Структура и стереоэффекты образования гомо- и гетероядерных тартаров тербия (III), диспирозия (III), и железа (III) в водном растворе тема автореферата и диссертации по химии, 02.00.01 ВАК РФ
Безрядин, Сергей Геннадьевич
АВТОР
|
||||
доктора химических наук
УЧЕНАЯ СТЕПЕНЬ
|
||||
Казань
МЕСТО ЗАЩИТЫ
|
||||
1996
ГОД ЗАЩИТЫ
|
|
02.00.01
КОД ВАК РФ
|
||
|
На правах рукописи
БЕЗРЯДИН СЕРГЕЙ ГЕННАДЬЕВИЧ
СТРУКТУРА И СТЕРЕОЭФФЕКТЫ ОБРАЗОВАНИЯ ГОМО- И ГЕТЕРОЯДЕРНЫХ ТАРТРАТОВ ТЕРБИЯ(Ш), ДИСПРОЗИЯ(Ш), И ЖЕЛЕЗА(Ш) В ВОДНОМ РАСТВОРЕ.
02.00.01 - неорганическая химия
Авторефера т диссертации на соискание ученой степени
кандидата химических наук
Казань - 1996
Работа выполнена на кафедре неорганической химии Казанского государственного университета.
Научные руководители
— доктор химических наук, профессор Ю.И.Сальников,
— кандидат химических наук В.В.Чевела
Официальные оппоненты
Ведущая организация
доктор химических наук, профессор В.К.Половняк, кандидат химических наук, доцент А.Р.Гарифзянов
Кубанский государственный технологический университет
Защита состоится "£>"?" февраля 1996 г. в 1400 часов на заседании диссертационного совета Д. 063.37.03 в Казанском государственном технологическом университете (ул. К.Маркса, д. 68, зал заседаний Ученого Совета).
С диссертацией можно ознакомиться в научной библиотеке Казанского государственного технологического университета.
Отзывы на автореферат направлять по адресу: 420015, г. Казань, ул. КМаркса, д. 68, КГТУ, ученому секретарю диссертационного совета Д.063.37.03
Автореферат разослан "26" января 1996 года.
Ученый секретарь диссертационного совета, кандидат химических н;
А.Я.Третьякова
Актуальность темы. Исследование пространственной и электронной структуры молекул, связи строения со свойствами вещества-является-важнейшей частью неорганической химии. Подтверждением тому является хотя бы изобилие-работ-В_ этой сфере, пристальное внимание к структурным исследованиям ученых всего мира. Изучается строение вещества во всех фазовых состояниях, но, с точки зрения химии, наиболее интересны данные по молекулярной структуре в жидкости, в растворе. Именно в таких условиях протекает большинство химических и биохимических реакций, химические процессы в водных растворах лежат в основе жизни.
Существенная особенность исследования комплексообразова-ния в растворах — построение адекватной стехиометрической модели. В случае образования полиядерных, а тем более, гетероядер-ных комплексов, это возможно лишь при наличии надежного алгоритма анализа зависимостей состав раствора — измеряемое свойство (функция образования). Уже ни у кого не вызывает сомнения тот факт, что этот алгоритм может быть реализован только на ЭВМ.
Имеется колоссальный опыт структурных исследований орга-' нических и злементоорганических соединений, в том числе и в жидкой фазе. Для этого используется большой арсенал инструментальных методов. Что же касается неорганических соединений, их пространственное строение определяется большей частью диф-фракционными методами в кристаллическом состоянии. Отчасти это связано со значительно более узким по сравнению с органической химией набором инструментальных методов, доступных химику-неорганику, малой информативностью некоторых традиционных методов применительно к строению неорганических и комплексных соединений, трудностью переноса подходов к исследованию структуры органических веществ на новые классы объектов. Комплексы редкоземельных элементов как раз являются такими объектами, для которых практически невозможно получить детальную структурную информацию в растворах спектральными методами.
Поэтому весьма важным является использование новых, нетрадиционных методов исследования, с привлечением методов комппьютерной химии для изучения пространственной и электронной структуры неорганических, комплексных и металлоорга-нических соединений в растворах. Таким методом является метод парамагнитного двулучепреломления в сочетании с методом молекулярной механики, позволяющий снять многие ограничения при исследовании геометрии комплексов лантаноидов в растворе.
Применение данной совокупности методов во многом обуславливает актуальность данной работы.
Целью настоящего исследования является изучение состава, устойчивости, стереоэффектов образования и структуры гомо- и гетерополиядерных тартратов тербия(Ш), диспрозия(Ш) и желе-за(Ш), построение многоуровневой модели состояния и структуры комплексов лантаноидов в водных растворах, изучение анизотропных магнитных свойств комплексов.
Научная новизна. Впервые использован метод магнитного двулучепреломления в сочетании с методом молекулярной механики для построения модели состояния оксикислотных комплексов лантаноидов в водных растворах на примере d- и сй-тартратов тер-бия(Ш) и диспрозия(Ш); рассчитаны геометрические параметры их структур, стерические энергии и теоретические константы парамагнитного двулучепреломления.
