Атомная структура и эмиссионная способность нерегулярных углеродных тубулярных нанокластеров тема автореферата и диссертации по физике, 01.04.04 ВАК РФ
Терентьев, Олег Анатольевич
АВТОР
|
||||
кандидата физико-математических наук
УЧЕНАЯ СТЕПЕНЬ
|
||||
Саратов
МЕСТО ЗАЩИТЫ
|
||||
2007
ГОД ЗАЩИТЫ
|
|
01.04.04
КОД ВАК РФ
|
||
|
На правах рукописи
ии^иеэ8оз
Терентьев Олег Анатольевич
АТОМНАЯ СТРУКТУРА И ЭМИССИОННАЯ СПОСОБНОСТЬ НЕРЕГУЛЯРНЫХ УГЛЕРОДНЫХ ТУБУЛЯРНЫХ НАНОКЛАСТЕРОВ
01 04 04 - физическая электроника
05 27 01 - твердотельная электроника, радиоэлектронные компоненты, микро- и наноэлектроника на квантовых эффектах
Автореферат диссертации на соискание ученой степени кандидата физико-математических наук
Саратов 2007
003069803
Работа выполнена на кафедре прикладной кафедры и кафедре радиотехники и электродинамики Саратовского государственного университета им Н Г Чернышевского
Научный руководитель кандидат физико-математических наук, доцент
Глухова Ольга Евгеньевна
Официальные оппоненты доктор физико-математических наук, профессор
Запороцкова Ирина Владимировна доктор технических наук Волков Юрий Петрович
Ведущая организация Саратовский филиал института радиотехники и
электроники РАН, г Саратов
Защита диссертации состоится 24 мая 2007 г. в 17 часов 30 минут на заседании диссертационного совета Д 212 243 01 при Саратовском государственном университете им Н Г Чернышевского по адресу 410012, г Саратов, ул Астраханская, 83
С диссертацией можно ознакомиться в Зональной научной библиотеке Саратовского государственного университета им Н Г Чернышевского
Автореферат разослан « 20 » апреля 2007 г
Ученый секретарь диссертационного совета
Аникин В.М.
ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ Актуальность темы. Объектом исследования в диссертационной работе являются молекулярные цилиндрические поверхности (плотно упакованные атомными углеродными гексагонами), или короткие трубки, насчитывающие от нескольких десятков до нескольких сотен атомов Подобные структуры по своей сути являются тубуляриыми нанокластерами Эти тубулярные нанокластеры могут быть нерегулярными структурами из-за, например, краевых эффектов, возможных локальных дефектов в каркасе, деформации каркаса, а также изменения конфигурации атомного остова вдоль оси
Выбор объекта исследования обусловлен широким применением таких структур в различных областях физики и техники, например, в качестве тончайших проводников электрического тока и автоэмиттеров, основы базового блока макроячейки с элементами памяти, гибких зондов в микроскопии, нановибраторов и др
Вопросам изучения физических и химических свойств углеродных наноструктур, разработке математических моделей и их обоснованию, разработке методов исследования этих структур посвящены фундаментальные работы отечественных (Ю В Гуляев, О Е Глухова, П Н Дьячков, А.В Елецкий, А И Жбанов, И В Запороцкова, 3 Я. Косаковская, Т Л Макарова, Н И Синицын, Ф Н Томилин, Г В Торгашев, JIА Чернозатонский и др) и зарубежных (Р Ajayan, М S Dresselhaus, Р Harris, S Iijima, Н W Kroto, F J Owens, С P Poole (Jr), R S Ruoff, Y Saito, N Sano, D Tomanek и др) авторов
Характерной особенностью изучаемого объекта, помимо уже отмеченной нерегулярности, является его непериодичность, что с необходимостью требует расчета атомного каркаса по нескольким линейным параметрам Другими словами, нерегулярность и непериодичность тубулярных нанокластеров предполагает наличие математической модели, учитывающей краевые эффекты и деформации остова Причинами последних могут быть внутренние перемычки (бамбукоподобная структура), изомеризация с поворотом С-С связи на 90° (изомеризация Стоуна-Велса, или ЗЖ-дефект), элиминирование двух атомов (2 F-дсфект) или допирование несколькими атомами углерода ("ad-dimer"-дефект), замещение атомов углерода атомами азота (N-дефект) или других химических элементов
Сформированные к настоящему времени методы расчета атомной и электронной структур и соответствующие им математические модели условно можно разбить на две группы Методы первой группы эффективны для исследования нерегулярных, но периодических наноструктур (квазиодномерных кристаллов) К ним можно отнести, например, метод линейной комбинации атомных орбиталей и метод линейных присоединенных плоских волн, использующие континуальную модель структуры При этом структура полимера воспроизводится трансляцией минимального фраг-
