов и электронов, в рамках диффузионно-дрейфового приближения (11)—(21). Особое внимание уделяется постановке граничных условий на электродных поверхностях в условиях переменного электрического поля, а также постановке граничных условий на диэлектрических поверхностях, где возможно накопление заряда разного знака. В работе рассматриваются также элементы модели кинетики плазмы, учитывающие наиболее важные процессы ионизации и рекомбинации заряженных частиц. Скорости этих процессов, а также доля энергии электронного газа, передаваемая нейтральному газу, рассчитывается из аппроксимаций, построенных на основании модели [56].

Расширением модели (11)—(21) является постановка граничных условий для параметров плазмы (концентрации, электрический потенциал). При переменном во времени внешнем напряжении полярность электродной поверхности определяется знаком нормальной к поверхности компоненты электрического поля. В соответствии с этим ставятся либо «катодные» граничные условия (19), либо - «анодные» (20). Граничные условия для потенциала задаются в зависимости от того, металлическая поверхность рассматривается (ВЧ электрод), или диэлектрическая. На металлической поверхности задается потенциал:

Фнр = U(t) = U0-s\n(2TTvt). (22)

Uo - амплитуда напряжения, v- частота.

В случае диэлектрической поверхности используется условие

£р(Ерп) - eD{EDn) + (Vq)-ijndt = 0 . (23)

Здесь £р и со - диэлектрические проницаемости плазмы и диэлектрика, соответственно. (Ерп) и (Eon) - проекции электрического поля на нормаль к поверхности со стороны плазмы и диэлектрика, соответственно. Последний член в (23) представляет аккумуляцию заряда на поверхности, обусловленную потоком заряженных частиц. Вообще говоря, уравнение Пуассона должно решаться во всей области; при этом внутри диэлектрика плотность заряда равна нулю, а условие

сопряжения поля на границе плазма - диэлектрик (23) должно использоваться для сшивки потенциала в двух областях. В данной работе используем приближенное условие сопряжения, позволяющее качественно учесть и аккумуляцию заряда, и разрыв поля на поверхности диэлектрика. А именно, считаем, что в линейном приближении поле в внутри диэлектрика линейно: (Е0п) = - ( <Pd - <Pg )/Д. Здесь (ро -значение потенциала на поверхности, <Pg - потенциал заземленного электрода, встроенного в диэлектрик, ipe = 0. Д - характерная толщина диэлектрика, которая в принципе является переменной.

Разработанная численная модель применяется для исследования ВЧ разряда в потоке воздуха над диэлектрической пластиной (раздел 6.4.2) и вокруг модели, представляющей сферически затупленный конус (раздел 6.4.3). В обоих случаях моделировались условия экспериментов [58], в которых скорость потока составляла 100 м/с, давление - 0.1 МПа. Разряд создавался приложением переменного напряжения частотой 500кГц между ведущим металлическим электродом (ВЧ электрод) и землей. В случае пластины амплитуда, как и в эксперименте, составляла 15кВ. В случае конуса амплитуда напряжения составляла ЗОкВ. Во всех случаях полагается, что относительная диэлектрическая проницаемость материала диэлектрика равна 5.

Приводимые ниже результаты получены с использованием численной технологии, разработанной в связи с необходимостью разрешать как высокие частоты процессов, обусловленные ВЧ разрядом (гвч ~ Ю"6с), так и газодинамические (ij-д - 10"3с). Ясно, что интегрирование полной системы уравнений в таких условиях практически не реально. Для оценки влияния ВЧ разряда на характеристики течения в работе применена следующая процедура. Полная система уравнений интегрируется на протяжении одного или нескольких ВЧ циклов. При этом

в каждой точке пространства формируется источниковый член в уравнениях Навье-Стокса

(электростатическая сила и тепловыделение), имеющий смысл среднего по периоду (или нескольким периодам). Далее поле течения (без уравнений для плазмы)

рассчитывается с этим средним источником на интервале времени порядка ггд- Затем вновь решается полная система уравнений на одном или нескольких ВЧ циклах, и вновь рассчитывается только поле течения

Рис. 29. Схема ВЧ разряда в потоке вокруг тела с диэлектрическим покрытием.

Рис.30. Распределение электронной концентрации (слева) и ионной концентрации (справа) в течение ВЧ-цикла (2рс). пегпах=2-1012ст , П|та*=3-1012ст"3 Распределения даны с шагом Д<р = 144°. ВЧ-электрод находится в левом нижнем

УГЛ V.

с осредненным источником. Такая процедура позволяет учесть не только влияние ВЧ разряда на течение, но и изменение свойств разряда, обусловленное изменением характеристик течения, главным образом, плотности и температуры газа. Все представленные результаты получены с применением такой процедуры после пяти циклов осреднения. При этом система поток+плазма считалась в течение 5 ВЧ циклов, а система "осредненный поток" - в течение 500 ВЧ циклов.

Рассмотрим здесь разряд на конусе (см. рис.29). О том, как устроен ВЧ разряд, можно судить по рис.30. Здесь показаны мгновенные распределения концентраций в течение одного ВЧ цикла. Верхние кадры соответствуют анодному режиму работы ВЧ-электрода, нижние - катодному. Следует отметить, что строгой периодичности в картине разряда не наблюдается. Картина разряда, представленная на рисунках, повторяется каждые 4-5 циклов. Верхние два кадра на рисунках демонстрируют тот факт, что первый пробой на анодной стадии не «подхватывается». В основном это связано с наличием катодного слоя над диэлектриком и аккумуляцией заряда на диэлектрической поверхности, который создает электрическое поле вблизи поверхности, препятствующее протеканию тока к поверхности. Аккумуляция заряда может обеспечивать разность потенциалов вдоль поверхности в несколько киловольт. Поэтому даже при нулевом напряжении на ВЧ электроде существует продольное электрическое поле, приводящее к

образованию сферической Образование поверхности при втором

Рис.31. Напряжение на ВЧ электроде (и), ток на ВЧ-электрод (1-|), ток на диэлектрический электрод (Ь).

катодного слоя вблизи Т°кмА Напряжение. кВ_

части модели,

устойчивой плазмы на диэлектрика происходит пробое. Изменение во времени некоторых интегральных характеристик, электродных токов, показано на рис.31. Небольшой дисбаланс токов означает наличие в среднем объемного заряда в области. Последнее означает наличие средней электростатической силы в объеме. По масштабу величины это - десятки миллиньютон. Средняя сила направлена к поверхности диэлектрика.

Качественно численная картина разряда соответствует тому, что

наблюдалось в эксперименте: достаточно однородный и протяженный разряд на диэлектрической поверхности. В то же время разряд на металлической модели производил вид хаотического набора стримеров, замыкающихся, в основном, на сферической части модели. Предпринимались попытки моделирования разряда и на металлической модели. При амплитуде напряжения ЗОкВ довольно быстро создавался канал между ВЧ электродом и передней частью модели с последующим быстрым ростом концентрации плазмы, токов и температуры в канале. Счет останавливался.

Основное влияние ВЧ разряда на течение заключается в нагреве газа. Наиболее интенсивный нагрев имеет место вблизи кромок ВЧ электрода. Причем, максимальный нагрев достигается на катодной стадии режима работы ВЧ электрода. Т.е. нагрев обусловлен тепловыделением от ионной компоненты полного тока. Влияние разряда на характеристики обтекания модели заключается в следующем. Наблюдается небольшое снижение давления в окрестности критической точки, что позволяет предположить и снижение гидродинамического сопротивления тела. Вместе с тем имеет место заметное увеличение теплового потока в изотермическую стенку (7^ = 300К), в 5 - 7 раз на лобовой части тела.

Заключение

Основные результаты, полученные в диссертации, заключаются в следующем.

1. Разработана двумерная модель МГД течений термохимически неравновесного воздуха для анализа процессов в условиях верхней атмосферы Земли и в наземной экспериментальной гиперзвуковой МГД установке. Модель основана на совместном решении уравнений Навье-Стокса для среды в целом, уравнений переноса отдельных компонент с учетом много-компонентной диффузии и анизотропии переносных свойств в магнитном поле, конечной скорости химических превращений, уравнений электродинамики.

2. Выполнен анализ МГД течений вокруг тел различной геометрии для условий течения в тестовой секции гиперзвуковой МГД установки ЦАГИ. Установлено, что ключевыми факторами, определяющими характер МГД взаимодействия, являются наличие неравновесной ионизации во всей области течения и сильного эффекта Холла. Анализ МГД течения вокруг кругового цилиндра с током обнаружил одно из отличий большинства наземных экспериментов по гиперзвуковым МГД течениям от МГД течений в реальной атмосфере: головная ударная волна не является границей в электрическом смысле. Этот факт определил, в частности, отсутствие такого важного признака МГД взаимодействия как увеличение отхода ударной волны от поверхности цилиндра. Установлено, что в МГД течении над поверхностью клина с встроенной магнитной системой отличительным признаком МГД взаимодействия в ударном слое над поверхностью клина является увеличение угла косого скачка. Этот факт был подтвержден экспериментально.

3. Проведены численные и экспериментальные исследования МГД взаимодействия в модельном поверхностном МГД генераторе, представляющем собой огнеупорную пластину с встроенной магнитной системой и расположенной на огневой поверхности электродной системой. С помощью моделирования была найдена конфигурация, обеспечившая в экспериментах энергосъем на уровне 60Вт/30см2. Это является первой экспериментальной демонстрацией гиперзвукового поверхностного МГД генератора. Численный анализ генерации энергии, выполненный для условий верхней атмосферы Земли, показал возможность извлечения мощности около 3МВт, что составляет 5% от потока полной энтальпии.

4. Рассмотрено гиперзвуковое обтекание затупленного тела (сферо-конус) в магнитном поле витка с током в условиях, типичных для низко-орбитальных спускаемых аппаратов. Показано, что режим МГД взаимодействия в ударном слое близок к режиму малого холловского тока, обеспечиваемого естественными границами - фронтом ударной волны и поверхностью тела. Для этих условий

обнаружено увеличение отхода ударной волны от поверхности тела и более чем 2-кратное снижение теплового потока в стенку в окрестности критической точки.

5. Рассмотрено МГД течение вокруг возвращаемой капсулы аппарата Stardust. Показано, что тепловые потоки могут быть снижены в результате МГД взаимодействия в 1.5-3 раза. Установлено, что снижение тепловых потоков на поверхности аппарата слабо коррелирует с отходом ударной волны в результате МГД взаимодействия. Увеличение размеров ударного слоя сопровождается установлением состояния плазмы, близкого к термодинамически равновесному. Равновесие стабилизирует нормальный к стенке перепад температур в пристеночной области и сдерживает снижение тепловых потоков с ростом магнитного поля.

6. Сформулирована концепция ускоренного торможения летательного аппарата в верхних слоях атмосферы (МГД парашют), заключающейся в увеличении гидродинамического сопротивления за счет интенсивного объемного МГД взаимодействия в ударном слое. Цель концепции - предотвращение высоких тепловых нагрузок путем снижения скорости аппарата перед входом в плотные слои атмосферы. Показано, что сопротивление тела может быть увеличено почти на порядок. Это предоставляет возможность управлять траекторией спуска аппарата. В частности, МГД парашют может рассматриваться как альтернатива классической электромагнитной тепловой защите.

7. Сформулирована концепция МГД интенсификации смешения и горения. Разработан спектр моделей, обеспечивающий описание процессов смешения, зажигания и горения в потоках водородо-воздушных и углеводородо-воздушных смесей в присутствии электрического и магнитного поля. Численным моделированием были подтверждены основные положения концепции: действие пондеромоторной силы приводит как к увеличению контактной поверхности топливо/окислитель, так и к увеличению завихренности в потоке; плазма разряда способствует ускоренному зажиганию горючей смеси в окрестности контактной поверхности как за счет высокой температуры, так и за счет неравновесных плазмохимических процессов в электрическом поле.

8. Выполнен анализ эволюции разряда между двумя коаксиальными электродами в магнитном поле для условий, близких к экспериментальным. Движение разрядного канала в такой конфигурации выглядит как раскручивающаяся вокруг центрального (проволочного) электрода спираль, что обусловлено действием пондеромоторной силы. Установлено также, что существенную роль играет перенос тепла вблизи электродных поверхностей, особенно в окрестности центрального электрода.

9. Для решения задач плазменной аэродинамики разработана численная модель течения неравновесной неквазинейтральной плазмы, основанная на совместном

решении уравнений Навье-Стокса, уравнений переноса заряженных частиц в диффузионно-дрейфовом приближении и уравнения Пуассона для электрического поля. Основными особенностями модели являются: пространственно-временное разрешение процессов, отличающихся характерными частотами и характерными масштабами на несколько порядков; аккуратное разрешение областей больших градиентов параметров течения, обусловленных приэлектродными явлениями; реализация граничных условий, которые являются в задачах плазменной аэродинамики, как правило, нелинейными и функциональными.

10.Для анализа экспериментально обнаруженного эффекта большого снижения гидродинамического сопротивления тела в продольном разряде постоянного тока была рассмотрена задача об обтекании сферического катода сверхзвуковым потоком. Показано, что основным фактором, определяющим сопротивление тела, является нагрев газа в квазинейтральной зоне разряда перед фронтом головной ударной волны. Установлено, что принципиально важным является аккуратное описание слоев объемного заряда, особенно вблизи катодных поверхностей, где сосредоточена большая часть полного напряжения на разряде и полного тепловыделения. Именно аккуратное разрешение приэлектродных процессов позволило объяснить другой аномальный эффект, обнаруженный экспериментально, - отсутствие влияния разряда на характеристики обтекания при смене полярности тестового электрода.