Практическая значимость работы состоит в углублении существующих представлений о комплексообразовании ионов дис-прозия(Ш), тербия(Ш) и железа(Ш) со сложными оксикислотами.
На защиту выносятся следующие положения:
1. Термодинамические характеристики комплексообразования тербия(Ш) с d- и ¿¿/-винными кислотами. Стереоэффекты образования тартратов тербия(Ш), диспрозия(Ш) и железа(Ш).
2. Магнитно-релаксационные и магнитооптические свойства комплексов.
3. Моделирование структур лигандного скелета, гидратного окружения для гомо- и гетероядерных тартратных комплексов диспрозия(Ш), тербия(Ш) и железа(Ш). Исследование влияния электростатических вкладов и стерических требований локальной координационной геометрии ионов металлов на формирование структур гомо- и гетерополиядерных комплексов в водных растворах.
4. Связь структуры полиядерных комплексов и стереоэффектов их образования.
Апробация работы. Результаты работы доложены и обсуждены на итоговых научных конференциях Казанского университета, на XVII Всесоюзном Чугаевском совещании по химии комплексных соединений (Минск, 1990 г.), на X Всесоюзном совещании "Физические методы в координационной химии" (Кишинев, 1990 г.), на Всероссийском семинаре "Структура и динамика полимерных систем" (Йошкар-Ола, 1995), 35 Международном конгрессе IUP АС (Стамбул, 1995 г.).
Публикации. По материалам диссертации опубликовано 5 статей и 6 тезисов докладов.
Объем и структура диссертации. Диссертация изложена на 15странице ^машинописного текста, содержит 22 таблицы, иллюстрирована 44 рисунками," список-литературы засчитывает 197
наименований.
Диссертационная работа состоит из введения и пяти глав. Первая глава посвящена обзору литературных данных о тартрат-ных комплексах железа(Ш) и ^элементов, проявлению стереоэффектов при образовании тартратных комплексов, описанию методов протонной магнитной релаксации, парамагнитного двулучепре-ломления и молекулярной механики.
Во второй главе содержится постановка задачи и описание используемых в работе приборов, методику эксперимента и описание алгоритма математической обработки данных физико-химических методов.
Третья глава содержит результаты исследования комплексе-образования тербия(Ш) с с/- и ^/-винными кислотами методами парамагнитного двулучепреломления и рН-метрии.
В четвертой главе приведены результаты исследования образования гетероядерных комплексов тербий(Ш) — железо(Ш) — тартрат методами протонной магнитной релаксации и парамагнитного двулучепреломления.
Определение структур тартратов тербия(Ш), диспрозия(Ш) и железа(Ш) методом парамагнитного двулучепреломления и молекулярной механики обсуждено в пятой главе. В ней также приведен расчет парамагнитных анизотропий ионов диспрозия(Ш) и тербия(Ш) для различных типов лигандного окружения.
ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ
В работе использовались азотнокислые и хлористые соли железами) и тербия(Ш). Рацемическая винная кислота марки "ч" очищалась от примесей промыванием ацетоном "хч", затем перекристаллизацией из водного раствора, ¿-винная кислота "чда" использовалась без предварительной очистки. Идентификация проводилась по температурам плавления (205°С — Ш-Н4Ь, 170°С —'<(-Н4Ь). Отсутствие оптически активных примесей проверялось на поляриметре "Ро1ата1 А".
Концентрацию иоиов РЗЭ и железа(Ш) в растворе определяли трилонометрически с ксилековым оранжевым и сульфосалици-ловой кислотой, соответственно. Концентрацию кислот определяли стандартными растворами ШОН. Активность протонов определяли на высокоомном потенциометре "рН-673" с точностью ±0.05 ед. рН. Для измерения времен спин-решеточной релаксации 7\ использо-
вался импульсный релаксометр спинового эха с рабочей частотой 21 МГц с относительной погрешностью не более 3 %.
Константы магнитного двулучепреломления определялись на установке, собранной в Институте органической и физической химии им. А.Е. Арбузова Николаевым В.Ф. и Вульфсоном С.Г., с рабочей индукцией магнитного поля до 1.9 Т. В качестве источника света используется гелий-неоновый лазер с длиной волны 632.8 нм и мощностью 1 мВт. Все измерения проводились при температуре 25±0.1°С.
Обработку экспериментальных данных проводили с использованием вычислительной техники. Оптимизация геометрии структур проводилась на ЭВМ ЕС-1045 по программе MIND, предоставленной Плямоватым А.Х., теоретические константы парамагнитного двулучепреломления-на ЭВМ типа IBM PC AT (XT) с использованием программы CONKERR, составленной сотрудниками Института органической и физической химии Катаевым В.Е. и Бредихиным-А.А., а константы устойчивости комплексов и их вклады в измеряемое свойство системы рассчитывались по программам CPESSP Сальникова Ю.И. и CPES Матвеева С.Н.