мента (элементарной ячейки), а влияние концевых эффектов исключается циклическими граничными условиями Борна-Кармана
Другая группа методов (и математических моделей), основанная на теории групп точечной симметрии, молекулярно-динамических и кванто-во-химических моделях, допускают изучение нерегулярных непериодических нанообъектов Несмотря на кажущуюся универсальность, методы этой группы из-за требуемых высоких затрат ресурсов компьютера, применяются, как правило, для изучения малоатомных кластеров В связи с этим научный интерес представляет разработка "универсального" метода и эффективного программно-математического обеспечения, не требующего значительных затрат машинного времени для изучения атомной и электронной структур, свойств нерегулярных тубулярных нанокластеров (НТН) и физических явлений в них
Акцент в диссертационной работе ставится на изучение эмиссионной способности и упругости НТН в силу практической важности именно этих свойств нанокластеров в электронных приборах Известно, что в электрическом поле нанотрубки-автоэмиттеры могут растягиваться под действием пондеромоторной силы, что приводит к возрастанию коэффициента усиления поля на эмитирующих центрах и, как следствие, к увеличению плотности эмиссионного тока
Таким образом, выбор объекта и направления исследований являются своевременными и актуальными, что и предопределило цель и задачи диссертации
Целью диссертационной работы является исследование атомного и электронного строения углеродных нерегулярных тубулярных нанокластеров и физических явлений в них на математических моделях.
Достижение цели может быть реализовано решением следующих задач:
- разработка способа вычисления координат атомов моделей НТН различных конфигураций,
- разработка методики расчета электронной структуры НТН,
- разработка вычислительной программы расчета атомной и электронной структур, эмиссионной характеристики (ионизационного потенциала) и параметров упругости (модуля Юнга и модуля кручения) НТН,
- исследование влияния дефектов каркаса на электронное строение, эмиссионную способность и механические свойства НТН
Методы исследования
Основу исследований составили математический аппарат квантовой химии и компьютерное моделирование
Научная новизна результатов работы заключается в следующем 1 Метод сильной связи адаптирован для расчета атомной и электронной структур С-И нерегулярных тубулярных нанокластеров
2 Впервые установлена зависимость параметров упругости (модулей Юнга и кручения) от размеров (длины и диаметра) и строения НТН Установлено, что большей упругостью отличаются кластеры длиной более 2,5 нм и диаметром ~ 1 нм [1,2,8,10-12,14,16]
3 Установлено, что с увеличением длины путем наращивания остова на-нокластеров колы{ами из гексагонов наблюдается монотонное убывание потенциала ионизации в НТН со структурой каркаса типа armchair В случае увеличения длины путем наращивания остова нитями из атомов углерода наблюдаются затухающие осцилляции Потенциал ионизации НТН со структурой каркаса типа zigzag монотонно убывает с увеличением длины независимо от способа наращивания остова [3,7,13]
4 Впервые количественно оценено влияние дефектов каркаса на электронную структуру, эмиссионную способность и упругость НТН [4,5,9]
5 Впервые показана высокая механическая прочность бамбукоподобных тубулярных нанокластеров на модели нанотрубных кластеров с внутренними перемычками [6]
6 Установлено влияние замещения атомов углерода атомами азота на ионизационный потенциал и параметры упругости модуль Юнга снижается с появлением атомов азота, потенциал ионизации практически не меняется
7 Показано, что наносистема Сбо(тубелен)@С45о, образованная одностен-ной трубкой С450 и инкапсулированным тубеленом С6о, стабильна и может служить основой для создания наногироскопа или элемента памяти