11.Разработана модификация численной модели, предназначенная для анализа плазмодинамических процессов вблизи диэлектрических поверхностей. Проведено моделирование высоко-частотного разряда в потоке воздуха, обтекающего аэродинамическую модель, покрытую диэлектриком. Показано, что аккумуляция заряда на диэлектрике оказывает заметное влияние на характеристики разряда. Большая область течения является в среднем положительно заряженной. Результатом разделения заряда является наличие в потоке средней ускоряющей силы. Газодинамическое влияние ВЧ разряда заключается, главным образом, в нагреве газа.

ОСНОВНЫЕ ПУБЛИКАЦИИ ПО ТЕМЕ ДИССЕРТАЦИИ

1. Bityurin V.A., Bocharov A.N., Lineberry J.T. MHD Aerospace Applications // Int. Conf. On MHD Power Generation and High Temperature Technologies, Beijing RPC, 1999. Vol.3, p.793.

2. Lineberry J.Т., Rosa R.J., Bityurin V.A., Bocharov A.N., Potebnja V.G. Prospects of MHD Flow Control for Hypersonics // 35th Intersociety Energy Conversion Engineering Conference, AIAA 2000-3057, 24-28 July 2000, Las Vegas, NV.

3. J.T.Lineberry V.A.Bityurin, A.N.Bocharov, D.S.Baranov A.B.Vatazhin, V.I.Kopchenov, O.B.Gouskov V.I.AIferov, A.S.Boushmin, "Cylinder with Current in Hypersonic Flow", In: 3rd Workshop on Magneto-Plasma Aerodynamics in Aerospace Applications, April 24-26, 2001, pp 15-25.

4. V.A.Bityurin, A.N.Bocharov, Advanced MHD assisted Mixing of Reacting Streams, In: 39th AIAA Aerospace Sciences Meeting & Exhibit, Reno, NV, 2001, AIAA Paper 20010793.

5. Bityurin, V.A., Bocharov, A.N., Vatazhin, A.B., Kopchenov, V.I., et.al. Theoretical and Experimental Study of an MHD Interaction Effects at Circular Cylinder in a Transversal Hypersonic Flow // 40th AIAA Aero-space Sciences Meeting, Jan, 2002, AIAA 20020491, Reno, NV.

6. Lineberry J.T., Bityurin V.A., Bocharov A.N., "MHD Flow Control Studies. Analytical Study of MHD Flow Interaction Around a Right Circular Cylinder in Transverse Hypersonic Flow", In: Proc. of 14th Intern. Conf. On MHD Electrical Power Generation and High Temp. Technologies, Maui, Hawaii, May 20-25, 2002, pp. 135-149.

7. A.Bocharov, V.Bityurin, I.KIement'eva, and S.Lconov. Experimental and Theoretical Study of MHD Assisted Mixing and Ignition in Co-Flow Streams II In: 14th International Conference on MHD Power Generation and High Temperature Technologies, Maui, Hawaii, 2002, AIAA Paper 2002-2248.

8. V.A.Bityurin, A.N.Bocharov, Yu.F.Kolesnichenko, A.I.KIimov, S.B.Leonov. Current Status of Research Work on Magneto-Plasma Aerodynamics in IVTAN Streams II In: 4th Workshop on Magnetoplasma Aerodynamics for Aerospace Applications, Moscow, Russia, 9-11 April, 2002, pp.13-14.

9. V.A.Bityurin, D.S.Baranov, A.N.Bocharov, S.S.Bychkov, A.Ya.Margolin, A.D.Tal'virsky, V.I.AIferov, A.S.Bouhsmin, A.V.Podmazov, V.S.Tikhonov. Experimental Study of MHD Interaction at a Cylinder in Hypersonic Flow II In: 4th Workshop on Magnetoplasma Aerodynamics for Aerospace Applications, Moscow, Russia, 9-11 April, 2002, pp.144 -151.

10.Bityurin V.A., Bocharov A.N., Lineberry J.T., Suckomel C. Studies on MHD Interaction in Hypervelocity Ionized Air Flow over Aero-Surfaces // 43rd AIAA Aerospace Sciences Meeting & Exhibit, June 23-26, 2003, AIAA Paper 2003-1365, Orlando, FL .

11.ABoc/iarov, V.Bityurin, I.KIement'eva, and S.Leonov, A Study of MHD Assisted Mixing and Combustion, In: 41st Aerospace Sciences Meeting and Exhibit, Reno, NV, 2003, AIAA Paper 2003-5878.

12. V.A.Bityurin, D.S.Baranov, A.N.Bocharov, J.Lineberry. MHD Interaction at a Cylinder in Hypersonic Flow // In: 5th Workshop on Magnetoplasma Aerodynamics for Aerospace Applications, Moscow, Russia, 7-10 April, 2003, pp.109 - 125.

13. Bityurin V.A., Bocharov A.N., Lineberry J.T. Results of Experiments on MHD Hypersonic Flow Control // Paper AIAA-2004-2263, 35lh AIAA Plamadynamics and Lasers Conference, 28 June - 1 July, 2004, Portland, Oregon. Bityurin, V.A., Bocharov, A.N. MHD Flow Control in Hypersonic Flight II 15th Int. Conf. On MHD Energy Conversion, Moscow, May 24-27, 2005. Vol.2, pp.429-433.

15.Bityurin, V.A., Bocharov, A.N. and Lineberry J. Study of MHD Interaction in Hypersonic Flows II 15th Int. Conf. On MHD Energy Conversion, Moscow, May 24-27, 2005. Vol.2, pp.399-416.

16. V.A. Bityurin, A.N. Bocharov, J.T. Lineberry. Study of MHD interaction in Re-Entry Flow II 4th International Symposium Atmospheric Reentry Vehicles & Systems,21-23 March 2005, Arcachon-France

17.A.Bocharov, I.KIement'eva, A.KIimov, V.Bityurin, A Study of MHD Assisted Mixing and Combustion in Counter-Flow Streams, In: 43rd Aerospace Sciences Meeting and Exhibit, Reno, NV, 2005, AIAA Paper 2005-0600.

18. I.KIement'eva, A.Bocharov, V.Bityurin, A.KIimov. Experimental and Numerical Study of MHD Assisted Mixing // In: 15th International Conference on MHD Energy Conversion and 6 International Workshop on Magnetoplasma Aerodynamics, Moscow, May 24-27, 2005, pp.365 - 374.

19.Bityurin V.A., Bocharov A.N., Klimov A.I., Leonov S.B. Analysis of Non-Thermal Plasma Aerodynamics Effects II AIAA Paper 2005-7978. 43rd AIAA Aerospace Sci. Meeting and Exhibit, 2005. Reno, NV.

20.Byturin V., Bocharov A., Klimov A., et.al., Analysis of Non-Thermal Plasma Aerodynamics Effects, 44th AIAA Aerospace Sciences Meeting & Exhibit. AIAA 20061209, 9-12 January 2006, Reno, NV, p.8.

21 .Битюрин B.A., Бочаров A.H. Магнитогидродинамическое взаимодействие при обтекании затупленного тела гиперзвуковым воздушным потоком. Механика жидкости и газа, 2006, №5, С.188-203.

22.V.A.Bityurin, A.N.Bocharov, I.B.KIement'eva, A.I.KIimov, Experimental and Numerical Study of MHD Assisted Mixing and Combustion, In: 44th Aerospace Sciences Meeting and Exhibit, Reno, NV, 2006, AIAA Paper 2006-1009.

23.Bityurin V., Bocharov A., Popov N. Numerical Simulation of the Discharge in Supersonic Flow Around a Sphere, AIAA 2007-0223 Paper, 45th AIM Aerospace Sciences Meeting & Exhibit, 8-11 January 2007, Reno, NV.

24. Klementyeva, V. Bityurin and A. Bocharov. Constricted Discharge Interaction with High Speed Gas Flows // In: 38th AIM Plasmadynamics/16th MHD Energy Conversion Conference, Miami, FL, June 25-28, 2007, AIM Paper 2007-4141.

25. И.Б. Клементьева, A.H. Бочаров, B.A. Битюрин. Особенности взаимодействия электрического разряда с газовым потоком во внешнем магнитном поле II Письма в ЖТФ Т.ЗЗ. Вып.22, 2007, с. 16 - 22.

26. V.A. Bityurin, A.N. Bocharov, N.A. Popov. Direct Current Discharge in Supersonic Flow II In: 7th Workshop on Magnetoplasma Aerodynamics for Aerospace Applications, Moscow, Russia, 17-19 April, 2007, pp.87-94.

27 .Битюрин В. А., Бочаров A.H., Попов H.A. Численное моделирование электрического разряда в сверхзвуковом потоке // Изв.РАН. МЖГ. 2008. №4. 161 -170.

28. A. Klimov, V. Bityurin, A. Bocharov, I. Moralev, В. Tolkunov, and P. Kazansky Surface HF Discharge in Airflow II 40th AIM Plasmadynamics and Lasers Conference, 22 - 25 Jun 2009, San Antonio, Texas, AIAA-2009-4073.

29. В. А. Битюрин, A. H. Бочаров, H. А. Попов. Исследование МГД-торможения в атмосфере Земли // ТВТ. 2010. Т.48. № 1 (дополнительный). 122 - 131.

30.Л. Н. Бочаров. Исследование МГД-торможения в атмосфере Земли (Эффекты индуцированного магнитного поля) II ТВТ. 2010. Т.48. № 4. 483-487.

31. В. А. Битюрин, А. Н. Бочаров. Экспериментальные и численные исследования МГД-взаимодействия в гиперзвуковых потоках II ТВТ. 2010. Т.48. № 1 (дополнительный). 110 -121.

32. В. А. Битюрин, А. Н. Бочаров. О наземных МГД экспериментах в гиперзвуковых потоках// ТВТ. 2010. Т.48. № 6. 916 - 923.

33. И. Б. Клементьева, В. А. Битюрин, А. Н. Бочаров. Взаимодействие электрического разряда с газовой средой во внешнем магнитном поле и влияние этого взаимодействия на структуру потока и смешение // ТВТ. 2010. Т.48. № 1. 155 -160.

34. В. А. Битюрин, А. Н. Бочаров. Об особенностях электромагнитной тепловой защиты спускаемого аппарата II ПЖТФ. 2011. Т.37. № 9. 70 - 74.

35. В. А. Битюрин, А. Н. Бочаров. Внутренний МГД-генератор на борту спускаемого аппарата // ПЖТФ. 2011. Т.37. № 8. 66 - 70.

Литература

1. Kantrovitz, А.А., A Survey of Physical Phenomena Occurring in Flight at Extreme Speeds, Proc. On High Speed Aerodynamics, Polytechnic Inst. Of Brooklyn, January 1955, pp. 335-339.

2. Куликовский А.Г. "Об обтекании намагниченных тел проводящей жидкостью" II Доклады Академии Наук, 1957, Т.17, №.2.

3. Bush W.B., Magnetohydrodynamis - Hypersonic Flow Past a Blunt Body, J. Aerospace Science, Vol.25,1958, pp.685-690, 728.

4. Sears, W., "Magnetohydrodynamic Effects in Aerodynamic Flows," ARS Journal, June 1959, pp. 397-406.

5. Куликовский А.Г., Любимов Г.А. "Магнитная гидродинамика" II М: Физматгиз, 1962, 246с.

6. Bityurin V.A., Zeigarnik V.A., and Kuranov A.L. On a Perspective of MHD Technology in Aerospace Applications. AIAA Paper 96-2355, 27th Plasmadynamics and Lasers Conference, 1996, New Orleans.

7. Битюрин B.A., Иванов B.A., Бочаров A.H. МГД управление космическим аппаратом в верхней атмосфере II Тех.отчет 94/3, ИВТАН-АНРА, Москва, 1994, 37 С.

8. Bityurin, V.A., Bocharov, A.N. MHD Flow Control in Hypersonic Flight // 15th Int. Conf. On MHD Energy Conversion, Moscow, May 24-27, 2005. Vol.2, pp.429-433.

9. Bityurin, V.A., Bocharov, A.N. and Lineberry J. Study of MHD Interaction in Hypersonic Flows // 15th Int. Conf. On MHD Energy Conversion, Moscow, May 24-27, 2005. Vol.2, pp.399-416.

Ю.Климов А.И., Коблов A.H., Мишин Г.И., и др. Распространение ударных волн в плазме тлеющего разряда. Письма в ЖТФ. 1982. Т.8. Вып.7. С.439.

11.Горшков В.А., Климов А.И., Мишин Г.И., и др. Распространение ударных волн в плазме тлеющего разряда при наличии магнитного поля. Письма в ЖТФ. 1984. Т.54. Вып.5. С.995.

12.G. G. Chernyi, "The impact of electromagnetic energy addition to air near the flying body on its aerodynamic characteristics" // 2nd Workshop on Weekly Ionized Gases, April 24-25, 1998, Norfolk, VA.

13.P.Y. Georgievskii, V.A. Levin. Supersonic Flow over Bodies in the Presence of External Energy Input// Letters in Journal of Technical Physics, 1988, v.14, 8, p.684-687.