КОМПЛЕКСООБРАЗОВАНИЕ ТЕРБИЯ(Ш) С d- И ¿/-ВИННОЙ КИСЛОТАМИ.
Нами проведено систематическое исследование комплексооб-разования тербия(Ш) с d- и dl-винной кислотами в широкой области рН и концентраций реагентов. При соотношении металл :лиганд 1:1 в области рН = 4.0—7.0 для ВтЬ > 0.0026 моль/л происходит образование осадковых форм тартратов тербия(Ш). Поэтому для данных концентраций реагентов и при данных рН комплексообра-зование нами не изучалось.
При малых концентрациях тербия(Ш) в нейтральной и сла-' бощелочной средах преобладают биядерные частицы, а при больших — тетраядерные. Состав и устойчивоть d- и ¿/-тартратов тер-бия(Ш) приведен в табл. 1. Константы устойчивости lg р комплексных форм, приведенных в табл. 1, соответствуют формализованым равновесиям:
рМ + qU2L £ МрНА, + rH+ (1)
где коэффициенты р, q, г соответствуют стехиометрии базисных частиц, а данная константа отражает устойчивость комплекса.
lg р^ = [МрН,Ц]-[Н+]ЧМ]-"-[Н2Ь1-ч (2)
Таким образом, можно с уверенностью сказать, что стереоэффекты образования в данных системах практически отсутствуют. Единственным случаем, выпадающим из данной закономерно-
сти, является система с концентрациями /?ть = 0.0188 моль/л и -Сн4^-=.0.0386_моль/л. Однако для него построение математической
модели равновесий оказалось невозможным._________
Результаты метода парамагнитного двулучепреломленияпо-------------
называют четкое различие в поведении различных изомеров ли-ганда. Данное явление охарактеризовано нами как структурная стереосективность. Необходимо заметить, что для соотношения ме-талл:лиганд 2:3 наблюдается полное совпадение с соотношением 1:1, для различных стереоизомеров лиганда. Были определены достоверные константы парамагнитного двулучелреломления (см. табл. 1). Необходимо отметить, что для системы тербий(Ш) — (I-винная кислота при соотношении металл:лиганд 1:2 наблюдается параболическая зависимость мольной константы Коттона-Мутона (тР) от квадрата напряженности магнитного поля. Это говорит об образовании полимерных частиц неопределенного состава.
Таблица 1.
Состав, устойчивость и константы тР й- и ¿//-тартратов
тербия(Ш) и диспрозия(Ш).
равновесие Ьп3+ = = ТЬ3+ Ьп3+ - = Бу3+
№ базисная частица с! а й а
1лг3т Н+ 1йР тР 1вР тР ЫР
1 1 1 0 4.35 110 4.37 110 4.31 4.43
2 1 2 0 7.51 — 7,58 — 7.61 7.62
3 2 2 2 2.30 — 2.17 — 2.26 2.40
4 2 2 3 -4.68 198 -4.54 416 -4.59 -4.23
5 2 2 4 -14.46 620 -14.51 560 -13.83 -13.49
6 4 4 6 — — — — -6.28 -6.27
7 4 4 7 -16.05 1000 -16.03 1844 -14.56 -14.55
8 4 4 8 -26.73 1140 -26.68 1040 -23.92 -23.91
9 4 4 10 — — — — -46.18 -46.17
ГЕТЕРОЯДЕРНЫЕ КОМПЛЕКСЫ й- И ¿/-ТАРТРАТОВ ТЕРБИЯ(Ш) И ЖЕЛЕЗА(Ш).
Системы тербий(Ш) — железо(Ш) — с1- и еИ-винная кислоты исследованы нами главным образом методами ПМР и МД. Предварительно из изомолярных серий было определено, что для тарт-ратных гетероядерных комплексов Ее3' и ТЬ3т мольное соотношение Ге3+:ТЬ3+ = 1:1.
Данные по составу и устойчивости гетероядерных о1- и сИ-тартратов железа(Ш) и тербия(Ш) (данные математического моделирования) приведены в табл. 2. При математическом моделировании также подтвердилась гипотеза стереоспецифического образования гетероядерных с/- и йй-тартратов тербия(Ш) и железа(Ш).