Достоверность полученных результатов обусловлена адекватностью математической модели нанокластеров физическим процессам, сравнением (где это было возможно) и удовлетворительным совпадением полученных результатов с опубликованными (в том числе - экспериментальными) в отечественной и зарубежной печати, результатами решения контрольных задач
На защиту выносятся следующие положения и результаты:
1 Эмиссионная способность нерегулярных тубулярных нанокластеров с каркасом типа zigzag практически не зависит от наличия (отсутствия) дефектов типа SW, 2V, "ad-dimer"
2 Существует такое значение отношения диаметра к длине, или "точка насыщения", начиная с которого прекращается увеличение модуля Юнга с ростом линейных размеров (длины и/или диаметра) нерегулярных тубулярных нанокластеров со структурой каркаса zigzag и armchair
3 Разработанные трехпараметрический метод генерации координат атомов каркаса по трем линейным параметрам и его программно-математическая реализация позволяют рассчитывать атомную и электронную структуры, потенциал ионизации и модули упругости бездефектных нерегулярных тубулярных нанокластеров с погрешностью не более 2%
Научно-практическая значимость результатов
1 Результаты исследования зависимости потенциала ионизации НТН со структурой типа zigzag и armchair от линейных размеров каркаса позволяют в качестве автоэмиттеров рекомендовать трубки длиной более 5 нм
2 Наличие точки насыщения предопределяет условия создания тубуляр-ных нанокластеров большой прочности наибольшей упругостью будут характеризоваться трубки длиной более 2,5 нм и диаметром ~1 нм [1]
3 Разработанные и апробированные методики расчета атомной и электронной структур, параметров упругости и характеристики эмиссионной способности НТН могут служить базой для обоснованного научного прогнозирования свойств как коротких тубулярных наноструктур с появлением дефектов, так и протяженных (под условием циклических граничных условий Борна-Кармана)
Апробация работы и публикации. Основные результаты диссертации докладывались и обсуждались на 6 российских и международных конференциях
- Российская школа-конференция молодых ученых и преподавателей «Биосовместимые наноструктурные материалы и покрытия медицинского назначения», Белгород, 25 сентября - 1 октября 2006 г ,
- «Saratov Fall Meeting - SFM'06» X International School for Young Scientists and Students on Optics, Laser Physics & Biophysics, September 26 - 29, 2006, Saratov, Russia,
- Четвертая межрегиональная молодежная научная школа «Материалы нано-, микро- и оптоэлектроники физические свойства и применение», Саранск, 5-7 октября 2005 г,
- «Saratov Fall Meeting - SFM'05» IX International School for Young Scientists and Students on Optics, Laser Physics & Biophysics, September 27 — 30, 2005, Saratov, Russia,
- Научная школа-конференция «Нелинейные дни в Саратове для молодых - 2005»,
- «Saratov Fall Meetmg-SFM'04» ИХ International School for Young Scientists and Students on Optics, Laser Physics & Biophysics, 2004, Saratov, Russia, и представлены в 16 печатных работах, 3 из которых - в изданиях, включенных в перечень рекомендуемых ВАК РФ
Личный вклад автора состоит в развитии (адаптации) метода сильной связи для расчета атомной и электронной структур C-N нанокластеров, в разработке алгоритма расчета атомной структуры нанокластеров, создании пакета вычислительных программ, автор также принимал участие в обсуждении и интерпретации полученных результатов
Структура и объем работы. Диссертационная работа состоит из введения, четырех глав, заключения и списка цитируемой литературы Общий
объем диссертации составляет 151 страницу, включая 46 рисунков, 26 таблиц, список литературы из 121 наименования и приложение
КРАТКОЕ СОДЕРЖАНИЕ РАБОТЫ Во введении обоснована актуальность выбора объекта и направления исследований, сформулированы цель и задачи, а также содержатся научная новизна и основные положения, выносимые на защиту Приводится краткое содержание каждой из глав
В первой главе "Методы расчета конфигурации углеродных нерегулярных тубулярных нанокластеров" изложены метод вычисления координат атомов моделей нанотрубных кластеров различных конфигураций и форм, методика расчета электронной структуры нерегулярных тубулярных нанокластеров и обоснованы вычислительные алгоритмы