14.Kolesnichenko Yu. F., 2000 2nd Workshop on Magneto-Plasma-Aerodynamics in Aerospace Applications, Moscow, April 2000.

15. Георгиевский П.Ю., Левин В.А. Управление обтеканием различных тел с помощью локализованного подвода энергии в сверхзвуковой набегающий поток II Изв. РАН. МЖГ. 2003. Вып. 5. С.154-167.

16.Shang, J.S., Surzhikov, S.T., Kimmel, R., Gaitonde, D., Menart, J, and Hayes, J., "Plasma Actuator for Hypersonic Flow Control," AIAA 2005-0563, Reno, NV, January 2005.

V.Ganguly B. N., BletzingerP. and Garscadden A., 1997, Phys. Lett. A 230,218.

18.А.Б. Ватажин, В.И. Грабовский, B.A. Лихтер, В.И. Шульгин. Электрогаздинамические течения. - М.: Наука, 1983.

'\9.Klimov A., Bityurin V., Serov Yu., Non-Thermal Approach in Plasma Aerodynamics, 39th AIAA Aerospace Sciences Meeting & Exhibit. AIAA 2001-0348, 8-11 January 2001, Reno, NV, p.10.

20.Klimov A., Bityurin V., Kuznetsov A.,Vystavkin N., Vasiliev M. External and Combined Plasma Discharge in Supersonic Airflow // Paper 2004-0670. Proc. 42nd AIAA Aerospace Sciences Meeting & Exhibit, 4-8 January 2004, Reno, NV, p.5.

21.Ю.П. Райзер. Физика газового разряда. М.: Наука, 1987, С.350.

22.Klimov A., Byturin V, Brovkin V., Kuznetsov A., Sukovatkin N., Vystavkin N, VanWie D., Optimization of Plasma Assisted Combustion, Proc.4th Workshop on MPA, Moscow 23-25 April, 2002, IVTAN, P.31.

23.S.M. Starikovskaia, N.B. Anikin, S.V., Pancheshnyi, D.V., Zatsepin and A.Yu.Starikovskii, Plasma Sources Sci. Technol., 10, (2001) 344-355.

24.Berezhetskaya N.K., Gritsinin S.I., Kop'ev V.A., Kossyi I.A., Popov N.A., Silakov V.P. and Van Wie, D., Microwave discharge as a method for igniting combustion in gas mixtures, 43rd AIAA Aerospace Sciences meeting and Exhibit, Reno, Nevada, USA, 10-13 January 2005, AIAA-2005-0991.

25. Esakov I. I., Grachev L. P., Khodataev К. V.,Vinogradov V. A. and Van Wie D. M., "Efficiency of propane-air mixture combustion assisted by deeply undercritical MW discharge in cold high-speed airflow", 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, USA, 9-12 January 2006, AIAA-2006-1212.

26.Кочетов И.В., Леонов С.Б., Напартович АЛ. Плазменное инициирование горения в сверхзвуковом потоке в топливо-воздушных смесях. Химия высоких энергий. 2006. №2. Т.40. С. 1-8.

27.Dautov N.G., StarikA.M. II Kinetics and Catalysis. 1997, v.38, No 2, p.207.

28.Дж. Саттон, А. Шерман. Основы технической магнитной газодинамики // Изд-во «Мир», Москва, 1968, 492с.

29.Брагинский С.И. Явления переноса в плазме // В сб. «Вопросы теории плазмы», Выпуск 1, Госатомиздат, Москва, 1963, сс.183-272.

30.Ватажин А.Б., Любимов Г.А., Регирер С.А. Магнитогидродинамические течения в каналах // М.: Наука, 1970.

31. S.K. Godunov, Symmetric form of the equations of magnetohydrodynamics, Numer. Meth. Mech. Continuum Medium 13 (1) (1972) 26-34.

32.B. Sjogreen, H.C. Yee, Development of low dissipative high order filter schemes for multiscale Navier-Stokes/MHD systems, J. Comput. Phys. 225 (2007) 910-934.

33.Surzhikov S.T., Shang J.S., Two-component plasma model for two-dimensional glow discharge in magnetic field. Journal of Computational Physics, 2004, V.199, p.437.

34.Alferov V.I. "Current Status and Potentialities of Wind Tunnels with MHD Acceleration", High Temperature, 2000, v.38, No.2, pp.300-313.

35. В. А. Битюрин, A. H. Бочаров. Экспериментальные и численные исследования МГД-взаимодействия в гиперзвуковых потоках II ТВТ. 2010. Т.48. № 1 (дополнительный). 110-121.

36. Зубков А.И., Тирский Г.А., Левин В.А., Сахаров В.И. Снижение тел в атмосфере Земли и планет со сверх- и гиперзвуковыми скоростями при наличии физико-химических превращений, теплообмена и излучения // Отчет №4507 НИИ Механики МГУ, Москва, 1998.В.А.

37. В. А. Битюрин, А. Н/Бочаров. Об особенностях электромагнитной тепловой защиты спускаемого аппарата // ПЖТФ. 2011. Т.37. № 9. 70 - 74.

38. В. А. Битюрин, А. Н. Бочаров, Н. А. Попов. Исследование МГД-торможения в атмосфере Земли IIТВТ. 2010. Т.48. № 1 (дополнительный). 122-131.

39. А. И. Бочаров. Исследование МГД-торможения в атмосфере Земли (Эффекты индуцированного магнитного поля) II ТВТ. 2010. Т.48. № 4.483 - 487.

40.Губанов Е.В., Лихачев А.П., Медин С.А. Гиперзвуковое обтекание линейного магнитного диполя с параллельной ориентацией векторов магнитного момента и скорости набегающего потока при умеренных магнитных числах Рейнольдса // МЖГ.2006. № 3. С. 172.

41. В. А. Битюрин, А. Н. Бочаров. Внутренний МГД-генератор на борту

спускаемого аппарата II ПЖТФ. 2011. Т.37. № 8. 66 - 70.

42. Битюрин, В.Г. Потебня, АЛ. Цескис. Об эволюции токонесущего плазменного сгустка в среде со случайным полем скоростей. Письма в ЖТФ. 1996. Т.22. №2. С.80-83.

43 .V.A.Bityurin, A.N.Bocharov, Advanced MHD assisted Mixing of Reacting Streams, In: 39th AIAA Aerospace Sciences Meeting & Exhibit, Reno, NV, 2001, AIAA Paper 20010793.

44. J.M.Ottino. The kinematics of mixing: stretching, chaos, and transport. Cambridge University Press, 1997.

45. V.A.Bityurin, V.G.Potebnia and A.L.Tseskls. Evolution of a Current Plasma Clot in Turbulent Flow. Proc. Of 33rd SEAM Conf., Tennessee, June 12-15, 1995, p.lV.7.

AS.A.Bocharov, V.Bityurin, I.KIement'eva, and S.Leonov, A Study of MHD Assisted Mixing and Combustion, In: 41st Aerospace Sciences Meeting and Exhibit, Reno, NV, 2003, AIAA Paper 2003-5878.

47. Физико-химические процессы в газовой динамике // Справочник под ред. Г.Г Черного С.А. Лосева, Изд-во Моск.Университета, Москва, 1995, Т.1, сс.274-275.

48.Райзер ЮЛ., Суржиков С.Т. Математическое моделирование самостоятельного тлеющего разряда в двумерной постановке. Препринт ИПМех АН СССР, №304. Москва. 1987. 40С.

49.I.KIement'eva, A.Bocharov, V.Bityurin, A.Kiimov. Experimental and Numerical Study of MHD Assisted Mixing II In: 15th International Conference on MHD Energy Conversion and 6 International Workshop on Magnetoplasma Aerodynamics, Moscow, May 24-27, 2005, pp.365 - 374.

50.И.Б. Клементьева, A.H. Бочаров, B.A. Битюрин. Особенности взаимодействия электрического разряда с газовым потоком во внешнем магнитном поле // Письма в ЖТФ Т.ЗЗ. Вып.22, 2007, с. 16 - 22.

51. С.Т. Суржиков, Физическая механика газовых разрядов. М.: МГТУ им. Н.Э. Баумана. 2006. 640 с.

52.J.S. Shang, P.G.Huang, H.Yan, S.T.Surzhikov, Electrodynamics of Direct Current Discharge II 46th AIM Aerospace Sci. Meeting and Exhibit, 2008.

53.Bityurin V.A., Bocharov A.N., Klimov A.I., Leonov S.B. Analysis of Non-Thermal Plasma Aerodynamics Effects // AIM Paper 2005-7978. 43rd AIM Aerospace Sci. Meeting and Exhibit, 2005. Reno, NV.

54.Fomin V.M., de Roquefort Th.A., Lebedev A.V., Ivanchenko A.I. Supersonic flows with longitudinal glow discharge // Proc. of III International Workshop on Magneto-Plasma Aerodynamics in Aerospace Applications. IVTAN. 2001. P. 66-72.

55.Bityurin V., Bocharov A., Popov N. Numerical Simulation of the Discharge in Supersonic Flow Around a Sphere, AIM 2007-0223 Paper, 45th AIM Aerospace Sciences Meeting & Exhibit, 8-11 January 2007, Reno, NV.

56.Popov N.A. Investigation of the Mechanism for Rapid Heating of Nitrogen and Air in Gas Discharges // Plasma Phys. Rep. 2001. V. 27. № 10. P. 886

57. Битюрин B.A., Бочаров A.H., Попов H.A. Численное моделирование электрического разряда в сверхзвуковом потоке // Изв.РАН. МЖГ. 2008. №4. 161 -170.

58. Klimov A., Bitiurin V., Moralev I, Tolkunov В., Zhirnov К., Kutlaliev V. Surface HF Plasma Aerodynamic Actuator II AIM 2008-1411, 46th AIM Aerospace Sciences Meeting and Exhibit, 7-10 January 2008, Reno, Nevada.

59. Бочаров A.H., Бочарова E.A., Макаров Б.П., Бандышева О.А. Об эффективности некоторых итерационных методов для решения эллиптических задач // Препринт ИВТАН. № 2-321. М„ 1991.

БОЧАРОВ Алексей Николаевич

ФИЗИЧЕСКИЕ И ЧИСЛЕННЫЕ МОДЕЛИ МАГНИТОПЛАЗМЕННОЙ АЭРОДИНАМИКИ

Автореферат

Подписано в печать 20.06.2011г. Печать офсетная Тираж 100 экз.

Уч.изд.л. 3,0 Заказ № 132

Формат 60x84/16 Усл.печ.л. 2,75 Бесплатно

ОИВТ, 125412, Москва, Ижорская ул., 13, строение 2

 
Содержание диссертации автор исследовательской работы: доктора физико-математических наук, Бочаров, Алексей Николаевич

ВВЕДЕНИЕ.

Глава 1. ОБЗОР ИССЛЕДОВАНИЙ В ОБЛАСТИ МАГНИТО-ПЛАЗМЕННОЙ АЭРОДИНАМИКИ.

1.1. МГД управление высокоскоростными потоками газа

1.2. Управление потоком методами плазменной аэродинамики.

1.3. Обзор физических моделей магнитоплазменной аэродинамики.

1.4. Обзор вычислительных моделей магнитоплазменной аэродинамики.

Глава 2. ФУНДАМЕНТАЛЬНЫЕ АСПЕКТЫ МГД ВЗАИМОДЕЙСТВИЯ В ГИПЕРЗВУКОВЫХ ПОТОКАХ.

2.1. Постановка задачи об МГД обтекании,тел.

2.1.1. Физическая и математическая модель МГД взаимодействия для условий экспериментальной установки.

2.Г.2. Модель среды в тестовой секции установки.

2.1.3. Оценка параметров потока в тракте МГДУ и в тестовой секции.

2.2. МГД обтекание круглового цилиндра с током

2.2.1. МГД течение вокруг цилиндра в отсутствие эффекта Холла.

2.2.2. МГД течение вокруг цилиндра с учетом эффекта Холла. Е-модель проводимости.

2.2.3. Сравнительный анализ двух моделей течения.

2.2.4. МГД течение вокруг цилиндра. Б-модель проводимости.

2.2.5. Экспериментальные результаты по МГД обтеканию цилиндра.

2.3. МГД течение над клином.

2.4. Выводы по Главе 2.

Глава 3. ПРИМЕНЕНИЕ МГД МЕТОДА ДЛЯ ТЕПЛОВОЙ ЗАЩИТЫ

ПОВЕРХНОСТИ ЛЕТАТЕЛЬНОГО АППАРАТА.

3.1. МГД взаимодействие в условиях реального полета.

3.1.1. Физическая и математическая, модель МГД взаимодействия в термо-химически неравновесном воздухе.

3.1.2. Методология решения задачи о МГД течении реагирующего газа

3.2. МГД теплозащита носовой части сферо-конического тела небольшого размера.

3.2.1. МГД течение без эффекта Холла (модельная задача).

3.2.2. МГД течение с эффектом Холла.

3.3. Оценка эффективности МГД теплозащиты для аппарата Stardust.

3.3.1. Влияние магнитного поля на распределение теплового потока в стенку.

3.3.2. Интегральные характеристики МГД взаимодействия.

3.3.3. Влияние индуцированного магнитного поля.

3.4. Выводы по Главе 3.