Оптимизированные константы равновесий соответствуют формализованным уравнениям типа:
тТе3+ + рЬп3+ + 9Н2Ь2- £ ¥е„ЪпрЪчЯ2ч^т+р>-2ч~г + гН+ (3)
Соответственно, если в табл. 2 приведена стехиометрия по Ге3+, ТЬ3+, Н2Ь2~, Н+ соответственно т, р, <7, г, то тогда характеристикой устойчивости гетероядерного комплекса ТетТЬрЪчЯ2!!-г^т+р)-^-г будет константа ртрвг:
(4)
Нами впервые обнаружено стереосективное образование Ее2ТЬ2НЬ43—, ГеТЬ(НЪ)33-, РеТЬН2Ь34— ¿/-тартратов, а также сте-реоспецифическое образование Ге3ТЬ3Ь66—, Ге3ТЬзЬ6(ОН)28- — й-тартратов и Ге2ТЬ2Ъ44~ Ге2ТЬ2Ь4(ОН)26~~, Ге2ТЬ2Н2Ьб10- — с!1-тартратов железа (III) и тербия(Ш). Следует отметить, что для систем Ге3+ — ТЬ3+ — оН4Ь и Ге3+ — ТЬ3+ — (ОН^ общим является только комплекс ГеТЬНЬ2~~.
Метод ПМД подтвердил данные метода ЯМР о стереоэффектах образования.
С использованием полученных констант устойчивости гетеро-ядерных тартратов тербия (III) и железа (III) были определены их мольные константы парамагнитного двулучепреломления тР, которые приведены в табл. 2.
Таким образом, по полученным результатам методов ПМР и МД нами была составлена схема равновесий для гетероядерных й-и сй-тартратов железа(Ш) и тербия(Ш) в зависимости от рН (рис. !)•
Необходимо отметить, что в системах Ре3+ — ТЬ3+ — «Н4Ъ и Ге3+ — Бу3+ — <Я14Ь окончательный набор комплексных форм
_бГ
ГеТЬНЬ2- -» Ге2ТЬ2НЬ43- Ге3ТЬ3Ь66~ Ге3ТЬ3Ь6(ОН)28-^(ГегТЬзЦ4-) (Ге2ТЬ2Ь4(ОН)26-)
V
ГеТЬНзЬз3- -> ГеТЬН2Ъ34- -> (Ее2ТЬ2Н2Ье10-) Сн4Ь . .
Рис. 1. Схема взаимопревращений гетероядерных й- и ¿/-тартратов железа(Ш) и тербия(Ш) в зависимости от рН (в скобках указаны формы, образующиеся только для ¿/-тартратов).
полностью идентичен, тогда как в системах Ее3+ — ТЬ3+ — dШiЪ и Ге3+—Су3+—комплексообразование идет по различным
схемам (см. табл. 2). """ --------------------------
Таблица 2.
Сравнение состава, устойчивости и констант тР d- и ¿//-гетероядерных тартратов тербия (III) и железа (III) с гетероядерными тартратами диспрозия (III) и железа (III).
Р а в н о веси Э Ln3+ = Tb3+ Ln3+ = - Dy3+
№ базисная частица d dl d |_ dl
Fe3+ Ln3+ H2L2- н+ Igß тР Igß тР Iß P Igß
1 1 1 2 3 4.71 57 4.61 5 4.41 4.52
2 2 2 4 7 4.66 1G4 5.80 10 5.95 —
3 2 2 4 8 — — -0.92 266 ■— -0.62
4 2 2 4 10 — — -19.92 462 — —
5 3 3 6 12 -4.69 483 — — -0.25 —
6 3 3 6 14 -23.08 531 — — -17.48 —
7 4 4 8 18 -17.24
8 1 1 3 3 7.71 97 8.47 11 9.12 10.20
9 1 1 3 4 0.42 189 2.62 83 2.03 4.07
10 2 2 6 10 — — -13.65 — — -7.77
И 2 2 6 12 -27.78
СТРУКТУРА (I- И (//-ТАРТРАТОВ ТЕРБИЯ(Ш), ДИСПРОЗИЯ(Ш) И ЖЕЛЕЗА(Ш)
Дальнейшим этапом наших исследований было определение строения образующихся комплексов. Нами для поиска оптимальной структуры использован уже апробированный ранее метод молекулярной механики (модель Дашевского-Плямоватого). В уравнение потенциальной энергии входят стандартно определяемые термы:
Е(ст) ~ Е(тор) 4- Е(СВ) + Е(нв) (5)
Здесь Е(тор) — торсионная энергия, Е(НВ) — энергия невалентных взаимодействий, Е(СВ) — энергия деформации связей. Длина связи ТЬ—О принята равной 2.39 А. Для оптимизированных структур по программе CONKER расчитывались теоретические константы дву-лучепреломления и сравнивались с экспериментальными. В качестве простейшего объекта был выбран монотартрат тербия(Ш). Нами были рассмотрены два типа моделей, учитывающих дополнительную координацию молекул воды. В модели 1 тербий(Ш) координирует дополнительно 6 молекул воды, КЧ = 9; в модели 2 тербий(Ш) координирует дополнительно 5 молекул воды, КЧ = 8. Для модели 1 атомы кислорода формируют два координационных полиэдра тербия(Ш): тригональную трехшапочную призму и ка-
пированную квадратную антипризму. Конформации с конфигурацией сфенокороны не соответствуют (как в случае монотартрата диспрозия(Ш)) локальному минимуму. Для модели 2 координационный полиэдр тербия(Ш) — квадратная антипризма и капиро-ванная квадратная антипризма. Результаты оптимизации показали, что для модели 1 в растворе практически доминируют конформации с конфигурацией координационной сферы иона-комплексообразователя в виде трехшапочной тригональной призмы, для модели 2 — в виде квадратной антипризмы.
