Параметрический анализ цилиндрических оболочек из композиционного материала, контактирующих с жидкостью тема автореферата и диссертации по механике, 01.02.04 ВАК РФ
Казарян, Размик Саркисович
АВТОР
|
||||
кандидата физико-математических наук
УЧЕНАЯ СТЕПЕНЬ
|
||||
Ереван
МЕСТО ЗАЩИТЫ
|
||||
1991
ГОД ЗАЩИТЫ
|
|
01.02.04
КОД ВАК РФ
|
||
|
ереванский шздареташь« ¡гашрешт
На прагзх рдтогаои
КАЭШШ РАЗМИК САЕШСОЕИ
УДК 53Э„3
ПАРМЕТгИЧЕСККЙ АНАЛИЗ ВДШВДРШЕСШ 'ОБОЛОЧЕК ИЗ ШШСЕЭДЮЖСГО МШЖ4Ж, КОНТЙКТКРЛШЩ С ЖЩШСТЫ)
01.02.04 = Мзханика дефоршраэизго
' твердого тела
АВТОРЕФЕРАТ ДЕссзрташш на соиок2к\т,з огэсэая
фвнко-ггатгмагичгсета кедв
I?
V'
Работа выполнена в Институте механике АН Армении
Научннй руководитель: доктор технических наук
ГНУШ БоЦ.
Официальные оппоненты: доктор технических наук,
профессор
МВСИСЯН Л.Л. кявдадаг физико-математических наук, старший научный сотрудник
■ ГИГАМШ Б.П.
Ведущая организация: Ереванский ордена Трудового Красного Знамени политехнический институт
Зашита диссертации состоится " Зб" -X.1.1______,...1991 г.
в I Ч час» на заседании специализированного совета К 055.01.02 при Ереванском государственном университете по адресу: Ереван, 375049, ул.Ыравяна, I, "ГУ. С диссертацией можно ознакомиться в научной библиотеке Ереванского государственного университета.
- '19 „ X f 1Э9 i
Автореферат разослан " 1~"> " „ , , (ч 1, 1ЭЭ I г.
Ученый секретарь
Специализированного совета
кандидат Лизико-математичее-/1 / i¡ '
ких наук, доцент '(( —Л31ШВШ С.А.
ОВД® ШЖШШШ& Ршш
Ав^щщжсота таЩд. В ©эзрзтаЕХйЭ ««пзеэ, я©в соадшш-иеэ-кззгоэ дотдошЭ, кша» црбзраз и ешэрэте®, неэ бажэ® коэ арзакнзигэ кахеязг вмшеаавошзэ ветрила,, зззетггэ рзд нрэзащзстз на срашзш» © зрагетигагша вготрсшнга). Вюояаа гяашкг? цротазвь а ввтао85»р зирааш-
'ж'лого фйяео-5£эгззгокге53 е8э®«ш5 ссщзшэ
лзгговзсЕаг, кадзгкзх ц^всзтоэ еззэщвш®, х
дашта ейовйуажявш. пзш^зщзя ешсо^^кет и изо^щэд» ксова ссэйосэ гкжзЕвасзтажшгшз^шйгэ, а тает сдайрмюда гвтзвэвдзша дападдада а кзгзрвзяа, врэфая езтеазшдао еаа= яадэ к щройлзмзм ргстава а щро^яцроташ». ■
Паяа работа» Из довздяЕвго бея обаврэ яжрщрв гжзЕВэз-о.", та© 2аг£8331 вроек5арэЕ32Ж1 оажзшаж ©башшк да таашгз®= . пгшжк юодгаою'в гздчай т&с&щгесяв шта еэ щрсзт, Огзтеко вш взояядз&шя шзвв вэрвияэозэд?» шжое® да® врзгг= тярогашя легкоЕзснгай я уси&шшг сбсигёашаг'ГОЕз^аазЭ» рз= боКкгда: з яидкоЗ среде. Для ЦуЦЯ эозр^гл^оЗ сжззза ляатся гесьма'вааннм определение сет^зншж. них в@ез=
метров оболочек из кошхошшонннх мамркаша, штосэшж э гщ» кость, при ограничениях на прочность, усяеё&нтсзяь 55 аа чшвдшзр-собственных колебаний» Насхолько нам иззестга» в гтеязмэ» ке задачи проектирования оптимальная оболочек э зэеезешзш аз глубины погружения яе. рассматривались^ 3 дассертавкогшЭ сделана попытка несколько'.восполнять эти пробелы.