Глава 4. НОВЫЕ ВОЗМОЖНОСТИ ПРИМЕНЕНИЯ МГД ТЕХНОЛОГИЙ В АЭРОКОСМИЧЕСКИХ ПРИЛОЖЕНИЯХ.

4.1. МГД парашют: оценка идеи для условий экспериментальной установки.

4.2. МГД парашют в условиях верхней атмосферы Земли.

4.2.1. Вариант П1 : парашют малого масштаба.

4.2.2. ВариантЛ2: парашют большого масштаба.

4.3. Влияние индуцированного магнитного поля.

4.3.1. Модель МГД течения с учетом собственного магнитного поля.

4.3.2. Результаты расчетов.

4.4. Бортовой МГД генератор.

4.4.1. МГД взаимодействие в экспериментальном бортовом МГД генераторе.

4.4.2. Бортовой МГД генератор в условиях атмосферы Земли.

4.5. Выводы по Главе 4.

Глава 5. МГД МЕТОД ИНТЕНСИФИКАЦИИ СМЕШЕНИЯ И ГОРЕНИЯ В ГОРЮЧИХ СМЕСЯХ.

5.1. Основные положения МГД интенсификации смешения в предварительно несмешанных потоках.

5.1.1 Концепция реакционного объема.

5.1.2. Анализ факторов, определяющих структуру и интенсивность взаимодействия.

5.2. Численные модели разряда в потоке в магнитном поле.

5.2.1. Физическая и численная модель неравновесного электрического разряда.

5.2.2. Инженерная (лагранжева) модель разряда в потоке в магнитном поле.

5.3. МГД взаимодействие разряда с потоком газа в экспериментальных условиях.

5.3.1. Инженерная модель разряда.

5.3.2. Двумерная модель разряда.

5.3.3. Экспериментальная проверка концепции МГД интенсификации смешения.

5.4. Заключительные замечания к Главе 5.

Глава 6. ЭЛЕКТРИЧЕСКИЕ РАЗРЯДЫ В ВЫСОКОСКОРОСТНЫХ ПОТОКАХ ГАЗА.

6.1. Физическая и численная модель неравновесного неквази-нейтрального разряда в потоке.

6.1.1. Система уравнений в диффузионно-дрейфовом приближении.

6.1.2. Постановка граничных условий.

6.1.3. Методология согласованного описания системы поток - плазма.

6.1.4. Верификация модели.

6.2. Продольный разряд постоянного тока на сферическом электроде в потоке воздуха.

6.2.1. Разряд на катоде: моделирование экспериментальных условий.

6.2.2. Разряд на катоде в сверхзвуковой струе (течение без центрального тела).

6.2.3. Разряд на аноде.

6.3. Разряд на цилиндрическом катоде в сверхзвуковом потоке.

6.3.1. Постановка задачи.

6.3.2. Результаты расчетов.

6.4. Высокочастотный разряд в потоке.

6.4.1. Модель плазмы и диэлектрика.

6.4.2. Высокочастотный разряд на диэлектрической пластине.

6.4.3. Разряд на обтекаемом теле с диэлектрической поверхностью.

6.5. Выводы по Главе 6.

 
Введение диссертация по механике, на тему "Физические и численные модели магнитоплазменной аэродинамики"

Развитие и разработка новых аэрокосмических технологий с неизбежностью требует поиска новых возможностей управления перспективными летательными аппаратами или в более широком смысле -управления высокоскоростными потоками. Поиск новых возможностей управления потоком непрерывно ведется в широком спектре научных направлений. И в этом большом списке научных направлений методы магнитно-плазменной аэродинамики (МПА) вызывают все больший интерес. Привлекательность МПА ассоциируется, с возможностью изменения характеристик течения с помощью электрических и магнитных полей.

Актуальность работы

Высокий интерес к воздействию магнитного поля на высокоскоростные, в том числе гиперзвуковые, течения обусловлен как возможностью управления характеристиками обтекания тел при входе в атмосферы планет или при полете перспективных гиперзвуковых аппаратов в верхних слоях атмосферы, так и возможностью использования энергетического потенциала потока. Исследование этих возможностей с необходимостью требует развития физических и вычислительных моделей, пригодных для анализа магнитогидродинамических (МГД) течений при наличии химического и термохимического неравновесия в газе. Особую важность представляет анализ электродинамических характеристик в условиях сильной неоднородности свойств среды и, весьма возможно, сильного влияния эффекта Холла. Необходимость разработки адекватных моделей и исследования характеристик гиперзвуковых МГД течений определяет актуальность данной работы.

Разработка эффективных МГД технологий с неизбежностью столкнется с необходимостью экспериментальных исследований. Анализ и интерпретация экспериментальных данных, их экстраполяция на условия реальной атмосферы, как впрочем и собственно постановка эксперимента, вряд ли возможны без использования надлежащих средств исследования МГД течений в экспериментальных условиях, в том числе численных моделей. Поскольку в подавляющем большинстве случаев экспериментальные условия весьма существенно отличаются от условий реального полета, развитие моделей для анализа МГД течений в экспериментальных установках представляется самостоятельной, ценной и актуальной задачей.

Упомянутые выше направления исследований можно отнести к классу внешних течений, связанных с обтеканием тел. В то же время интенсивно исследуются методы и технологии, направленные на интенсификацию таких важных процессов, как смешение компонент топлива;, зажигание и горение в современных и перспективных двигательных установках. Особый интерес в этом направлении вызывают в последнее время методы, связанные с применением плазменных технологий.' Как правило, использование плазмы ассоциируется с энерговыделением и химическими превращениями, специфическими для плазмы. Рассматриваемая в работе новая идея использования магнитного поля для интенсификации процессов смешения и горения основывается не только на энергетическом и химическом потенциале плазменных технологий, но и на их динамическом потенциале, обусловленном движением плазменных образований в магнитном поле. Исследования в этом, достаточно новом направлении магнитоплазменной аэродинамики (МПА) также представляются актуальными и весьма интересными.

Традиционно высоким является интерес к использованию плазменных технологий в аэродинамике, связанный с потенциальным воздействием на интегральные и локальные характеристики обтекания тел: модификация скачков уплотнения, управление пограничными слоями и отрывом потока, воздействие на вихревые структуры в потоке и другие. Если роль нагрева за счет протекающих в плазме токов качественно ясна, то силовое воздействие заряженной (неквазинейтральной) плазмы на поток вызывает все нарастающий интерес. Особый интерес вызывает воздействие на характеристики течения электростатических сил, возникающих в слоях объемного заряда. Поэтому, разработка средств исследования и анализа течений заряженной плазмы представляется актуальной задачей.

Цели диссертации

Целями диссертации являются

1) Разработка физических и численных моделей магнито-плазменной аэродинамики для широкого класса практически важных задач.

2) Исследование МГД взаимодействия в условиях экспериментальных наземных установок.

3) Исследование характеристик термохимически неравновесных течений в магнитном поле для условий верхней атмосферы Земли.

4) Исследование МГД интенсификации процессов смешения и горения в высокоскоростных потоках.

5) Исследование механизмов воздействия неравновесных плазменных образований на характеристики высокоскоростных потоков газа.

Научная новизна работы заключается в следующем.

1) Разработана модель МГД течения неравновесного ионизованного газа в магнитном поле. Установлены основные черты МГД взаимодействия в гиперзвуковых потоках слабоионизованной плазмы. Установлена роль неравновесных процессов, пространственной неоднородности свойств среды, анизотропии свойств в магнитном поле в МГД течениях вокруг тел.

2) Рассмотрено гиперзвуковое МГД течение вокруг спускаемого аппарата в атмосфере Земли. Показано, что для достаточно широкого класса условий, определяемых масштабами и скоростью аппарата, существует принципиальная возможность значительного снижения тепловых потоков на поверхности аппарата за счет организации МГД взаимодействия в головной части ударного слоя. Показано, что эффективность МГД теплозащиты существенно зависит от пространственной неоднородности параметров плазмы.

3) Рассмотрены новые предложения по МГД управлению высокоскоростными летательными аппаратами, связанные с организацией МГД взаимодействия в большом объеме плазмы ударного слоя. Ускоренное МГД торможение аппарата в верхних слоях атмосферы предлагает иной подход к тепловой защите спускаемого аппарата: снижение скорости аппарата до входа в плотные слои атмосферы, где тепловые нагрузки становятся особенно велики. Показано, что существует принципиальная возможность увеличения гидродинамического сопротивления тела на порядок. Другим полезным следствием является генерация электрической энергии на борту летательного аппарата. Показана возможность извлечения электрической мощности мегаваттного уровня при движении летательного аппарата в верхних слоях атмосферы Земли.

4) Рассмотрен новый метод интенсификации процессов смешения, зажигания и горения в предварительно несмешанных потоках топлива и окислителя, основанный на движении плазменных образований в магнитном поле. Разработаны численная многомерная модель и интегральная модель взаимодействия контрагированного разряда с холодным потоком в магнитном поле. Установлены основные особенности взаимодействия разряда с потоком, определяющие скорость смешения реагентов и скорость их зажигания.

5) Исследованы механизмы воздействия неравновесной неквазинейтральной плазмы на характеристики сверхзвукового обтекания затупленного тела. Исследовано влияние нагрева в различных зонах разряда и электростатической силы в слоях объемного заряда на характеристики течения. С помощью численного моделирования дано объяснение зависимости гидродинамического сопротивления тела от режима разряда.

Структура диссертации

Диссертация состоит из Введения, шести глав, Заключения и Приложения. Во Введении обосновывается актуальность работы, формулируются цели работы, основные положения, выносимые на защиту, и основные новые научные результаты.

 
Заключение диссертации по теме "Механика жидкости, газа и плазмы"

6.5. Выводы по Главе 6.

Разработана двумерная численная модель, включающая уравнения Навье-Стокса для нейтрального газа в приближении ламинарного течения, уравнения переноса заряженных частиц в диффузионно-дрейфовом приближении и уравнение Пуассона для электрического поля. Эта модель была применена для анализа эффектов, наблюдавшихся ранее в ряде экспериментов по обтеканию сферического электрода сверхзвуковым потоком воздуха. В данной работе рассматривался катодный режим работы сферического электрода. Показано, что основное влияние разряда на поток заключается в нагреве газа протекающими токами, причем основной вклад вносит нагрев электронным током в области вне катодного слоя объемного заряда. Влияние электрической силы на поток, вызванной разделением зарядов в катодном слое, оказалось несущественным.

Принципиальные факторы, определяющие структуру разряда, -следующие. При невысоких значениях полного тока (меньше 20 мА), соответствующих, в основном, левой растущей части вольт-амперной характеристики, разряд локализуется в кормовой части сферического электрода. С ростом тока токопроводящая поверхность электрода растет вплоть до верхней точки сферы. При этом ток течет между кромкой сопла (анод) и сферой (катод). На этой стадии влияние разряда на течение сводится к нагреву газа в катодном слое и, как следствие, к небольшому повышению донного давления. С повышением тока структура разряда полностью меняется: токопроводящая поверхность смещается на лобовую поверхность сферы. С ростом тока токопроводящая поверхность непрерывно растет; доля тока, поступающего со стенок сопла, непрерывно падает, а доля тока, поступающего с центрального электрода, растет. При больших токах (больше 200 мА) более 90% тока течет по каналу между центральным электродом и сферой. Влияние разряда на поток определяется энерговкладом от электронной компоненты тока, при этом роль катодного слоя в энергетическом плане относительно невелика. Энерговклад определяет снижение сопротивления сферы примерно на 25%, что заметно меньше экспериментальных данных [103,226]. Это объясняется тем, что энергия от протекающих токов подводится в дозвуковой поток. Расчет самостоятельного разряда в полностью сверхзвуковом потоке показал, что в этом случае может быть получено значительное (в 2 раза) снижение сопротивления сферы.

Все основные факторы, влияющие на характеристики течения при продольном разряде, были подтверждены и при моделировании разряда в сверхзвуковом потоке, задача 6.3. Проведено сравнение результатов для двух моделей свойств среды, «модель чистого азота» и воздуха. Показано, что обе модели демонстрируют качественно схожие характеристики разряда в потоке. Некоторые количественные характеристики ближе к имеющимся экспериментальным данным в модели чистого азота. Наиболее важным, пожалуй, является то, что небольшие, и на первый взгляд непринципиальные различия в оценке локальных свойств среды могут приводить к весьма заметным различиям в интегральных характеристиках течения и разряда. Например, учет зависимости скорости ионизации и скорости нагрева от локального электрического поля в модели быстрого нагрева в воздухе (точнее, аппроксимации модели быстрого нагрева) приводит к такому перераспределению энерговыделения в разряде, что картина течения может качественно измениться.

В работе была предложена модель высокочастотного разряда на диэлектрической поверхности. С помощью этой модели было показано, что аккумуляция заряда на диэлектрике оказывает заметное влияние на характеристики разряда. В частности, разряд становится более однородным по поверхности, причем заметное влияние оказывает продольное электрическое поле, обусловленное поверхностным зарядом. Газодинамическое влияние ВЧ разряда заключается, главным образом, в нагреве газа. В рассмотренном примере ВЧ разряда перед затупленным телом с диэлектрическим покрытием (с заданной температурой стенки) это приводит к заметному увеличению теплового потока на поверхности тела.