При первоначальном расчете констант тР нами было использовано значение парамагнитной анизотропии тербия(Ш) Дк — 1600-Ю-29 см3. Это значение получено для нонагидрата этилсуль-фата тербия(Ш), который содержит изолированные ионы ТЬ(Н20)э3+ с конфигурацией трехшапочной тригональной призмы. Согласно литературным данным, ориентирована по оси симметрии наивысшего порядка локального окружения.
Расчет показал, что экспериментальные константы тР не воспроизводятся для модели 1 по знаку и для модели 2 — по величине. Для изоструктурных комплексов с одним и тем же лиган-дом, как правило, парамагнитные анизотропии диспрозия(Ш), тер-бия(Ш) — с одной стороны, и эрбия(Ш), тулия(Ш) — с другой, противоположны по знаку. Поскольку надежно установлено, что диспрозий(Ш) в тартратных комплексах имеет отрицательную парамагнитную анизотропию, то с большей уверенностью можно принять предположение о том, что парамагнитная анизотропия тартратов тербия(Ш) отрицательна. В таком случае приходится принять, что данные по определению Ак для этилсульфата тер-бия(Ш) в кристалле не переносимы для его же комплексов в растворе, несмотря на близость структур локального окружения тер-бия(Ш).
С учетом данных полученных результатов наиболее оптимальный диапазон Ак для тербия(Ш) в монотартрате тербия составляет -1100-Ю-29 см3 --13 0 0-10—29 см3.
Таким образом, для состояния монотартрата тербия(Ш) в водном растворе наиболее вероятна модель 1 (рис. 2), при этом практически абсолютно доминируют те конформации, в которых конфигурация тербия(Ш) — трехшапочная тригональная призма.
Для модели 2 расчет приводит только к отрицательным значениям тР, и это позволяет сделать вывод о несоответствии ее эксперименту.
Далее нами рассматривались аI- и ей- димерные тартраты тербия(Ш) и диспрозия(Ш).
Рис. 2. Наиболее вероятные формы существования монотартрата тербия(Ш) в водном растворе.
Для (I- и <й-димеров могут существовать как высокосимметричная, так и низкосимметричная формы с тетрагональной геометрией окружения ионов металлов (атомы 0(5), 0(13), 0(7), 0(14) — в
0ДН011 плоскости).
Эксперименту соответствуют симметричные формы и <11-тартратов Ьп2Ь22~~ с тетрагональной геометрией окружения иона металла. И данную закономерность позволила обьяснить модель состояния данных комплексов в водном растворе, предложенная Матвеевым для А- и <11 -тартратов Оу2Ь>2^ : каждый ион лантаноида координирует дополнительно к четырем донорным атомам ли-ганда четыре молекулы воды, координационное число иона лантаноида — 8, лигандный скелет димеров координирует ион натрия.
Наши дальнейшие расчеты показали, что имеется возможность для осуществления конформаций с гораздо меньшей стери-ческой энергией, с очень низкой симметрией; для них теоретические константы тР не совпадают с экспериментальными.
Таким образом, необходима более детальная параметризация вычислительной схемы молекулярной механики для воспроизведения большей энергетической выгодности симметричных конформаций.
Прежде всего нами был устранен недостаток задания иона натрия: при старом способе задания не учитывалось невалентное взаимодействие — Бущ.
Таблица 3.
Зависимость торсионной энергии для торсионных углов, определяющих геометрию d- и ¿й-тартратов диспрозия(Ш) _и тербия(Ш) (TOR 1)._
Торсионный угол Ф Энергия, ккал/моль
Ф1 0.5[0.1(1 - cos 6Ф) + 1.1(1 - cos 2Ф )]
Ф(54-1-2-15) 0.5(1.1(1 - cos 2Ф)]
ф2 0.5(3(1 + cos ЗФ)]
Ф3 0.5(0.1(1 - cos 6Ф) + 1.1(1 - cos 2Ф )]
ФП 3-3-4-51 0.5(1.1(1 - cos 2Ф)]
Однако это не привело к совпадению с экспериментом. Нами было рассмотрено несколько вариантов образования ионных пар на примере ¿//-тартрата диспрозия(Ш).