Научная нов-чзна^. Постаалзнн й рзггакн задачи гидроущ-^едгз. -слоистых анизотропная круговых щушшцшескпх оболочек, ленных из монослоеа ортотроплого композзпщонного материала. Раг*->' раоотан алгоритм регент?, задачи "парсмзтргческнж колабанхйе когда
оболочка ваполнена жидкостью, погружена в колкость и при двух-сгораннэм контакте. Определено хишше гидкоста на расположение и ширину облести главного параметрического резонанса. Решена задача Евраматрических колебаний прдкдецшццис обмочен с прямоугольной и ромбовидной соткой ре Сор. Определены оптимальный параметры оболочки в сшсле наибольшего уобеспечения динамической уохоЕч'ивоотй кокструкшш<
Бп.ервца поставлена и реиона задача гццроупругости ободочки кз кода^вдднного одтеркала, погрузке шда в жидкость ка большую пзубяну и толщина которой определяется при заданных уровнях по-груаэшя п первой частоте собственных колебаний. Разработан алгоритм нахоаденкя проста оптимальной оболочки наименьшей яолш-ш при заданном уровне погружения и при ограничениях на прочность и на ыизауюСпорвую) частоту собственных колебаний вагру-. инной оболочки. ■
Практическая ценность. Решенные в диссертации задачи могут бать использованы при проектировании элементов конструкций, ра-богашах а двнаыкчёскои решай при воздействии шдкости. Эти задачи могут быть применены, в частности, при расчете топливных баков, корпусов подводных конструкций, резервуаров для хранения аддкости и т.д..
Апробация работы. Основные положения и результаты диссертационной работы' докладывались н'обсуадались на:
- X Всесоюзной конференции по теории оболочек и пластин (г.Кутакои, 1975г.); .
- П Дзесогзной конференции по теории оболочек и пластин (г.Харьков, 1977г.);
- II конференции молодых специалистов по механике ксглюзит-ных материалов (г.Рига, 1979г.);
- 1У Всесоюзном симпозиуме "Колебания упругих конструкций с .адякостью (г.Новосибирск, 1979г.);
- II конференции молода учешос Института кзхаикка Ш Арм. ССР (г.Ерэван, 1981г.);
- симпозиума по проблемам динамики взаимодействия д«форш-руегак срзд (г.Горис, 1934г.);
- соклнзрах отделов теории оболочек и пластин и махоншот конструкций из ксглпсзкшюншх материалов Института мэханмзп АН Аш.ССР; ' ■ '
- семинаре Института мехшппш АН Арм, ССР (1930). ,
Публгжзпди.. По результатам диссертации опублшовано глоть
статей и два тезиса докладов, список которых приводится в конпз автореферата.
Структура и объем работа. Диссертация состоит га йзед^пя, т?ох глав, заключения,и списка дпяератури. Работа пзлогсап на 110 стрзаЩпХ машинописного тэката, еклглэот 2рпсупка, 2 тзШи-tri, 5 графиков. EatoorpaisM насчитывает 175 налмспоратш,
КРАТКОЕ СОЛЕРНЛБКЕ РАБОТЫ '
Во. вввдешщ дзи oöscp литературы по раоо'.этрщгаемкц я дая-сертаиии гспресам и указено моего дассзртсплонной paöotu а ' области. Ойосковзшг актуальность щюг-здашпк псслэдовзжй 8 шзяь даооергашшкоЯ работа. Прзшо^яа грчткзя анпошш рпбоги во ;. главам.