ЗАКЛЮЧЕНИЕ

1. Разработана численная модель гиперзвукового МГД течения вокруг простейших геометрических тел (цилиндр, клин, пластина, сферо-конус) для условий наземной МГД установки. Модель основана на совместном решении уравнений Навье-Стокса для среды и уравнений электродинамики для замагниченной плазмы. Были рассмотрены модели ионизации потока для двух предельных случаев: случай полностью/частично ионизованной присадки (режим неравновесной ионизации, реализующийся в условиях реального эксперимента) и случай неионизованной присадки, моделирующий ионизацию газа лишь в ударном слое (режим равновесной ионизации).

2. Выполнен анализ МГД обтекания цилиндра с током для условий течения в тестовой секции МГД установки ЦАГИ (М = 10-15). Показано, что ключевыми факторами, определяющими интенсивность МГД взаимодействия в окрестности цилиндра, являются эффект Холла, условия замыкания токов в плазме (граничные условия) и, вообще говоря, неравновесные процессы в разреженном потоке. Установлено, что область ударного слоя перед наветренной поверхностью цилиндра является, вопреки ожиданиям и общепринятым представлениям, зоной МГД ускорения. Следствие - отсутствие "положительных" эффектов: увеличение отхода ударной волны, снижение теплового потока в стенку. В то же время было обнаружено, что интенсивное МГД взаимодействие имеет место в следе за цилиндром (зона генерации). Это проявляется в увеличении температуры газа и увеличении угла раскрытия ударной волны. В экспериментальных исследованиях наблюдалось увеличение интенсивности свечения в следе и увеличение угла раскрытия волны. Оба эффекта - отсутствие воздействия магнитного поля на поток в окрестности критической точки цилиндра и взаимодействие в следе — являются следствием неравновесной ионизации во всей области течения и сильного эффекта Холла.

3. Было рассмотрено обтекание клина с встроенной магнитной системой. Обнаружено, что структура зон МГД взаимодействия принципиально не отличается от той, что была найдена при обтекании цилиндра: зона ускорения потока непосредственно над магнитной системой, зоны генерации - вверх и вниз по потоку. Принципиальным отличием от случая цилиндра является то, что нижняя по потоку обширная зона генерации производит "положительный" эффект: торможение потока за счет МГД взаимодействия приводит к повышению давления и к увеличению угла раскрытия косой ударной волны. Этот эффект позволяет, например, воздействовать на положение косого скачка на входе в воздухозаборник летательного аппарата. Экспериментальные исследования подтвердили увеличение угла косого скачка с включением магнитного поля.

4. Оба типа течения были рассмотрены для другого предельного случая неионизованной присадки в набегающем потоке, что качественно моделирует условия движения аппарата в атмосфере. Показано, что в этом случае режим МГД взаимодействия существенно ближе к режиму малого холловского тока (а не электрического поля, как в предыдущей модели). При обтекании цилиндра наблюдается значительное увеличение отхода ударной волны и снижение теплового потока в стенку. При обтекании клина наблюдается увеличение угла косого скачка, значительно большее по сравнению со случаем неравновесной ионизации.

5. Были проведены численные и экспериментальные исследования МГД взаимодействия в модельном поверхностном МГД генераторе, представляющем собой огнеупорную пластину с встроенной магнитной системой и расположенной на огневой поверхности электродной системой. С помощью моделирования была найдена конфигурация, обеспечившая в экспериментах энергосъем на уровне бОВт/ЗОсм .

6. . Разработана двумерная модель МГД течения термохимически неравновесного воздуха, соответствующая условиям верхней атмосферы Земли (высоты 50-80 км). Модель основана на совместном решении уравнений Навье-Стокса для среды в целом, уравнений переноса отдельных компонент с учетом много-компонентной диффузии и конечной скорости химических превращений, уравнений переноса колебательной энергии двух-атомных молекул и уравнений электродинамики в приближении малых магнитных чисел Рейнольдса с учетом эффекта Холла.

7. В рамках этой модели рассмотрено гиперзвуковое обтекание затупленного тела с малым радиусом кривизны поверхности во внешнем магнитном поле типа поля диполя. Установлено, что в рассмотренных условиях перенос заряда определяется электрон-нейтральными столкновениями. Это, в свою очередь, определяет низкие частоты столкновений электронов и, как следствие, высокие значения параметра Холла. Однако, наличие естественных границ - поверхность ударной волны и поверхность тела - обеспечивают МГД взаимодействие в ударном слое в режиме малого холловского тока. Для этих условий обнаружено значительное увеличение отхода ударной волны от поверхности тела и снижение теплового потока в стенку более чем в два раза.

8. Решение аналогичной задачи в условиях спуска в атмосфере Земли возвращаемой капсулы аппарата Stardust обнаружило новые черты в МГД течении вокруг спускаемого аппарата. Установлено, что отход ударной волны в результате МГД взаимодействия может слабо коррелировать со снижением тепловых потоков на поверхности аппарата. МГД взаимодействие эффективно влияет на тепловой поток, пока зона взаимодействия затрагивает пристеночную область сильных градиентов температуры и концентраций. При сильном взаимодействии имеет место значительное увеличение ударного слоя, состояние плазмы в котором близко к термодинамически равновесному. Таким образом, равновесие фиксирует нормальный к стенке перепад температур в пристеночной области и сдерживает снижение тепловых потоков с ростом магнитного поля. По этой же причине влияние индуцированного токами в плазме магнитного поля на тепловой поток невелико. Тем не менее, тепловые потоки могут быть значительно, в 1.5-3 раза, снижены в результате МГД взаимодействия. Причем, такое снижение может быть достигнуто при характерных значениях магнитного поля, почти на порядок меньших тех, что рассматривались в предыдущей задаче.

9. Для условий наземного эксперимента, соответствующих условиям МГД установки ЦАГИ выполнена проверка гипотезы "МГД парашют", заключающейся в увеличении гидродинамического сопротивления обтекаемого тела за счет интенсивного объемного МГД взаимодействия за фронтом головной ударной волны. Показано, что сопротивление тела может быть увеличено на порядок, что, например, предоставляет возможность управлять траекторией спускаемого аппарата. В частности, существует принципиальная возможность снизить скорость аппарата до входа в плотные слои атмосферы, наиболее опасные с точки зрения тепловых нагрузок.

10. Анализ МГД взаимодействия в рамках концепции «МГД парашют» для условий атмосферы Земли показал, что увеличение сопротивления тела на порядок вполне возможно. При этом влияние собственных магнитных полей, индуцируемых токами в плазме и снижающих интенсивность МГД взаимодействия, становится существенным. Тем не менее, увеличение сопротивления тела на порядок требует генерации магнитного поля порядка 1 Тесла, что представляется вполне достижимым.

11. Для демонстрации и анализа процессов в рамках оригинальной концепции МГД интенсификации смешения и горения разработан спектр моделей, обеспечивающий описание электрических разрядов в потоках при наличии приложенного магнитного поля и зажигания и горения водородо-воздушных и углеводородо-воздушных неперемешанных смесей, инициируемого разрядом.

12. Прямым численным моделированием были подтверждены основные положения концепции: действие пондеромоторной силы приводит как к увеличению контактной поверхности топливо/окислитель, так и к увеличению завихренности в потоке; разрядная плазма способствует ускоренному зажиганию горючей смеси в окрестности контактной поверхности как за счет высокой температуры, так и за счет неравновесных плазмохимических процессов в электрическом поле.

13. Был выполнен качественный анализ эволюции разряда между двумя коаксиальными электродами в магнитном поле для условий, близких к экспериментальным. Движение разрядного канала в такой конфигурации выглядит как раскручивающаяся вокруг центрального (проволочного) электрода спираль, что обусловлено действием пондеромоторной силы. Установлено также, что существенную роль играет теплопроводный перенос тепла вблизи электродных поверхностей, особенно в окрестности центрального электрода. Рассмотренная конфигурация представляется весьма привлекательной для перемешивания потоков реагентов в плоскости, поперечной основному движению газов.

14. Разработана численная модель неравновесной неквази-нейтральной воздушной плазмы в высокоскоростных потоках, основанная на совместном решении уравнений Навье-Стокса для нейтрального (основного) газа, уравнений переноса заряженных компонент (ионов и электронов) в диффузионно-дрейфовом приближении и уравнения Пуассона для электрического поля. Модель предназначена для исследования механизмов воздействия быстро протекающих плазмохимических процессов на газодинамические характеристики течения.

15. Рассмотрен ряд задач, моделирующих условия физических экспериментов, с целью выяснения механизмов воздействия неравновесного разряда на поле течения. Установлено, что критически важными в подобных задачах являются: аккуратное описание процессов неравновесной плазмохимии, управляющих образованием плазмы и плотностью тепловыделения; аккуратное разрешение слоев объемного заряда, где падает большая часть приложенного напряжения и, соответственно, выделяется большая часть вложенной энергии; аккуратное описание граничных условий для плазмы и электрического поля, являющихся, как правило, нелинейными и функциональными.

16. Для анализа экспериментально обнаруженного эффекта большого снижения гидродинамического сопротивления тела в продольном разряде постоянного тока была рассмотрена задача об обтекании сферического катода высокоскоростным потоком. Непосредственное влияние разряда на поток заключается в нагреве газа в квазинейтральной зоне разряда перед фронтом головной ударной волны. Следствием этого является значительное падение гидродинамического сопротивления модели. Численным моделированием удалось также объяснить отсутствие влияния разряда на характеристики обтекания при смене полярности тестового электрода.

17. Выполнен сравнительный анализ результатов экспериментальных исследований продольного разряда постоянного тока на сферически затупленном цилиндре в сверхзвуковом потоке с результатами, полученными с помощью разработанной вычислительной модели. Получено хорошее качественное соответствие между наблюдаемыми формами разряда и расчетными. Получено хорошее количественное соответствие экспериментальных вольт-амперных характеристик и расчетных. Расчетами установлено, что основное влияние разряда на поток - нагрев газа в квази-нейтральной зоне разряда перед фронтом головной ударной волны. Это приводит к эффективному снижению числа Маха набегающего потока и, как следствие, к существенному отходу волны от тела с изменением формы самого фронта, к большому падению давления за фронтом и на поверхности тела. В итоге, гидродинамическое сопротивление модели может снизиться по одной из моделей среды в 2.5 раза при уровне энерговклада 40% от потока энтальпии.

Разработана модификация численной модели, предназначенная для анализа плазмодинамических процессов вблизи диэлектрических поверхностей. Проведено моделирование высоко-частотного разряда в потоке воздуха, обтекающего аэродинамическую модель, покрытую диэлектриком. Показано, что аккумуляция заряда на диэлектрике оказывает заметное влияние на характеристики разряда. Большая область течения является в среднем положительно заряженной. Результатом разделения заряда является наличие в потоке средней ускоряющей силы. Газодинамическое влияние ВЧ разряда заключается, главным образом, в нагреве газа. В рассмотренном примере ВЧ разряда перед затупленным телом с диэлектрическим покрытием (с заданной температурой стенки) это приводит к заметному увеличению теплового потока на поверхности тела.

 
Список источников диссертации и автореферата по механике, доктора физико-математических наук, Бочаров, Алексей Николаевич, Москва

1. Брагинский С.И. Явления переноса в плазме // В сб. «Вопросы теории плазмы», Выпуск 1, Госатомиздат, Москва, 1963, сс.183-272.

2. Дэ1с. Саттон, А. Шерман. Основы технической магнитной газодинамики // Изд-во «Мир», Москва, 1968, 492с.

3. Ватажин А.Б., Любимое Г.А., Регирер С.А. Магнитогидродинамические течения в каналах // М.: Наука, 1970.

4. G. G. Chernyi, "The impact of electromagnetic energy addition to air near the flying body on its aerodynamic characteristics" // 2nd Workshop on Weekly Ionized Gases, April 24-25, 1998, Norfolk, VA.

5. Магнитоплазменная аэродинамика в аэрокосмических приложениях // Тр. Международного совещания по магнитоплазменной аэродинамике, №1-6, 1999-2005, М., ОИВТ РАН, Москва.

6. А.И. Климов. Сверхзвуковое обтекание тел и распространение ударных волн с слабоионизованной плазме // Автореферат диссертации на соискание ученой степени доктора физико-математических наук, М., Москва, ОИВТ РАН, 2002, 42С.

7. С. Б. Леонов. Воздействие электрических разрядов на структуру и параметры высокоскоростного воздушного потока // Автореферат диссертации на соискание ученой степени доктора физико-математических наук, М., Москва, ОИВТ РАН, 2006.

8. Климов А.И., Битюрин В.А., Стратегия плазмоаэродинамических исследований сегодня. Зя школа-семинар по магнитоплазменной аэродинамике, Москва, 8-10 апреля 2008.

9. Куликовский А.Г. "Об обтекании намагниченных тел проводящей жидкостью" // Доклады Академии Наук, 1957, Т.17, №.2.

10. Bush W.B., Magnetohydrodynamis Hypersonic Flow Past a Blunt Body, J. Aerospace Science, Vol.25, 1958, pp.685-690, 728.

11. Resler, E., and Sears, W., The Prospects for Magneto-Aerodynamics, Journal of the Aeronautical Sciences, Vol. 25, Apr. 1958, pp. 235-245, 258.

12. Resler, E., and Sears, W., "The Prospects for Magneto-Aerodynamics Correction and Addition," Journal of the Aero/Space Sciences, Vol. 26, No. 5, May 1959, pp. 318.