Разработанный трехпараметрический метод генерации координат атомов (построения каркаса) моделей тубулярных нанокластеров в своей основе предполагает, что цилиндрическая поверхность тубулярного нанокластера (zigzag или armchair) является ячеистой сеткой из одинаковых гексагонов, задаваемых тремя параметрами одним из ребер (Иг) шестиугольника, а также большей (Hi) и меньшей (Нз) диагоналями гексагона Диаметр остова определяется числами киральности (ш,п), а его длина -числом гексагонов вдоль оси остова (см рис 1)
Рис 1 Атомный остов модели трубки, построенный трехпараметрическим методом, и регибридизация к- и a-электронов a) zigzag, б) armchair
Трехпараметрический метод реализован в пакете вычислительных программ RING Для расширения его функциональных возможностей предусмотрены также вычисление координат с помощью теории групп точечной симметрии и расчет электронной структуры методом сильной связи В пакете формируется гамильтониан и вычисляются его собственные значения методом Хаусхолдера, рассчитывается полная энергия кластера, оптимизируется атомная структура минимизацией полной энергии системы по линейным параметрам каркаса Предусмотрена также возможность модификации структуры путем растяжения (сжатия), изгиба и кручения
Трехпараметрическим методом решены контрольные задачи расчета атомной и электронной структур НТН со строением каркаса типов zigzag и armchair Проведено сравнение рассчитанных численных значений диа-
метров, углов пирамидализации, длин связей, потенциалов ионизации, энергии приходящейся на атом (Еат), с аналогичными, вычисленными с применением теории групп точечной симметрии Результаты сопоставления теоретических расчетов приведены на рис 2 и в таблице 1, в которых идентификатор 1 соответствует трехпараметрическому методу, 2 - теории групп точечной симметрии
нанокластер со структурой каркаса типа zigzag (6 0)
нанокластер со структурой каркаса тала aimchair (4 4)
Таблица 1
Изменение линейного параметра остова с увеличением количества атомов
И
V;
i
~г
Число вгоыов
Рис 2 Зависимость Е ат от количества атомов в кластере
armchair (4,4) zigzag (6,0)
Кол-во атомов Длина, Á Кол-во атомов Длина, Á
1 2 1 2
40 4,78 4,74 48 6,98 7,00
48 6,00 5,95 60 9,18 9,22
56 7,25 7,20 72 И, 31, 11,34
64 8,50 8,50 84 13,43 13,47
72 9,71 9,66 96 15,56 15,60
80 10,96 10,92 108 17,68 17,72
Дополнительно к этому данные теоретических расчетов диаметра нанокластера обоими методами сравнивались с экспериментальными Последние в известной нам литературе (N Sano 2002) приведены для нанокластера С64 (4,0) Расхождение не превысило 1,5 % экспериментальное значение диаметра - 0,33 нм, а расчетное - 0,334 нм Однако, напомним, что затраты машинного времени трехпараметрического метода оказались незначительными Все это позволяет утверждать, что погрешность расчета каркаса структуры и энергии приходящейся на атом, по трем линейным параметрам, не превышает 2% Преимущество трехпараметрического метода при изучении параметров упругости нанокластеров обсуждается в третьей главе
Основным модулем пакета вычислительных программ RING является блок расчета электронного спектра, потенциала ионизации, полной энергии нанокластера, энергии Ван-дер-ваальсового взаимодействия, а также геометрических параметров каркаса, соответствующих основному состоянию, и исходных данных для вычисления параметров упругости и других.
Основу вычислительных процедур составляет модифицированный метод сильной связи (L Goodwin 1991) расчета полной энергии Е кластера
Е = Егер+Е
^ bond >
(i)
где ЕЬопа - энергия заполненных электронных уровней, Егер - феноменологическая энергия, учитывающая межэлектронное и межъядерное взаимодействия
Энергия заполненных уровней определяется, как обычно, формулой
' bond
= 22Х
(2)
где еп — энергия заполненного состояния с номером п, являющаяся собственным значением гамильтониана (число "2" учитывает спин электрона). Набор собственных значений гамильтониана образует электронный спектр
Недиагональные матричные элементы гамильтониана определяются
V (г) = Vo
* IJCE V* / * 1JCC
ехр^р,
í
\
г
ЧР2/
Pi
Р2
Р.