- Первая глеяа носит вводюй хлрактзр п пооЕягэна еощюсйу ..'' обоснования вояутзппше рагргсэщгх уравнений дпсзянесяов устой«» ' тавсстй оистеш оболочка-яздкость. . •
Основные доцуиенал сводятся к следухгзцу: ' ;,
а) принимается гипотеза недеформируе^-гх copi-здгЗ &з saiat»
. ^очка в сзййа?
б) шодвдрвммг уцрокзаая ?гхш?зскэ§ теория слскюют екн8о-
ерокшх вшЕздркеожиж сбанкэкз
в) дашшгв яадявота стахггтез потанввэлшш}
. г) щдш ваш евзбеетжЗ вовзритезта вэгмущэгшоЗ адкзогз кг яш®Р©чевэ кглзбекгя оболочки прзкобрегвзтея» - Ршшжраггкгзз дса Егргавгг -орг&вдгашт вавзкз елоег сйэ-язчзх в» взгосдсзв сргогрвккого шшзшоюггозх» ютернгша = пз-рвг^зсвнея угвдсэ кзкгргэаз код дтшш ± «гв исочэредао отяо-еквшгак» сбрав^шзй цшзддрг и. хос&к уяяаявж юд уюкмг С £ ¡ншр елея),
Еторая_тяащ' ссзвяцгна вадзтаи паргш^раздоаюс кадабакай оръ-о»ропко8 шв®у«с8 кругоЕей шишргсёсггов ебсяоъкк е агс«-. цш ШШЖ.Ш. ЕБ0С1Е,»|ШШ7г«г рэгшггкз вгрзгта гбалсгскСглгд»
ОргОрИрОЕЙНЕЮ).
Е парком параграфа разс.штриваетея гладкая еболотаз, га-гшз&нкея ааккосхь». Привейся разрешавшая система уравнений выдача гидроуаругооти, ргшекиз которой принимается в виде.
" 5»0 " N
(I)
оДсйь ф - функции усада8, « прогиб оболочки0 9 - потен-цаЕЗьаая едтжшш скоростей движения нвдкости, П - число боля ' но охружаооти, ФЕ{'с), ¥40-) ~ искомые Шедшие'времени, 1п03п~
функции Бесселя I рода, В3(<:)» С^,1 и скП1 - величины,
определяемые из граничных условий, Л& - осевая длине волны, причем (т+ОтК
где гп - число полуволн по образующей оболочки баз жидаости? Такая форма удобна для аппроксимации более высоких форм осэво-го Еолнообразования, при котором выделяется основнвя форма, то есть число
Подробно рассматривается суть граничных условий для области, занятой жидкостью.
Методом ортогонализации задача приводится к бесконочной системе дифференциальных уравнений с переменными коа1фициента-МИ ,
( I = 0,1,2,... )
для каздого ГА и П .
Здесь СО^ и - частоты собственны:; г.олобаний и коэффлциен-ты возбуждения оболочки без жидкости, П11 <_, и - ко&№щи-енты, характеризующие влияние присоединенной массы жид/ости и гидростатического давления.
Далее решается задача проектирования трехслойного цилиндрического бака симметричного строения по толыииг. Для упрощения численного расчета рассматривается гэхиостъв заполненный бак. В этом случае в системе (3) можно принять с - б = 0, то есть ограничиться первые приближением. Для частоты собственных колебаний Д0 и коэффициента возбулделая ^„ получится
0 v 1 + у" ок-гк.