Дополнительно к массиву TOR 1 (табл 3) использовались также и другие массивы торсионных углов, описывающих конфор-мационное поведение лиганда. Все эти массивы отличаются только видом торсионного потенциала для Фь Ф3, Ф8) Ф10, и для характеристики этих массивов мы приведем ниже, только данные по торсионному потенциалу одной карбоксигруппы Ф^Ф). TOR 2: £(Ф) = 0.5[1.1(1 - cos 2Ф) + 1.1(1 - cos ЗФ)]
Е(ь4-1-2-15) = 0.5[1.1(1 - cos 2Ф)] TOR 3: Е{Ф) = 0.5[0.6(1 - cos 2Ф) + 2.5(1 - cos ЗФ)]
Е(54-1-2-15) = 0.5[1.4(1 - cos 2Ф)] TOR 4: Е,Ф) = 0.0
£(54-1-2-15) = 0.5[0.02(1 4- cos Ф) + 2.2(1 - cos 2Ф) + 0.8(1 -- соэЗФ)] TOR 5: Е{Ф) = 0.0
£■(54-1-2-15) = 0.5[2.5(1 - cos 2Ф)] (нумерация атомов для определения зависимых торсионных углов соответствует рис. 3).
Выражение, примененное для TOR 2 и TOR 4, взято из литературы, где для TOR 2 определялись характеристики свободного вращения вокруг связи а торсионный потенциал TOR 4
описывает вращение в неионизированной молекуле винной кислоты (<£H4L, ZH4L ). Потенциалы TOR 3, TOR 5 — подобранные нами эмпирические потенциалы.
В дополнение к модели образования ионных пар нами были рассмотрены следующие варианты координации как изолированного иона натрия (ионный радиус 0.95 А), так и гидратированного ("Na"; ионный радиус 2.76 А) — модели 1(а,б)—4(а,б).
Для моделей 1а—4а (нумерация моделей соответствут принятой в диссертации) координационное число диспрозия(Ш) задавалось-равным 8, для 16—46 — 9. Для каждого вида моделей использовалось несколько различных массивов торсионных" потенциалов.—
Для всех перечисленных моделей, кроме модели 16, низкосимметричные конформации на 1.5—3.0 ккал/моль стабильнее высокосимметричных; для модели 16 это различие примерно 0.3 ккал/моль, но рассчитанная аддитивная константа тР составляет 730-Ю"15 эме (экспериментальное значение — 900-10"15 эме). Можно сделать вывод, что только образованием ионных пар не определяется доминирование высокосимметричных конформаций с11-тартратов диепрозия(Ш).
Далее нами было проведено моделирование других взаимодействий, вносящих вклад в общую стерическую энергию. В качестве такого взаимодействия было выбрано электростатическое взаимодействие. При этом в уравнение (5) включают еще один член — Я(кул), определяющий электростатическое взаимодействие заряженных центров — атомов или неподеленных электронных пар (НЭП).
Влияние электростатических взаимодействий было исследовано нами на примере моделей 1а,б—За,б. Для моделей 1а—За координационное число диспрозия(Ш) задавалось равным 8, для 16— 36 — 9. Для каждого вида моделей использовалось несколько различных массивов торсионных потенциалов.
Наиболее разумное приближение к экспериментальным результатам (воспроизведение разности стерических энергий с!- и с!1-тартратов ) можно отметить у модели 36. Однако при этом теоретическая аддитивная тР для ¿-димера не превышает 760-Ю"15 эме (экспериментальное значение — 860-Ю"15). Результаты модели 3 показывают также, что задание зарядов порядка -0.2е на донорных атомах лиганда и атомов кислорода координированных молекул воды приводит не только к преобладанию симметричных конформаций (появляется так называемый "растягивающий" фактор), но и способствует формированию квадратно-антипризматического окружения ионов диспрозия(Ш). Нами было проведено моделирование структур Л- и ¿-тартратов, где данная конфигурация задавалась помимо задания зарядов.
Задание данной конфигурации иона-комплексообразователя задавалось либо с помощью зависимых псевдосвязей с варьируемыми упругими постоянными (модели 1,2), либо с помощью зависимых торсионных углов, обеспечивающих планарность верхних оснований квадратных антипризм, образованных донорными атомами первой координационной сферы ионов-комплексо-
образователей (модель 3). Для модели 2, кроме того, вводилось взаимодействие с ионами натрия. Можно отметить, что данные модели не обеспечивают соответствия с экспериментом. Для моделей 1,2 симметричные конформации также выгодны, как и несимметричные; для модели 3 несимметричные конформации примерно на 2 ккал/моль выгоднее, чем симметричные.
При детальном анализе проведенных расчетов ясно, что электростатическое взаимодействие в ряде случаев позволяет добиться хорошего согласия с экспериментом; также ясно, что заслонение карбокси- и гидроксигрупп должно быть выгодно. Необходимо также принимать во внимание образование ионных пар, приводящее к "стягиванию" карбоксигрупп.
Таким образом в окончательной модели (рис. 3) каждый ион диспрозия(Ш) координирует дополнительно по 4 молекулы воды, атомы кислорода воды и донорные атомы лиганда несут заряды -0.07е. Ион натрия координируется лигандным скелетом комплекса и имеет ближайшими соседями два карбоксильных и два гидро-ксильных атома кислорода. Выражение для стерической энергии дается соотношением (5). Квадратно-антипризматическая конфигурация ионов диспрозия(Ш) задается зависимыми торсионными углами Ф(2б-29-32-35) (Ф(а)) и Ф(38-41-44-47) (Ф(б))> определяющими пла-нарность верхних оснований квадратных антипризм. Торсионное поведение лиганда определяется массивом TOR 5.