(3)
где г - расстояние между атомами; 1,) - орбитальные моменты волновых функций, а - индекс, указывающий тип связи (а или п)
Феноменологическая энергия представляется суммой парных оттал-кивательных потенциалов
(4)
ЕГер=5Хр(г, -rj), •<J
где 1,- номера взаимодействующих атомов, г„ г, - декартовы координаты Функция \'гср определяется выражением
Vrep(r)-P5
exPÍ Pe
f \ Р. / \
г + Рз
IP: J 1Р2,
(5)
Применяемые значения атомных термов ss, 8Р, равновесных интегралов перекрытия Vs°sa, Vspa, Vp°pc, Vp[ra и параметры р„ (будем в дальнейшем эту группу называть характеристическими параметрами) для углеродных нанокластеров заимствованы из работ О Е Глуховой и А И Жба-нова
Проведено исследование физической стабильности НГН по величине энергии Еат Обнаружено, что у НТН строения zigzag и armchair с увеличением длины энергия Еат уменьшается При достижении длины ~5 нм значения Еат для zigzag и armchair становятся равными, что говорит об уменьшении влияния строения каркаса на общую энер1 ию трубки Значение энергии Еат стремится к -43,2 эВ Известно, что одним из стабильных нанокластеров является молекула С60 (I/,), у которой Еат —43 эВ Ранее стабильность нанотрубок исследовалась в зависимости от диаметра, потому полученный результат является новым
Во второй главе "Эмиссионная способность углеродных тубуляр-ш,IX нанокластеров" приведены результаты исследования (с помощью разработанного программно-математического обеспечения) зависимости эмиссионной способности углеродных тубулярных нанокластеров от линейных параметров и строения каркаса
Известно, что эмиссионная способность кластера оценивается по величине его потенциала ионизации, поэтому основное внимание в главе уделяется исследованию зависимости потенциала ионизации (I) от длины, диаметра и строения каркаса Потенциал ионизации рассчитывается как абсолютное значение энергии последнего заполненного уровня электронного спектра кластера
Полученные результаты формулируются следующим образом
- Потенциал ионизации НТН строения armchair с увеличением длины каркаса путем наращивания остова нанокластеров кольцами из гексагонов (см рис 3 а) монотонно убывает (сплошная кривая на рис 3 в)
- Потенциал ионизации НТН в случае увеличения длины добавлением пар Сг по окружности (будем называть такой способ увеличения длины наращивание нитями из атомов углерода, рис 3 б) убывает немонотонно (наблюдаются затухающие осцилляции, пунктирная кривая на рис 3 в)
Рис 3 Иллюстрации способов наращивания каркаса и зависимости потенциала ионизации НТН типа armchair а) наращивание кольцами из гексагонов, б) иаращивание нитями, в) изменение потенциала ионизации
- Потенциал ионизации НТН со структурой каркаса типа zigzag монотонно убывает с увеличением длины независимо от способа наращивания остова (рис 4)
- Потенциал ионизации нанокластеров строения zigzag расположен в интервале 6,5-6,9 эВ
- Потенциал ионизации НТН строения zigzag и armchair изменяется с диаметром в малых пределах Например, у нанокластеров типа armchair длиной 1,71 нм его величина равна 6,38 эВ, у zigzag длиной 2,40 нм -6,70 эВ При изменении диаметра каркаса значения потенциала ионизации отклоняются от указанных номинальных не более, чем на 0,15 эВ
б
в
Итак, тубулярные нанокластеры типа zigzag и armchair не имеют определенного значения потенциала ионизации и поэтому их эмиссионная способность определяется строением каркаса и его линейными размерами (длиной и, в незначительной степени, - диаметром)
В третьей главе "Исследование упругости тубулярных нано-кластеров" представлены результаты исследования (с помощью разра- s 12 is 20 24 ботанного пакета вычислительных Дшвп д. программ RING) влияния размеров и рис 4 Изменение потенциала ионизации строения каркаса на упругость с увеличением длины НТН строения нанокластеров строения zigzag и zigzag
armchair различных размеров, изучены два вида деформации растяжение (сжатие) и кручение