13. Sears, W., "Magnetohydrodynamic Effects in Aerodynamic Flows," ARS Journal, June 1959, pp. 397-406.

14. Ziemer, R„ and Bush, W., "Magnetic Field Effects on Bow Shock Standoff Distance," Physical Review Letters, Vol. 1, No. 2, July 1958, pp. 58-59. doi: 10.1103/PhysRevLett. 1.58.

15. Куликовский А.Г., Любимов Г.А. "Магнитная гидродинамика" // М: Физматгиз, 1962, 246с.

16. Bush W.B. "Compressible Flat-Plate Boundary Layer Flow with an Applied Magnetic Field", Journal of the AeroSpace Sciences, v.26, Jan., 1960, pp.49-58.

17. Proceedings of the 3rd Symposium on Engineering Aspects of Magnetohydrodynamics, edited by N. Malher, and G. Sutton, Gordon and Breach, New York, 1964, pp. 413-438.

18. Cambel, A. B., Yuen, M. C., Porter, R., Nowak, R., Krane, S., and Chang, C., "Theoretical and Experimental Studies of Magneto-Aerodynamic Drag and Shock Standoff Distance," NASA CR-70315, 1966.

19. Krane, S., Yuen, M. C., and Cambel, A. B., "Experimental Investigation of Magnetoaerodynamic Flow around Blunt Bodies," NASA NASA CR-1393, 1969.

20. Nowak, R., and Yuen, M., "Heat Transfer to a Hemispherical Body in a Supersonic Argon Plasma," AIAA Journal, Vol. 11, No. 11, Nov. 1973, pp. 1463-1464. doi: 10.2514/3.50611

21. Gurijanov, E.P. and Harsha, P.T., "AJAX, New Directions in Hypersonic Technology," AIAA Paper 1996-4609, 1996.

22. Brichkin D.I., Kuranov A.L., Sheikin E.G. "The Potentialities of MHD Control for Improving Scramjet Performance", AIAA Paper 99-4669.

23. Eraishtadt, V. L., Kuranov, A. L., and Sheikin, E. G. Use of MHD System in Hypersonic Aircraft. Tech. Phys., Vol. 43, No.l 1, 1998, pp.1309—1313.

24. Kuranov A.L., Sheikin E.G., Magnetohydrodynamic Control on Hypersonic Aircraft under "AJAX" Concept. Journal of Spacecraft and Rockets, 2003, v40, №2, p. 174-182.

25. Sheikin E.G., Kuranov A.L. MHD Control in Hypersonic Aircraft, AIAA Paper 2005-1335.

26. Ватажин А.Б., Гуськов О.В., Копченое В.И. Особенности торможения двумерного гиперзвукового течения проводящего газа в канале в режиме МГД генерации // Тр. Математического института им. Стеклова, М.: МАИК Наука, 1998, т.223, с. 152-162.

27. Kopchenov V, Vatazhin A. and Gouskov О., "Assessment of Possibility to Use the MHD Control in Scramjet", AIAA Paper 99-4971, 1999.

28. Vatazhin A.B., Gouskov O.V., Kopchenov V.I., "Assessment of Possibility to Use the MHD Control for Hypersonic Flow Deceleration", AIAA Paper 994972, 1999.

29. Vatazhin A., Kopchenov V. and Gouskov O., 2nd Workshop on Magneto-Plasma-Aerodynamics in Aerospace Applications, Moscow, April 2000, p.56.

30. Vatazhin A.B., Gouskov O.V., Danilov M.K.,Kopchenov V.I. Research of possibility of MHD flow control in Hypersonic inlets II Aeromechanics and gas dynamics. 2002. № 2. P.3-15.

31. Hojfmann K.A., Damevin H.-M., Dietiker J.-F. "Numerical Simulation of Hyprsonic MHD Flow", AIAA Paper 2000-2259, June, 2000.

32. Damevin H.-M., Hoffman К A. "Numerical Simulations of Hypersonic Magnetogasdynamics Flows over Blunt Bodies". In: 40th AIAA Aerospace Sciences Meeting & Exhibit, January 14-17, 2002, AIAA Paper 2002-0201, Reno, NV

33. Gaitonde, D. V., "Development of a Solver for 3-D Non-ideal Magnetogasdynamics," AIAA Paper 99-3610, June 1999.

34. Poggie J., Gaitonde D., "Magnetic Control of Hypersonic Blunt Body Flow", AIAA Paper 2000-0452, Jan, 2000.

35. Gaitonde D., Poggie J., "Preliminary Analysis of 3-D Scramjet Flowpath with MGD Control", In: Proc. of 14th Intern. Conf. On MHD Electrical Power Generation and High Temp. Technologies, Maui, Hawaii, May 20-24, 2002, pp. 79-96.

36. Gaitonde, D. V., "Three-Dimensional Flow-Through Scramjet Simulation with MGD Energy- Bypass", AIAA Paper 2003-0172, Jan. 2003.

37. Linsey, M., McMillan, R., and Gaitonde, D., "Development of a Realistic 3-D Scramjet Flowpath for MHD Energy Bypass, AIAA paper 2005-1178, 43rd AIAA Aerospace Sciences Meeting and Exhibit, 10-13 January 2005, Reno, Nevada.

38. Горелов В.А., Киреев А.Ю. Результаты расчета течения вокруг аппаратов конической и плоской формы // Тех.записки ЦАГИ-ИВТАН, Москва,1994, 27 С.

39. Macheret S.O., Shneider M.N., and Miles R.B., Modeling of Air Plasma Generation by Electron Beams and High-Voltage Pulses, AIAA Paper 20002569.

40. Macheret, S. O., Shneider, M. N. and Miles, R. В., "Magnetohydrodynamic control of hypersonic flows and scramjet inlets using electron beam ionization," AIAA Journal, Vol. 40, No. 1, 2002, pp. 74-81.

41. Macheret, S.O., Shneider, M.N., and Miles,R.B., "MHD Power Extraction from Cold Hypersonic Air Flow with External Ionizers", Journal of Propulsion and Power, Vol. 18, No. 2, 2002, pp. 424-431.

42. Shneider, M. N. Macheret, S. O., and Miles, R. В., "Comparative analysis of MHD and plasma methods of scramjet inlet control," AIAA 2003-0170, 41st AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, January 2003.

43. Климов А.И., Коблов А.Н., Мишин Г.И., и др. Распространение ударных волн в плазме тлеющего разряда. Письма в ЖТФ. 1982. Т.8. Вып.7. С.439.

44. Горшков В.А., Климов А.И., Мишин Г.И., и др. Распространение ударных волн в плазме тлеющего разряда при наличии магнитного поля. Письма в ЖТФ. 1984. Т.54. Вып.5. С.995.

45. Горшков В.А., Климов А.И., Мишин Г.И., и др. Особенности поведения электронной плотности в слабоионизованной неравновесной плазме при распространении в ней ударной волны. ЖТФ. 1987. Т.57. Вып.Ю. С.1893.

46. Климов А.И., Мишин Г.И., Федотов А.Б., и др. Распространение ударных волн в нестационарном тлеющем разряде. Письма в ЖТФ. 1989. Т. 15. Вып.20. С.31.

47. Бедин А.П., Авраменко Р.Ф., Климов А.И., и др. Аномальное обтекание тел в слабоионизованной неравновесной плазме // Диплом на открытие №007, выдан 25 марта 1988. Гос. Комитет СССР по делам изобретений и открытий.

48. Горшков В.А., Климов А.И., Федотов А.Б., и др. Формирование активных зон за ударной волной в слабоионизованной неравновесной плазме. ЖТФ. 1989. Т.59. Вып.4. С.135.

49. Климов А.И., Мишин Г.И., Гридин А.Ю. Продольный электрический разряд в сверхзвуковом потоке. Письма в ЖТФ. 1992. С.87-92.

50. Mishin G I 1997 AIAA-97-2298 June 1997

51. Bobashev S V, Erofeev A V, Maslennikov V G and Vasil'eva R. V., 1999, Perspectives of MHD and Plasma Technologies in Aerospace Applications (Moscow,March 1999).

52. Golovachev Yu. P. and Suschikh S. Yu., 1999 Perspectives of MHD and Plasma Technologies in Aerospace Applications (Moscow, March 1999).

53. A.Kolesnichenko Yu. F. and Khmara D. V., 2000 2nd Workshop on Magneto

54. Plasma-Aerodynamics in Aerospace Applications, Moscow, April 2000.

55. Kolesnichenko Yu. F., Brovkin V. G., Leonov S. В., Krylov A. A., Lashkov V. A., Mashek I. Ch., Gorynya A. A. and Ryvkin M. /., AIAA-2001-0345, January 2001.

56. Leonov, S. and Bityurin, V., "Hypersonic/Supersonic Flow Control by Electro-Discharge Plasma Application," AIAA Paper 2002-5209, Sept. 2002.

57. Chavashev S.N., Ershov A.P., Klimov A.I., Leonov S.В., Shibkov V.M., Timofeev I.B. A flow around body and characteristics of AC/DC discharges in plasma aerodynamic experiment // 2nd Weakly ionized gas workshop. Norfolk. VA. April 1998. P. 59-61.

58. Macheret S.O., Ionikh Yu.Z., Martinelli L., Barker P.F., Miles R.B. "External control of plasmas for high-speed aerodynamics", AIAA Paper 99-4853. Miles R.B., Macheret S.O., Martinelli L., Shneider M.N., Murray R., Mc

59. Andrew B. "Plasma control of shock waves in aerodynamics and sonic boom jmitigation" // 3 Workshop on magneto-plasma- aerodynamics in aerospace applications. April 2001. Moscow. P. 25.

60. Williamson J. M. and Ganguly В. TV., 2001, Phys. Rev. E 64 036403.

61. Bletzinger P. and Ganguly B. N. 1999, Phys. Lett. A 258,342.

62. Ganguly B. N. Bletzinger P. and Garscadden A., 1997, Phys. Lett. A 230,218. 89 .А.Б. Ватажин, В.И. Грабовский, В.А. Лихтер, В.И. Шульгин.

63. Conversion and the 6th International Workshop on Magneto-Plasma Aerodynamics, Moscow, IVTAN, 2005, p. 181.

64. D. Knight, V.Knchinskiy, A. Kuranov, E. Sheikin. Aerodynamic Flow Control Using Energy Deposition. 4th Workshop on Magneto-Plasma Aerodynamics in Aerospace Applications, Moscow, IVTAN, 2002, pp. 14-30.

65. Klimov A., Bitynrin V., Serov Yu., Non-Thermal Approach in Plasma Aerodynamics, 39th AIAA Aerospace Sciences Meeting & Exhibit. AIAA 2001-0348, 8-11 January 2001, Reno, NV, p. 10.

66. Klimov A., Byturin V., Non-Thermal Plasma Aerodynamics Effects, 43th AIAA Aerospace Sciences Meeting.& Exhibit. AIAA 2005-0978, 10-13 January 2005, Reno, NV, p.9.

67. Corke T., McLaughlin T., et.al., Scaling Effects of an Aerodynamic Plasma Actuator, 45th AIAA Aerospace Sciences Meeting and Exhibit, 8-11 Jan 2007, Reno, NV, AIAA 2007-635.

68. Abe T., Takizawa Yu., et.al., Optical Observation of Discharge Plasma Structure in DBD Plasma Actuator, 38th Plasmadynamics and Lasers Conference, 25-28 June 2007, Miami, FL, AIAA 2007-4376.

69. Abe T., Takizawa Yu., et.al., A Parametric Experimental Study for Momentum Transfer by Plasma Actuator, 45th AIAA Aerospace Sciences Meeting and Exhibit, 8-11 Jan 2007, Reno, NV, AIAA 2007-187.

70. Klimov A., Bityurin V., Kuznetsov A.,Vystavkin N., Vasiliev M. External and Combined Plasma Discharge in Supersonic Airflow // Paper 2004-0670. Proc. 42nd AIAA Aerospace Sciences Meeting & Exhibit, 4-8 January 2004, Reno, NV, p.5.

71. Fomin V.M., de Roquefort Th.A., Lebedev A.V., Ivanchenko A.I. Supersonic flows with longitudinal glow discharge // Proc. of III International Workshop on Magneto-Plasma Aerodynamics in Aerospace Applications. IVTAN. 2001. P. 66-72.

72. Ю.П. Райзер. Физика газового разряда. М.: Наука, 1987, С.350.

73. Кочетов И.В., Леонов С.Б., Напартович А.П. Расчет динамики воспламенения водородно-воздушной смеси неравновесным разрядом в высокоскоростном потоке. ТВТ. №5. 2005. С. 667-676.

74. Кочетов КВ., Леонов С.Б., Напартович А.П. Плазменное инициирование горения в сверхзвуковом потоке в топливо-воздушных смесях. Химия высоких энергий. 2006. №2. Т.40. С. 1-8.

75. Sergey В. Leonov., Dmitry A. Yarantsev, Anatoly P. Napartovich, Igor V. Kochetov. "Plasma-Assisted Chemistry in High-Speed Flow", IOP: Plasma Science and Technology, v.9, No 6 (December 2007) 760-765.

76. Sergey B. Leonov, Dmitry A. Yarantsev, "Near-Surface Electrical Discharge in Supersonic Airflow: Properties and Flow Control", Journal of Propulsion and Power, 2008, vol.24, no.6, pp.1168-1181, DOI: 10.2514/1.24585.