Пракжкеозгий аавэрее предзгааяяе® первая (главная) ойлеоть иарамз'гршвсжого рэеогаЕеа,, около наименьшей по т ж л чаовоче
. Ейдача Ерозхтероваквд цилиндрического бака представляется в ездз по2С1Ш онташинсй оболочки неизменного1 Ееса о' сэлэ-аай ®уищгей » чем достегеется НЕибаяьшзз удаленна гл&бнсй оиарамзгргяеского рэеонанса. Поставленная задала может бьта аанаеанэ з
Я |т, п Д (а,)] ^ £>0 & п", X) Щ- Я (л/. л", ф)
.Рассггагригазуся зргзсяоЭДая оболочка, изготовленная иа.мо-Еоаясев шшюзшюшого материала типа боропластпка, заполаьн-агк герсазком, Парашгрзки отдаизащщ являются углы укладки южоодоез ^ = с1а и ,
Для выявления сффойкшясстп опислпзодлп вводится ког$$ц~
= та х&/ттп. (б)
л А
В кяасЬ© слоистых оболочек 1,56, а в классе однослойных Кв 1,33«. Анализ' формул и промежуточных результатов численного примера'показывает, что гидростатическое давление приводит к ;:£Еогоро;ф" увеличению, а присоединенная касса жидкости - к значительному (более,чем в 2 раза) уменьшении собственных частот оболочки. При атом происходит некоторое сужение области глазного параметрического резонанса.
Далее, во втором параграфе, рассматривается то ~.е задача (5) для оболочки, погруженной в кпдкость. Е этом случае в выражение потенциальной спункини скоростей' движения адскостк используются функции Бессиля II рода, чем обеспечивается затухание воздушений в бесконечности.
В первогя лркйпгденш! для частоты собстзепкнх кслебтлпй и коэффициента аогбуадзная поручается
0 У i + m.*- J cû; -
Вз^уяьжзта tasasassast чго да пощхозпоЗ в явдзсэгь оболочки Кэ » 1,60» в квассэ яэ одаосдойкаг ©бэло^эк t4s® 1,12 и он егскззот да.з квЕфЁтогаята зшшяшоа сбъяочж> Оскзтааияо вязгасз ждаоота rorra^i? s asßoршетрзЕжэ еЗгеокз ibsb-Еого пар-??'оггр7леекого p3?ossKca0
• 3 späTSSM пареррсфэ сяаштея вэдз^з CS) дез ^дадретзоаоЗ оболо-псп,, аояз?зпязяяс8 црйгягтолбкеЗ csccstfj рзбзр, as^jssprcto раессхатащаг даспобагзвзао. орздаагоЗ пгвэргииш ses дагагзрзз-Еса пснсгясэ о гтдкезтьэ; Пргассжгетеа црзаш "рэгкзззгаетя",
для чзго. pö05sceh2s3!?cs
РесбКйгрзаавхзя сарший сбоявтзв (сейзжта-рзбро), àszo-гогжгшш аз сташшескиа СЕШ I к:
зггйккгзнй» вря j> - о07»1о~5гсгусз^/ю40 j> « Для ораЕЕйтзяьЕого анализа прагэяэна резчззэ гдрдазЗ зрзгзяэй-ней (семштрежого отроздая) оболочл*« аз CHÎÎ! Stî яре ся^«
:œresîn:a с ssjçsccïsbî а)г8Вокзэк2зя обавгап? 323 c60cc*»3f 3)EE3SOTepC3ESa КЭЗГСКЗ.
Результате шеаззяи, чя> пра Beasssss. даз
шг_сзгшзэ вгйпззгео тгетоза гс.с;р: глотай сбаяста? рсягз з 1(8 pass арззсс.тода? вагСаг'жз ¡кягеаязз шпп'лзнгггй аэ®-
?oä сбокочкя, несмотря ка боящ?» маз»5Ж8гэ!3® з
сяапеэ »яздгаЯ сбэяот-гг (зпяу гшйчэй гаааожда ожш©-яаз - углов с.3 tía ). K"sm> ssset оСгссгйгзсзя so, козффщкпг сф55кглзкостн а случаа глздадй е^слсусн? C'KS« ïe26) . вез зэ кяю, чем в <злу<гяз подарзгшиЕгсй ( Karû,04). .