После генерирования атомной структуры модели кластера и расчета полной энергии кластера и длины его каркаса, отвечающих начальному (до деформации остова) состоянию структуры, производится деформация остова нанокластера растяжением на несколько процентов Эта длина каркаса фиксируется Атомная структура деформированного кластера рассчитывается при условии, что линейные параметры остова являются компонентами вектора варьируемых параметров в задаче параметрической минимизации полной энергии (1)
В итоге выполнения перечисленных процедур образуется полный набор численных значений параметров для расчета модуля Юнга, псевдомодуля Юнга и коэффициента Пуассона с использованием следующих соотношений
Модуль Юнга
Y = — (6)
S AL
Здесь сила растяжения (сжатия) F нанокластера вычисляется по величине энергии упругого растяжения (сжатия) ДЕ ДЕ = F AL/ 2, L - длина недеформированного каркаса, AL - удлинение каркаса, S - площадь поперечного сечения кольца шириной 3,4 Á (расстояние между слоями в графите), содержащего периметр остова Псевдомодуль Юнга
Y = — -t-Р Р AL
где Р - периметр остова
Коэффициент Пуассона
Ц = ■
AR R
L
AL
(8)
изменение радиуса в
где Я - радиус недеформированного остова, АД результате деформации
Для расчета модуля кручения каждый слой атомов закручивается вокруг оси остова относительно основания ("нижний" ряд атомов) на некоторый угол, пропорционально расстоянию до основания (концы остова смещены относительно друг друга на угол ф) Длина каркаса остается фиксированной, что отвечает упругой деформации Атомная структура деформированного кластера определяется минимизацией энергии по линейным параметрам остова
Модуль кручения вычисляется по энергии кручения АЕ
2 АЕ
(9)
f дн " "
ф
а гакже по уже рассчитанным значениям модуля Юнга и коэффициента Пуассона
fy =
п Y
4 (1 + ц) • L
R + — 2
(10)
Здесь X - толщина стенки цилиндра (для кластера - 3,4 А)
Результаты решения тесто-
0,7-,
0,6.
0,5.
0,4.
Y, ТПа
С.
С.
-60 48
'72
-84
и9б Чов ^ - - -■•
120
1
2
^36
40
100
120
вых задач по расчету модуля Юнга НТН типа zigzag с каркасом, воспроизведенным трехпарамет-рическим методом, представлены на рис 5 Идентификаторы кривых те же, что и на рис 2 Сопоставление этих результатов подтвердило основной вывод о погрешности численных методов пакета программ RING, отмеченных в первой главе
Основные результаты исследования параметров упругости
НТН следующие
- Модуль Юнга тубулярных нанокластеров со структурой каркаса zigzag и armchair увеличивается с ростом линейных размеров (см рис 5, 6 и табл 2)
- Существует такое значение отношения диаметра к длине, или "точка насыщения", начиная с которого прекращается увеличение модуля
60 80 Число атомов
5 Изменение модуля Юнга с увеличе-
Рис
нием количества атомов
Юнга с ростом линейных размеров (длины it/или диаметра) НТН со структурой каркаса zigzag и armchair Подобное поведение модуля Юнга [1], видимо, объясняется убывающим влиянием открытых концов каркаса на атомную и электронную структуры кластера
- Величина коэффициента Пуассона НТН остается практически постоянной и составляет -0,43 для нанокластеров zigzag и ~0,45 для armchair
- (10 0) tube / * d=7 92 А / ✓ '
/ J
а)
• (3 5) tube ¡1=6 85 Á
J I *
.-1-1-1-,-1-,-1-r-1
S U 16 20 2» 23
■ - armchar L-Z3 31 A
i - zigzag L-1J 60 A
d A
6)
Рис 6 Зависимость модуля Юнга НТН от длины (а) и диаметра (б) каркаса
- (10 0) tube d=7 92 А
Таблица 2 Изменение псевдомодуля Юнга с увеличением диаметра
у
/ «
/ '
/ ✓
/
/
(5 5) tube d=6 85 А
Рис 7 Юнга от
12 16 20 24 LA Зависимость псевдомодуля длины остова
N (m,n) диаметр, Á Yp, ТПа нм
96 (6,0) 4,83 0,228
112 (7,0) 5,60 0,235
128 (8,0) 6,37 0,241
144 (9,0) 7,14 0,245
160 (10,0) 7,92 0,248
176 (11,0) 8,69 0,249
- Модуль кручения НТН уменьшается с ростом длины каркаса и стремится к насыщению при достижении длины ~3 нм (рис 8 а)
- Модуль кручения НТН с ростом диаметра увеличивается (рис 8 б) Несовпадение значений модулей кручения ГДЕ (9) и IV (10) объясняется малой длиной трубок с увеличением поперечного размера остова кривые зависимостей 4е и медленно расходятся (рис 8 б), а с ростом продольного заметна тенденция к сближению (рис 8 а) Видимо, решающую роль играет краевой эффект [2]
0:6~|К1В рад2 \
'А
о
О. ■
с
.-(100) ШЬе 92 А
■ -(5 5) ЬЬе з
¿1=685 А
ом (
_ кэВ рад1
Ь А
"1-'-1-'-1-1-Г"
12 15 20 24
• (5 5) ИЬе (1=6 85 А г
лт
г
/ с.