Та же модель 1 хорошо описывает структуру d-димера дис-прозия(Ш). (рис. 3). Можно отметить, что разность стерических энергий для конформациий dl- и ¿/-димеров не превышает 0.23 ккал/моль, что согласуется с отсутствием стереоэффектов образования dl- и ¿-тартратов диспрозия(Ш); теоретические константы тР согласуются с экспериментальными в пределах 15 %.
Данная модель 1 была использована и при описании структуры ¿-тартрата Tb2(d-L)22— и ¿/-тартрата Tb2(i/-L)(/-L)2— (рис. 3). Эти данные позволили определить наиболее оптимальный диапазон парамагнитных анизотропий тербия(Ш) в квадратно-антипризматическом окружении. Экспериментальные тР ТЬ2(й?-L)22~ 620-Ю"15 эме и Tb2(c?-L)(/-L)2- 560-Ю"15 эме наилучшим образом описывает значение М = -2150.0-Ю*29 см3.
Нами продолжено моделирование структур гетероядерных комплексов диспрозия(Ш) и начато моделирование структур гетероядерных тартратов тербия(Ш) (форма LnFe(HL)33—).
Возможны два варианта связности лигандного скелета для dl-гетероядерных тартратов DyFe(HL)33~, TbFe(HL)33~, ¿-тартратов DyFe(HL)33—, TbFe(HL)33—. В обоих этих случаях "димерный" фрагмент имеет тетрагональную геометрию.
- ~ __Молекулярно-механический расчет показал, что наиболее достоверен вариант е тридентантной кооординацией лиганда (рис. 4). Конформации, соответствующие иной связности,-имеют слишком большую константу тР. Расчет теоретических констант гпР (таблГ 4) показал удовлетворительную сходимость с экспериментом (в пределах 10 %). При расчетах были использованы значения Ак = -2860-Ю-29 см3 для (/- и ¿/-тартратов ГеБу(НЬ)33- и Ак = -2150-Ю-29
см° для й- и гЯ-тартратов РеТЬ(НЬ)33
определенные для квад-
ратно-антипризматического окружения этих ионов. Гетероядерные ¿/-формы гораздо более устойчивы, чем с1-, вследствие невозможности координировать жесткую координационную сферу желе-за(Ш) без искажений оптимальных торсионных углов лиганда.
Рис. 3. Окончательные модели й- (а) и <Я-тартратов (б) тербия(Ш) и диспрозия(Ш).
Рис. 4. Вероятные структуры гетероядерных с1- (а) и сй-тартратов
(б) ГеЬп(НЬ)33- (О — Ге3+, ® — Ьп3+).
ВЫВОДЫ
1. В гомо-системах (I- и ¿//-тартратов тербия(Ш) стереоэффекты образования отсутствуют. Впервые обнаружено образование тетраядерных тартратов тербия(Ш).
2. Методом парамагнитного двулучепреломления обнаружено наличие структурной стереоселективности в образовании прото-нированных тартратов тербия(Ш).
3. Показано стереоселективное образование ¿/-тартратов Ге2ТЬ2НЬ43-, ГеТЬ(НЬ)33-, ЕеТЬ(НЪ)2Ь4~. ¿-Тартраты Ге3ТЬ3Ь86—, Ге3ТЬзЪ6(ОН)28~ и ¿/-тартраты Ге2ТЬ2Ь44—, Ге2ТЬ2Ъ4(ОН)26~~, Ге2ТЬ2Н2Ь610~ образуются стереоспецифиче-ски. Рассчитаны структурные факторы ^ „ — характеристики стереоселективного комплексообразования.
4. На примере й- и ¿#-биядерных тартратов диспрозия уточнены параметры расчетной схемы, необходимые для построения адекватной модели состояния биядерных тартратов лантаноидов в водном растворе: дополнительная координация молекул воды, вид торсионного потенциала карбокси-групп, величина зарядов на донорных атомах лиганда, факторы, благоприятствующие квадратно-антипризматической конфигурации иона
лантаноида, значение упругих постоянных связей, образование ионных пар.
-5______Впервые методами парамагнитного двулучепреломления и молекулярной механики определены наиболее "вероятные структуры монотартрата ТЬН2Ь+, биядерных й- и ¿//-тартратов ТЬ2Ь22—. Рассчитаны геометрические параметры этих структур, их стерические энергии и теоретические константы парамагнитного двулучепреломления тР.
6. Определена парамагнитная анизотропия тербия(Ш), характеризующая тип координационного полиэдра. Парамагнитная анизотропия Ак в монотартрате тербия(Ш) (координационный полиодр — трехшапочная тригональная призма) составляет
(-1100 --1300)-10~29 см3. Для квадратно-антипризматического
окружения (форма ТЬ2Ь22~~) Ак составляет -2150-10"29 см3.