ошзтеза такгя, что ойяеета веусгойчивозгн арн даухзтарзккг^ ^■.''■'
контакте незначительно расширяется ввиду большей плотности внешней жидкости. Если жа сравнить результаты случаев а) и б) соответственно о результатами первых двух параграфов, то наблю-деется уменьшение значений К э , Здесь свою лепту вносит существенное различие в анизотропности используемых материалов.
Четвертый параграф посвящен вопросам проектирования цилиндрических оболочек из композиционных'материалов, усиленных перекрестными, симметрично расположенными относительно средин-■ ной поверхности, ребрами жесткости. В качестве параметров оптимизации в задаче двухстороннего контакта оболочки с жидкостью принижаются угли укладки монослоев по толщине обшивки'и углы расположения ребер относительно образующей цилиндра.
Третья глава посвящена' вопросу проектирования цилиндрической оболочки минимального веса при ограничениях на прочность и на динамические характеристики.
Горизонтально расположенная цилиндрическая оболочка погру-нена в идеальную несжимаемую жидкость на глубину И $>211 . Перепадом давления по диаметру оболочки пренебрегается. Предполагается, что рассматриваемая оболочка, являясь отсеком цилиндрической конструкции, по торцевой окружности шарнирно скреплена с жесткими шпангоутамиДля области, занятой жидкостью, приняты следующие граничные условия
ЗУ т п . Э V/ с. п э£яп , п /о\
"эГЧг.Г ТГ' ТГ|*.0;^0 (8)
В параграфе 3.1, при принятых предположениях и граничных условиях, приводится .полная замкнутая система уравнений гидроупругости анизотропной оболочки-отсека
В -параграфе 3.2 определяется частота собственных колебаний орто.тропной оболочки-отсека,. загруженной всесторонним внеш, Ним давлением О . Решается трехмерное уравнение. Лапласа и
определяется выражение для присоединенной массы жидкости.
В параграфе 3.3 проектируется ортотропная оболочка минимального веса при ограничении на частоту собственных колебаний. Из формулы для частоты собствзшгых колебаний оболочки, погруженной в жидкость
5 = ■ О)
/тт^г
где й - частота собственных колебаний оболочки» загруженной всесторонним внешним давлением С^ , М - присоединенная масса жидкости, выведено уравнение относительно толщины
К1- Б К - С = О (Ю)
В коэффициенты уравнения (10) входят все физические и геометра-ческие параметры оболочки, а также задаваемые з Й .
Очевидно, что искомая толщина Ь0 и соответствующие ГП я П при заданных и первой частоте должны определиться
из условия ^
Ь0= тпх К(т,п,й (II)'
1т, п) '
Задача проектирования оболочки наименьшей толщины представляется л виде
л е [о; л/2]. (12)'
ы
Вычисления проведены для оболочки-отсека из материала СВАМ 5:1. Результаты вычислений для различных уровней погружения (ИЛПа * 20Ша) и заданных частот собственных колебаний (О + 500Гц) приведены в виде таблицы. Приведена такта таблша значений толщины без учета присоединенной массы.
Анализ результатов показывает, что а) оптималъннм выбором, угла укладки монослоев можно .заметно (до 20$) уменьшить толкану оболочки, обеспечивающую данный уровень частот -собственных колебаний, при заданном уровне погружения;
rpt-
б) о ув®ЛЕЧ©шзм парной частота Q, - елиякнз присоединенной массы оутасжвзшз увеличивается,, а прз увеличении уровня погру-
2s2hi1 это еяестэ шкзз ssmsïho}
в) швдудсзз варианта получаются при угскадгса ыонослоев. в 0°,
. IsœsïBsiHEîo, что при работе'конструкций ка больших глубинам eossexcs? проблема про"<знооти в проектируемая оболочхш долхс-ка s lavïcoï" огргкнчзакя удовлетворять услсвшз прочности. В Езр£рргфз З.^-прозеюгирзтся ормтроаная обошчка ' мшаалькэго ' ёосе нра огргшчзишж на пзрву» «ее.:-тегу и на прочность,, ' . . Увдовдэ срочности дрдаяуо'й йяда .. .'