77. Sergey B. Leonov, "Gasdynamic Effects Concomitant with Plasma-Assisted Combustion", 7th International Workshop on Magneto-Plasma Aerodynamics in Aerospace Applications, Ed. V.A.Bityurin, Moscow, JIVTAN, 2007, pp. 1525.

78. Klimov A., Byturin V, Brovkin V., Kuznetsov A., Sukovatkin N., Vystavkin N, VanWie D., Optimization of Plasma Assisted Combustion, Proc.4th Workshop on MP A, Moscow 23-25 April, 2002, IVTAN, P.31.

79. Klimov A., Bityurin V., Kuznetsov A., Tolkunov В., Vystavkin N, Sukovatkin N, Serov Yu, Savischenko N, Yuriev A., External and Internal

80. Plasma- Assisted Combustion AIAA Paper 2003-6240. Proc. 41st AIAA Aerospace Sciences Meeting & Exhibit, 6-9 January 2003, Reno, NV, P.9.

81. Klimov A., Bityurin V., Kuznetsov A., Tolkunov B., Vystavkin N., Vasiliev M., External and Internal Plasma- Assisted Combustion, AIAA Paper 20041014. Proc. 42nd AIAA Aerospace Sciences Meeting & Exhibit, 4-8 January 2004, Reno, NV, P. 10.

82. S.M. Starikovskaia, N.B. Anikin, S.V., Pancheshnyi, D.V., Zatsepin and A.Yu.Starikovskii, Plasma Sources Sci. Technol., 10, (2001) 344-355.

83. S.A. Bozhenkov, S.M. Starikovskaia and A.Yu.Starikovskii, Combust. Flame, 133, 2003, 133-146.

84. S.M. Starikovskaia, E.N. Kukaev, A.Yu.Kuksin, M.M. Nudnova and A.Yu. Starikovskii. Combust. Flame, 139, 2004, 177-187.

85. S.M. Starikovskaia, N.L.Aleksandrov, I.N.Kosarev, S.V.Kindisheva,A.Yu. Starikovskii. Plasma Assisted Ignition and Combustion, 7th International

86. Workshop on Magneto-Plasma Aerodynamics in Aerospace Applications. Ed. V.A.Bityurin, Moscow, JIVTAN, 2007, pp.28-31.

87. Vinogradov V., Shikhman Yu., Gritsinin S., Davidov A., Knyazev V, Kossiy I. Application of MW plasma generator for ignition of kerosene/air mixture // AIAA Paper 2007-1384, 2007.

88. Dautov N.G., StarikA.M. II Kinetics and Catalysis. 1997, v.38, No 2, p.207.

89. Starik A.M., Titova N.S., Yanovskiy L.S. II Kinetics and Catalysis. 1999, v.40, No 1, p.l 1.

90. Starik A.M., Titova N.S. II Kinetics and Catalysis. 2003, v.44, No 1, p.35.

91. Starik A. M., Titova N. S. Low-temperature initiation of the detonation combustion of gas mixtures in a Supersonic flow under excitation of the 02(alg) state of molecular oxygen, // Doclady Physics, (rus) 46(9), 627-632, 2001.

92. Sarma G.S.R. Physico-chemical modeling in hypersonic flow simulation, Progress in Aerospace Sciences // 2000, 36, pp.281-349, Pergamon Press.

93. Barmin, A. G. Kulikovskiy, and N. V. Pogorelov, Shock-capturing approach and nonevolutionary solutions in magnetohydrodynamics, J. Comput. Phys. 126, 77 (1996).

94. Погорелов H.B., "Исследование высокоскоростных газодинамических и МГД течений» // Автореферат диссертации на соискание ученой степени д.ф.-м.н. М.; 2001. 30стр.

95. Augustinus, J., Hoffmann, К. A., and Harada, S., "Effect of Magnetic Field on the Structure of High-Speed Flows," J. Spacecraft and Rockets, Vol. 35, No. 5, 1998, pp. 639-646.

96. MacCormack, R.W., "An Upwind Conservation Form Method for the Ideal Magnetohydrodynamics Equations," AIAA 99-3609, June 1999.

97. MacCormack, R. W., "Three Dimensional Magneto-Fluid Dynamics Algorithm Development," AIAA 2002-0197, January 2002.

98. MacCormack, R. W., "Aerodynamic Calculations of Flows within Strong Magnetic Fields," AIAA 2005-3221, January 2005.

99. MacCormack, R. W., "Numerical Simulation of Aerodynamic Flow within a Strong Magnetic Field with Hall Current and Ion Slip," AIAA 2007-4370, June 2007.

100. MacCormack, R. W., "Flow Simulations within Induced Magnetic and Electric Fields," AIAA Paper 2009-0455, 47th AIAA Aerospace Sciences Meeting, 5-8 January 2009, Orlando, Florida.

101. Giordano, D., "Hypersonic-Flow Governing Equations with Electromagnetic Fields," 33rd Plasmadynamics and Lasers Conference, AIAA Paper 2002-2165, Maui, HI, May 2002.

102. D'Ambrosio, D., and Giordano, D., "Electromagnetic Fluid Dynamics for Aerospace Applications. Part 1: Classification and Critical Review of Physical Models," 35th AIAA Plasmadynamics and Lasers Conference, AIAA Paper 2004-2165, Portland, OR, 2004.

103. D'Ambrosio, D., and Giordano, D., "A Numerical Method for Two-Dimensional Hypersonic Fully Coupled Electromagnetic Fluid Dynamics," 36th AIAA Plasmadynamics and Lasers Conference, AIAA, Paper 2004-5374, Toronto, June 2005.

104. D'Ambrosio, D., and Pandolfi, M., "An Upwind Numerical Method for the Prediction of Ideal MHD High Speed Flows", 35th Plasmadynamics and Lasers Conference, AIAA Paper 2004-2164, Portland, OR, June 2004.

105. M. Brio, C.C. Wu, An upwind differencing scheme for the equations of ideal magnetohydrodynamics, J. Comput. Phys. 75 (1988) 400-422.

106. D.V. Gaitonde, Development of a solver for 3D non-ideal magnetogasdynamics, AIAA Paper 99-3610, 1999.

107. Gaitonde, D. V. and Poggie, J., "An Implicit Technique for 3-D Turbulent MGD with the Generalized Ohms Law," AIAA Paper 2001-2736, June 2001.

108. S.K. Godunov, Symmetric form of the equations of magnetohydrodynamics, Numer. Meth. Mech. Continuum Medium 13 (1) (1972) 26-34.

109. B. Sjogreen, H.C. Yee, Development of low dissipative high order filter schemes for multiscale Navier-Stokes/MHD systems, J. Comput. Phys. 225 (2007)910-934.

110. A. L. Zachary and P. Colella, Note: A higher-order Godunov method for the equations of ideal magnetohydrodynamics, J. Comput. Phys. 99 (1992), 341.

111. Gaitonde, D. V., "High-Order Solution Procedure for Three-Dimensional Nonideal Magnetogasdynamics," AIAA Journal, Vol. 39, No. 11, 2001, pp. 2111-2120.

112. Gaitonde, D. V. and Poggie, J., "Elements of a Numerical Procedure for 3-D MGD Flow Control Analysis," AIAA-2002-198, January 2002.

113. Gaitonde, D., "A high-order implicit procedure for the 3-D electric field in complex magnetogasdynamic simulations," Computers & Fluids, Vol. 33, 2004, pp. 345-374.

114. Surzhikov, S.T., Shang. J.S., "Glow Discharge in Magnetic Field," AIAA 2003-1054, Reno, NV, 2003.

115. Surzhikov S.T., Shang J.S., Two-component plasma model for two-dimensional glow discharge in magnetic field. Journal of Computational Physics, 2004, V.199, p.437.

116. J. Poggie, "High-Order Compact Difference Methods for Glow Discharge Modeling", 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition 5-8 January 2009, Orlando, Florida, AIAA 2009-1047.

117. Alferov V.I. "Current Status and Potentialities of Wind Tunnels with MHD Acceleration", High Temperature, 2000, v.38, No.2, pp.300-313.

118. Alferov V.I., Private Communications, 2002

119. Macheret S.O., Shneider M.N., Candler G.V., Moses R.W., Cline J.F. Magnetohydrodynamic Power Generation for Planetary Entry Vehicles // 35th AIAA Plasmadynamics and Lasers Conference, 28 June 1 July, 2004, AIAA 2004-2560, Portland, Oregon.

120. Зубков A.M., Тирский Г.А., Левин В.А., Сахаров В.И. Снижение тел в атмосфере Земли и планет со сверх- и гиперзвуковыми скоростями при наличии физико-химических превращений, теплообмена и излучения // Отчет №4507 НИИ Механики МГУ, Москва, 1998.

121. Битюрин В.А., Бочаров А.Н. Магнитогидродинамическое взаимодействие при обтекании затупленного тела гиперзвуковым воздушным потоком. Механика жидкости и газа, 2006, №5, С. 188-203.

122. Физико-химические процессы в газовой динамике // Справочник под ред. Г.Г Черного С.А. Лосева, Изд-во Моск.Университета, Москва, 1995, Т.1, сс.274-275.

123. Bityurin V.A., Potebnja V.G., Alferov VI. On MHD Control of Hypersonicth

124. Flows. Planning of Experimental Studies of MHD Effects on Bow Shock // 34 SEAM, June 18-20, 1997. USA. Mississippi, p.4.4.1.

125. Bityurin V.A., Bocharov A.N., Lineberry J.T. MHD Aerospace Applications // Int. Conf. On MHD Power Generation and High Temperature Technologies, Beijing RPC, 1999. Vol.3, p.793.

126. Lineberry J.T., Rosa R.J., Bityurin V.A., Bocharov A.N., Potebnja V.G. Prospects of MHD Flow Control for Hypersonics // 35th Intersociety Energy Conversion Engineering Conference, AIAA 2000-3057, 24-28 July 2000, Las Vegas, NV.

127. Битюрин B.A., Ватажин А.Б., Гуськов О.В., Копченое В.И. Обтекание головной сферической части тела гиперзвуковым потоком при наличии магнитного поля // Механика жидкости и газа, 2004, №4, с. 169-179.

128. Bityurin V.A., Bocharov A.N., Lineberry J.T., Suckomel C. Studies on MHD Interaction in Hypervelocity Ionized Air Flow over Aero-Surfaces // 43rd AIAA Aerospace Sciences Meeting & Exhibit, June 23-26, 2003, AIAA Paper 2003-1365, Orlando, FL .

129. Bityurin V.A., Bocharov A.N., Lineberry J.T. Results of Experiments on MHD Hypersonic Flow Control // Paper AIAA-2004-2263, 35th AIAA Plamadynamics and Lasers Conference, 28 June 1 July, Portland, Oregon.

130. Gupta R.N., Yos J.M., Thompson R.A., Lee K.P. A review of reaction rates and thermodynamic and transport properties for an 11-species air model for chemical and thermal nonequilibrium calculations to 30000 K. // NASA-RP-1232, 1990.

131. Термодинамические свойства индивидуальных веществ / Под ред. В.П.Глушко. М.: «Наука», 1978. том 1, книга 2.

132. Андриатис А.В., Жлуктов С.А., Соколова И.А. Транспортные коэффициенты смеси воздуха химически неравновнсного состава // Ж. Мат. Моделирование, 1992, т.4, №1, с.44-64.

133. Соколова И.А., Тирский Г.А. Расчет и аппроксимации интегралов столкновений для компонент смесей, содержащих О, N, Н, С, F, Na, S, Si // Отчет №2857 НИИ Механики МГУ, Москва, 1993. 116 с.

134. Yasuhiro Wada and Meng-Sing Liou. An Accurate and Robust Flux Splitting Scheme for Shock and Contact Discontinuities // SIAM J. Sci. Comput., May 1997. V.18, No.3, pp.633-657.

135. Meng-Sing Liou. A Sequel to AUSM: AUSM+ // J. Сотр. Phys, 1996. 129, pp.3 64-3 82.

136. Barth T.J., and Jesperson D.C. The Design and Application of Upwind Schemes on Unstructured Meshes // AIAA Paper 89-0366, Jan 1989.

137. Годунов С.К., Забродин А.В., Иванов М.Я., Крайко А.Н., Прокопов Г.П. Численное решение многомерных задач газовой динамики. М.: Наука, 1976.

138. Mathur S.R., Murthy J.Y. All Speed Flows on Unstructured Meshes Using a Pressure Correction Approach // AIAA Paper 99-3365, 1999.

139. Ferziger J.H., Peric M. Computational Methods for Fluid Dynamics // Springer-Verlag Berlin, 1996.

140. Андерсон Д., Таннехилл Дж., Плетчер Р. Вычислительная гидромеханика и теплообмен. М.: Мир, 1990.

141. Bityurin, V.A., Bocharov, A.N. MHD Flow Control in Hypersonic Flight // 15th Int. Conf. On MHD Energy Conversion, Moscow, May 24-27, 2005. Vol.2, pp.429-433.

142. Битюрин В.А. Эффекты неоднородности в линейных МГД каналах. Автореферат дисс. на соиск. Уч.степ. д.ф.-м.н. Москва. 1994.

143. D.V. Khmara, Yu.F. Kolesnichenko. The Influence of Oxygen Dissociation Degree in Air Discharge on the Kinetic Rates of Electron-Neutral Collisions. 7th Int. Workshop on Magneto-Plasma-Aerodynamics, Moscow, 17-19 April, 2007, pp. 273 279.