7. Монотартрат тербия(Ш) существует в водном растворе практически в виде одной конформации, в которой донорные атомы лиганда и молекулы воды формируют трехшапочную триго-нальную призму.
8. Координационным полиэдром ионов комплексообразователей в- и ей-димеров ТЪ21'2" является квадратная антипризма, вследствии дополнительной кооординации к 4 донорным атомам лиганда 4 молекул воды (КЧ = 8). Донорные атомы кислорода лигандого скелета координируют один ион натрия.
9. Определена наиболее вероятная структура й- и гетероядерных тартратов ВуГе(НЪ)33~ и ТЬГе(НЬ)33~. Стерео-селективное образование ¿//-гетероядерных тартратов ЬпЕе(НЬ)33~ является следствием влияния жесткой координационной сферы железа(Ш).
Основное содержание работы изложено в следующих публикацях:
1. Вульфсон С.Г.,Чевела В.В., Матвеев С.Н., Семенов В.Э., Безрядин С..Г., Вагизова Г.Я. Полиядерное комплексообразование: связь со стереоэффектами и структурой // Тезисы докладов XVII Всес. Чугаевского совещания по химии комплексных соединений. Минск, 1990. 29-31 мая.
2. Вульфсон С.Г.,Чевела В.В., Сальников Ю.И., Матвеев С.Н., Безрядин С.Г., Семенов В.Э., Вагизова Г.Я. Магнитооптическое исследование структуры и стереоэффектов образования гете-ролигандных комплексов // Тезисы докладов X Всесоюзного совещания "Физические методы в координационной химии". Кишинев, 1990. 25-27 сент.
3. Чевела В.В., Вульфсон С.Г., Сальников Ю.И., Матвеев С.Н., Семенов В.Э., Безрядин С.Г. Структура димерного ¿//-тартрата
диспрозия(Ш) в водном растворе.// Коорд. химия. — 1994. Т. 20, № 10. — С. 794-798.
4. Чевела В.В., Вульфсон С.Г., Матвеев С.Н., Сальников Ю.И., Семенов В.Э., Безрядин С.Г. Димерные d- и ¿й-тартраты диспро-зия(Ш): парамагнитное двулучепреломление, молекулярная механика, стереоселективность // Изв. РАН. Сер. хим. — 1994, № 6. — С. 1029-1032.
5. Chevela V.V., Vulfson S.G., Matvee.v S.N., Salnikov Yu.I., Semyonov V.E., Bezryadin S.G. The structure of dimeric dysprosium(III) d- and ¿//-tartrates in aqueous solution // Mendeleev communication. — 1994. N 4. — P. 125-126.
6. Чевела B.B., Вульфсон С.Г., Сальников Ю.И., Матвеев С.Н., Семенов В.Э., Безрядин С.Г. Структура димерного ¿/-тартрата диспрозия(Ш) состава 2:2 в водном растворе // Ж. общей химии. — 1994. Т. 64, № 7. — С. 1072-1076.
7. Семенов В.Э., Безрядин С.Г., Чевела В.В., Савицкая Т.С., Коле-сар И.Р., Сальников Ю.И. Молекулярная механика тартратов железа(Ш) в водном растворе // В сб.: "Структура и молекулярная динамика полимерных систем" —Ч. 2 — Йошкар-Ола, 1995. — С. 159-161.
8. Безрядин С.Г., Семенов В.Э., Чевела В.В., Савицкая Т.С., Коле-сар И.Р., Шамов Г.А. Структура лабильных полиядерных комплексов лантаноидов в водном растворе // В сб.: "Структура и молекулярная динамика полимерных систем" — Ч. 2 — Йошкар-Ола, 1995. — С. 162-164.
9. Чевела В.В., Матвеев С.Н., Семенов В.Э., Безрядин С.Г., Савицкая Т.С., Громова И.Р., Шамов Г.А. Стереоспецифическое образование димерного dl- тартрата железа(Ш) в водном растворе // Коорд. химия — 1995. Т. 21, № 5. — С. 388-391.
10. Chevela V.V, Semyonov V.E., Bezryadin S.G., Savitskaya T.V., Kolesar I.R., Shamov G.A. The structures of dimeric stereoisomeric tartrates of iron(III) as determined by molecular mechanics calculations // J. Mol. Struct. (Theochem). — 1995. V. 343.— P. 195-198.
11. Chevela V.V, Semyonov V.E., Bezryadin S.G., Savitskaya T.V., Kolesar I.R., Shamov G.A. Three-dimensional structure of dysprosium(III) polynuclear d- and ¿//-tartrates by paramagnetic double refraction and molecular mechanics //35 International IUPAC Congress, Abstr. of papers. — Istanbul, 1995.
Соискатель
/Безрядин С.Г./