В-« ", Ses 6"« 62s Tn j (Ï3)
. Ом ■ ' 4s.
Нзобжодеш одтвхь, что, нзешяря ез.орготр акоста пакете обо-лотак в вшяй» цра олрздзяэкш ваодзазюй бц учитываемся апг-
sospshsossî) КЖОСДОЯ в мгкшж fq0)-,sïp:iïsorxs ЕапраЗЛЗНЕЯХ.
■ " З&ХЕИ oâpasoa, .каряя? с'^угаогЕвй u0 (II), находятся я «аиета К*, » оаредсдйег.ал из условия прочшггк (13)
: С« ' • ■ <î4>
1 . ® с— '•
гда йдаш ot.ywsa уклада, иеяоелоя,- в когоруэ входят
Ж УЗОМЭТраЧЗСКЕГ; ПЗраШТрН ОбОЛОЧКИ.
Ожягшльшй провь» определился шшршд фуакаии .• »
ЦДеоЛ к- . (К)
Ьтасаашш вровадеки для ортотрошюй -оболочка, составлен-eoS es taaoajtoàia однокаправлзнн.ого ôopottaectEua прк гзогитрп-'sacœr.t вар^зтраг Sl/t = 2, R = 150сы„ .-Результата пр1£зодйШ2 О жда тебяаш. Подведены так£а совгзстше гра£ака функций (II)
и (14) о Ода из графиков, для й = 100 Гц и ^ = I Ша, 2 Шз, 5 КПа пригодятся на рксунззо
ладкл ;.:оиоо.лоав из ортотропкого ¡лагерпала псочзродпэ пгд id. i но приводит :с сртстрсгшостп паком по тоотиз, 3 влзтгэ "з, когда '.'онослоп ухогзнч под псзоторгм угяш d. ( 0* d. ~ Q0) с образугозй, пакет стопосится ашзотроппш.
В параграфе 3.5 приводится приближенное {в ськаг-э го удоддетворсппл гранитных услогпй па торгах) ресошгл гпз-зотрппол'сбслс-д:". Расчета проведзкэ дгя ШИ 5:1 яря =3, ß =I50c:.îs ' =2ССГц, i? - Результат пог-зз^ггз,,
;розктппоЕ2н:;э анизотропной о(?слсчкпр по сравпекпо с
ортотроштс;:, дает Ессъ;.:а ^с^л^г'г/Сог.ело 2$).
В ЗАКЛЮЧЕНИИ сформулированы основные результаты и выводы диссертационной работы.
ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ВЫВОДЫ
1. Поставлены и решены задачи гицроупругости слоистых анизотропных круговых цилиндрических оболочек, изготовленных из монослоев ортотропного композиционного материала.
2. Разработан алгоритм решения задач динамической устойчивости слоистых анизотропных оболочек, когда оболочка заполнена жидкостью, погружена в жидкость или находится в условиях двухстороннего контакта с жидкостью. Определены области параметрического резонанса и исследуется влияние жидкости на расположение областей главного параметрического резонанса.
3. Поставлены и решены задачи проектиро анля оптимальной оболочки на композиционных материалов данного веса по критерию наибольшего удаления центра области главного параметрического резонанса.
4. На примерах слоистых оболочек из композиционных материалов и ребристых оболочек с прямоугольной (стрингеры и шпангоуты) и ромбовидной (косо расположенные ребра) сеткой, находятся оптимальные параметры оболочки и показывается эффективность оптимизации в смысле наибольшего обеспечения динамической устойчивости конструкции.
5. Поставлены и решены задачи гидроуиругости круговых заюшутых цилиндрических оболочек из композиционных материалов, погруженных в жидкость на большую глубину. При заданных уровнях погрухешш оболочки и первой частоте собственных колебаний находится толщина оболочки. Находится такхе необходимое значение тох'.-дкк оболочки, обеспечивайте удовлетворение усло!л^1 проч-.сстл.