144. Попов H.A. Реакции ассоциативной ионизации в азоте с участием возбужденных атомов. Физика плазмы. 2009. Т.35. №5. С.482-496.

145. V.A. Bityurin, A.N. Bocharov, J.Т. Lineberry. Study of MHD interaction in Re-Entry Flow // 4th International Symposium Atmospheric Reentry Vehicles & Systems,21-23 March 2005, Arcachon-France

146. V.A. Bityurin, A.N. Bocharov, D.S. Baranov, S.S. Bychkov, A.VPodmazov, J.T. Lineberry. Effects of MHD Interaction in Re-Entry Flight // 1st International ARA Days, July 3-5, 2006, Arcachon-France.

147. МГД управление потоком // Итоговый технический отчет по Проекту МНТЦ 2196Р (под ред. В.А. Битюрина), Сентябрь, 2006, ИВТ РАН, Москва, 215 с.

148. Ya.B.Zel'dovich, Teoriya goreniya I detonazii gasov, M., Isd-vo AN SSSR, 1944 (in Russian).

149. D.A.Frcink-Kamenezky, Diffusiya I teploperedatcha v khimicheskoy kinetike, M., Nauka, 1987, 502s (in Russian).

150. F.A.Williams. Combustion Theory, Benjamin Cummings, 1985.

151. P.A.Libby and F.A.Williams. Turbulent Reacting Flows, Academic Press, 1994.

152. V.R.Kuznetsov and V.A.Sabel'nikov. Turbulence and Combustion, Hemisphere publishing corporation, English edition, 1990.

153. J.M.Ottino. The kinematics of mixing: stretching, chaos, and transport. Cambridge University Press, 1997.

154. B.A. Битюрин, В.Г. Потебня, A.JI. Цескис. Об эволюции токонесущего плазменного сгустка в среде со случайным полем скоростей. Письма в ЖТФ. 1996. Т.22. №2. С.80-83.

155. В.А. Битюрин, В.Г. Потебня, A.JI. Цескис. Перенос энергии в газоплазменном течении при наличии токопроводящих кластеров. Журнал Магнитная гидродинамика. 1997. Т.ЗЗ. №3. С.297-305.

156. V.A.Bityurin, V.G.Potebnia and A.L.Tseskis. Evolution of a Current Plasma Clot in Turbulent Flow. Proc. Of 33rd SEAM Conf., Tennessee, June 12-15, 1995, p.IV.7.

157. V.A.Bityurin, A.N.Bocharov, V.G.Potebnya, N.Yu.Babaeva, V.G.Naidis, A.L. Tseskis, Modeling of Processes in GCB around Current Zero, IVTAN -ANRA, June 1999.

158. V.A.Bityurin, A.N.Bocharov, Advanced MHD assisted Mixing of Reacting Streams, In: 39th AIAA Aerospace Sciences Meeting & Exhibit, Reno, NV, 2001, AIAA Paper 2001 -0793.

159. A.Bocharov, V.Bityurin, I.Klement'eva, and S.Leonov, A Study of MHD Assisted Mixing and Combustion, In: 41st Aerospace Sciences Meeting and Exhibit, Reno, NV, 2003, AIAA Paper 2003-5878.

160. A.M. Старик, В.И. Даутов. TBT. T.31. №2. 1993. C.292.

161. S.T. Surzhikov. Kinetics of Air Shock Wave in the Laser Radiation Field. Proceedings of the 4th Workshop on Magneto-Plasma Aerodynamics in Aerospace Applications. Ed. V.A.Bityurin, Moscow, IVTAN, 2002, pp.3139.

162. A.Bocharov, V.Bityurin, E.Filimonova and A.Klimov, Numerical Study of Plasma Assisted Mixing and Combustion in Non-Premixed Flows, In: 42nd Aerospace Sciences Meeting and Exhibit, Reno, NV, 2004, AIAA Paper2004-1017.

163. A.Bocharov, I.Klement'eva, A.Klimov, V.Bityurin, A Study of MHD Assisted Mixing and Combustion in Counter-Flow Streams, In: 43rd Aerospace Sciences Meeting and Exhibit, Reno, NV, 2005, AIAA Paper2005-0600.

164. I. Klement'eva, A. Bocharov, V. Bityurin, A. Klimov, MHD Assisted Mixing through the Experimental and Numerical Study, In: 27th ICPIG, Eindhoven, the Netherlands, 2005.

165. V.A.Bityurin, A.N.Bocharov, I.B.Klement'eva, A.I.Klimov, Experimental and Numerical Study of MHD Assisted Mixing and Combustion, In: 44st Aerospace Sciences Meeting and Exhibit, Reno, NV, 2006, AIAA Paper 2006-1009.

166. A.N.Bocharov, S.B.Leonov, D.S.Baranov, l.B.Klement'eva, V.A.Bityurin. MHD Enhanced Mixing and Combustion in Co-flow Streams // In: 4th Workshop on Magnetoplasma Aerodynamics for Aerospace Applications, Moscow, Russia, 9-11 April, 2002, pp.220 230.

167. A.Bocharov, V.Bityurin, I.Klement'eva, A.Klimov. Numerical and Experimental Study of MHD Assisted Mixing and Combustion // In: 45th

168. Aerospace Sciences Meeting and Exhibit, Reno, NV, 2007, AIAA Paper 2007-1024.

169. Klementyeva, A. Bocharov, V Bityurin. Electrical Discharges Gas Flows Interaction in External Magnetic Fields // In: 7th International Workshop on Magnetoplasma Aerodynamics, Moscow, May 24-27, 2007, CD.

170. Klementyeva, V. Bityurin and A. Bocharov. Constricted Discharge Interaction with High Speed Gas Flows // In: 38th AIAA Plasmadynamics/16th MHD Energy Conversion Conference, Miami, FL, June 25-28, 2007, AIAA Paper 2007-4141.

171. И.Б. Клементьева, A.H. Бочаров, В.А. Битюрин. Особенности взаимодействия электрического разряда с газовым потоком во внешнем магнитном поле // Письма в ЖТФ Т.ЗЗ. Вып.22, 2007, с.16 22.

172. Beaulieu W., Bytyurin V, Klimov A. et. al. Plasma aerodynamic WT testswith 1/6 scale model // Proc. Workshop on Magneto-Plasma-Aerodynamics in

173. Aerospace Applications. Moscow: IVTAN, 1999. P.44.

174. Шаровая молния в лаборатории / Под ред. Р.Ф.Авраменко. М.: Химия,1994. 291с.

175. Klimov A., Byturin V, Kuznetsov A., Sukovatkin N., Vystavkin N, Van Wie D.M., Plasma-Assisted Combustion // 33rd AIAA Plasma Dynamics and Lasers Conference, Maui, Hawaii.

176. Klimov A., Bityurin V., Kharitonov A., at. el, Shock Wave Propagation through Non- Equilibrium Cluster Plasma // AIAA Paper 2002-7978. 40th AIAA Aerospace Sci. Meeting and Exhibit, 2002. Reno, NV.

177. Bityurin V.A., Bocharov A.N., Klimov A.I., Leonov S.B. Analysis of Non-Thermal Plasma Aerodynamics Effects // AIAA Paper 2005-7978. 43rd AIAA Aerospace Sci. Meeting and Exhibit, 2005. Reno, NV.

178. Райзер Ю.П., Суржиков C.T. Математическое моделирование самостоятельного тлеющего разряда в двумерной постановке. Препринт ИПМех АН СССР, №304. Москва. 1987. 40С.

179. Surzhikov S.T., ShangJ.S. Subsonic and Supersonic Flow Around Wing with Localized Surface Gas Discharge It 43rd AIAA Aerospace Sci. Meeting and Exhibit, 2005. Reno, NV.

180. A.C. Петрусев, C.T. Суржиков, Дж.С. Шенг. Двумерная модель тлеющего разряда с учетом колебательного возбуждения молекулярного азота // Теплофизика высоких температур. 2006. Т. 44. №6. С.814-822.

181. С.Т. Суржиков, Физическая механика газовых разрядов. М.: МГТУ им. Н.Э. Баумана. 2006. 640 с.

182. J.S. Shang, P.G.Huang, H.Yan, S.Т.Surzhikov, Electrodynamics of Direct Current Discharge // 46th AIAA Aerospace Sci. Meeting and Exhibit, 2008. AIAA Paper 2008-1101, Reno, NV.

183. Morgan W.L., Boeuf J.P., Pitchford L.C. // BOLSIG Boltzmann Solver (freeware) Monument, USA Toulouse, France, 1996.

184. Hatchinson B.R., Raithby G.D. A multigrid method on the additive correction strategy // Numerical Heat Transfer J. 1986. V. 9. P.511-537.

185. Gustafsson I. On modified incomplete factorization methods // Lecture Notes in Mathematics. Proceedings. Bielefild. 1980. V. 968.

186. Бочаров A.H., Бочарова E.A., Макаров Б.П., Вандышева О.А. Об эффективности некоторых итерационных методов для решения эллиптических задач // Препринт ИВТАН. № 2-321. М., 1991.

187. Битюрин В.А., Бочаров А.Н., Попов Н.А. Численное моделирование электрического разряда в сверхзвуковом потоке // Изв.РАН. МЖГ. 2008. №4. 161 170.

188. Georgievskii P.Yu., Levin V.A., Supersonic Flow Control by Localized Energy Input, J. Mech. Fluid and Gas, No.5, pp.152 165, 2003.

189. Самарский А.А. Теория разностных схем. M.: Наука, 1977.

190. Klimov A., Bitiurin К, Moralev 1, Tolkunov В., Zhirnov К., Kutlaliev V. Surface HF Plasma Aerodynamic Actuator // AIAA 2008-1411, 46th AIAA Aerospace Sciences Meeting and Exhibit, 7-10 January 2008, Reno, Nevada.

191. Popov N.A. Investigation of the Mechanism for Rapid Heating of Nitrogen and Air in Gas Discharges // Plasma Phys. Rep. 2001. V. 27. № 10. P. 886.

192. Битюрин В.А., Ватажин А.Б., Гуськов О.В., Копченое В.И. Обтекание головной сферической части тела гиперзвуковым потоком при наличии магнитного поля // Механика жидкости и газа, 2004, №4, с. 169-179.

193. Bityurin, V.A., Bocharov, A.N. and Lineberry J. Study of MHD Interaction in Hypersonic Flows // 15th Int. Conf. On MHD Energy Conversion, Moscow, May 24-27, 2005. Vol.2, pp.399-416.

194. R. Goose and G. Candler. Diffusion Flux Modeling: Application to Direct Entry Problems // 43rd AIAA Aerospace Sciences Meeting and Exhibit, AIAA Paper 2005-0389, Reno, Nevada, Jan. 10-13, 2005.

195. V.R.Soloviev, V.M.Krivtsov, and A.M.Konchakov. E-Beam Plasmas 2-D and 3-D Analysis In Magneto-Hydrodynamic Applications, AIAA Paper 2004183, 42nd AIAA Aerospace Sciences Meeting & Exhibit, 4-8 January 2004, Reno, NV.

196. Битюрин В.А., Бочаров А.Н. Обзор моделей гиперзвуковых МГД течений // 3-я Школа-семинар по магнитоплазменной аэродинамике, Москва, 8-10 Апреля, 2008, сс.216-255.

197. Fujino, Т. and Ishikawa, М.\ Numerical Simulation of Control of Plasma Flow with Magnetic Field for Thermal Protection in Earth Reentry Flight, IEEE Transactions on Plasma Science, 34 (2006), pp.409-420.

198. Fujino, Т., Yoshino, Т., and Ishikawa, M: Numerical Analysis of Reentry Trajectory Coupled with MHD Flow Control, Journal of Spacecraft and Rockets, 45 (2008), pp.911-920.

199. Fujino, Т., and Ishikawa, M.\ Numerical Simulation of MHD Flow Control in Mars Entry Flights, Proceedings of the 17th International Conference on MHD Energy Conversion, 14 17 September, 2009, Shonan Village Center, Kanagawa, Japan, p.3-1.

200. Bityurin V.A. andBocharov A.N., Hypersonic MHD: Features and Problems, Proceedings of the 17th International Conference on MHD Energy Conversion, 14 17 September, 2009, Shonan Village Center, Kanagawa, Japan, p.IKl-1.

201. MacCormack, R. W., "Aerodynamic Flow Calculations with Strong Magnetic Induction and Diffusion", AIAA-2005-0559, 2005.

202. MacCormack, R. W., "Evaluation of the Low Magnetic Reynolds Approximation for Aerodynamic Flow Calculations", AIAA-2005-4780, 2005.

203. Khan, O. U., Hoffmann, К A., and Dietiker, J. F., "Numerical Investigation of Magnetogasdynamic High Speed Flows over Blunt Bodies" AIAA-2006-0966, 2006.

204. Khan, O. U„ Hoffmann, K. A., and Dietiker, J. F., "Validity of Low Magnetic Reynolds Number Formulation of Magneto Fluid Dynamics" , AIAA-2007-4374, 2007,

205. V. Bityurin, A. Bocharov, A. Klimov, I. Moralev, B. Tolkunov. Surface HF Plasma Actuator in Airflow // 40th AIAA Plasmadynamics and Lasers Conference. AIAA Paper 2009-4073. 22-25 June 2009. San Antonio, TX.