- S„ Разработан эггоризя авазздэязя проэкта ашзасгясЗ ебо-лсот 2EssrsHS3i8fi гишнз при зэдазнсм зрсзяэ авэтугаетя о eçps-нзчэнхта яа пророста я ез кзгчуэ (г»рзрг) таогогу ccösssss-SES гщд?35Егэй ебмо^са. По:?.гза:-:о, что сггнйЗЯЖЕИ
2Kßope»5f Smïcs 7„г,"а.сл лсс:-:са-;сэз срсггргзсгэ затаим зетзе вякэга® укзздагз. sso ^эяогрг^г:«
• 0OEC2ES8 золскгшгя .и^озчртгст сг^ггзаззгя з ояодаЕЗХ рзбггзл!
1. I:-™?: В.Ц., Кэсгсла Р.С, Сб элгэЗ
детггягтзеиоа агоготсй орягзрэгкЗ rjss^sxsor.cS
гбзкоъхз, ^гзжЕс ггкглззЕгсЗ ягоеэтзю0 - 3 зб. г'^Ъзтл ХЗгсз. гссг-у, го гзсрп сбслс-:?:? я гкгсет, -.2. - тггаззгКсггг^зйэ,, . IS75, о« 550-557.
2. ВоЦ.» k538jp2s P.C. Сб ОДлГЗЙ сзгг*гаяжс2 cssra дангажзсзсй ¿стсичтсззсст; схогсстсй ертззрогзоЧ ггяэдрэтэааоЗ оболо~й, ^ггссзяно ссгругаЕягЗ з rr^acocs.-s cd, s "3 îdso.soe^. ~o згоргк обзхо-эх » гкгзтйй. ïsczcs янк,- IS77, с,43.
3. Ееггряз P.C. К scapccv nvíops сттасз зсззетгзз рзбзр гзсзяобск 2 ягдгтз п?р£яз?)рк«тх г.глгб^жЗ ¡а'лгпдч^зо-зой сболота*, ксктакзлрзрзйй с зядяссззэ. - В сб. í П 2хф.:гаа лодак свеяшжзстов ло rasa-nm зокяззйзякх
докладов, - Рлгя; Зт;?атнз8 IS7S, с.31-82=
Г^ушх В.Ц.9 Казарян P.C. О колабзктж: олелгсоЗ орсс-гропной ^ишдрлчзской оболо'отг0 аигаггйзшкЗЗ о заззсзгзэ. -3 сб„; Колзбанта упругих кснсяруютй о ящгхсоггзз. ~ M.s IS30} с о 62-87 » .......
5. Каззря.п F;6.: " свяваярдоовгЗ
'со еаара<гышш ресргш, твэнФэкщериэй:о ¡.я^Еггрсгаэ. =
.З-.CdoS 'КсЗЛЗДСБе.ЮШ ПО ТОЯБЗИЯв КЗЗСДСГО ДгфЗ.уНЗруе^ЭГЭ «ОТ.-.
Ерезаи, 1931, с.153=161.
6. Казарян P.C. О частотах колебаний цилиндрической обо-яоч:-ш, контактирующей q яидкостью. - В сб.: Проблемы динамики вэашэдзйстеш деформируемых сред. - Ереван, 1984, с.161-165.
7. Ггшш Б.Ц., Кагзрдн P.C. Расчет оптимальных цзтш-
- дрэтзакаж оЗояочзк из когяюзшиоазшх материалов, погруженных в. азэдксста. - Игв. All Арм.ССР, Механика, 1938, т.41, М,с.3-8.
0. Гщгин В.Ц., Казарян P.C. : Проектирование шшшдричас-' г.о5 сбаяочкг, погруженной в ¡бедкооть, при ограничениях па щкшооте. а частоты собственных колебаний. - Изв. АН Арм.ССР, Мезэмжа, IS33, т.41, Jp5, с.3-7.