///
• * , '
. - (10 0) ШЬе 11=7 92Л
_а, \
Т-'-1
8 10
а)
б)
Рис 8 Зависимость модуля кручения тубулярных кластеров от длины (а) и диаметра (б) каркаса
Результаты изучения упругости трубок по двум параметрам (модулям Юнга и кручения) позволяют утверждать, что наибольшей упругостью будут характеризоваться трубки длиной более 2,5 нм и диаметром ~1 нм [2]
В четвертой главе " Физические явления в углеродных нанокласше-рах сложной формы и с дефектами каркаса" представлены результаты исследований атомной и электронной структур, а также некоторых физических явлений углеродных НТН с различными типами дефектов Детально изучены дефекты типа БIV, 2У, "ай-йтег", N Кроме того, изложены новые результаты по нанокластерам сложной формы, таким как нанотрубные торы, бамбукоподобные НТН и гибридные соединения в виде закрытой нанотрубки с инкапсулированным углеродным нанокластером
Основу математического моделирования указанных выше типов дефектов и нанокластеров сложной формы составили соотношения (1)-(5), на которых базируется метод сильной связи Для всех перечисленных объектов, кроме ЛЧцефекга, характеристические параметры, необходимые для вычислений по соотношениям (1)-(5), также заимствованы из работ О Е Глуховой и А И Жбанова
Характеристические параметры, позволяющие моделировать С-И связь, были найдены как решения минимаксной задачи с ограничениями в следующей постановке
3
тт тах 5(л), где 8(а) = £
1=1
{г,} - множество С-Ы длин связей, {г°} - множество известных (расчетных
или экспериментальных) значений, А = (Ер,Урра
)-
>Ур,ж.РрР2>Рз>Р4>Р5>Рб вектор варьируемых параметров
Задача решалась методами параметрической оптимизации с построением на каждом шаге поверхности целевой функции с тем, чтобы рацио-
нальным изменением базисной точки "выйти" на глобальный минимум Множество {г,} находилось минимизацией полной энергии (1) кластера по координатам атома азота
Изложенное по своей сути представляет адаптацию метода сильной связи к исследованию Л/-дефекта Результаты решения минимаксных задач по поиску характеристических параметров приведены в таблицах 3 и 4
Таблица 3
Атомные термы и недиагональные матричные элементы гамильтониана_
Связь Es, эВ Ср, эВ VI, эВ VP°PCT.3B
C-N - -7,2 0 0 5,1 -7,1
Таблица 4
Параметры р„ функций, описывающих энергию межатомного взаимодействия
Связь Pi Р2 Рз Р4 Р5 Рб
C-N 3 2,32 1,54 22,9 4 8
Эти данные были использованы для изучения характеристик ряда C-N нанокластеров В таблице 5 приведены некоторые характеристики кластеров C9oN6 (нанокластер С9б типа zigzag, в котором шесть атомов углерода, расположенных по окружности, замещены шестью атомами азота) и ¿84N12 (замещено 12 атомов) Видно, что модуль Юнга снижается с появлением атомов азота, потенциал ионизации практически не меняется
Таблица 5
Энергетические характеристики C-N нанокластеров
Трубка Кол-во атомов Еет, эВ I, эВ Y, ТПа Yp, ТПа нм
С96 96 -42,70 6,59 1,08 0,37
C9oN6 96 -44,46 6,57 0,84 0,28
C84N12 96 -46,22 6,56 0,95 0,32
Далее, исследованы атомное строение, потенциал ионизации и модуль Юнга НТН с SW, 2V, "ad-dimer" (/4£>)-дефектами Установлено влияние ориентации дефекта относительно большей диагонали гексагона каркаса на строение и свойства кластера Это обусловило расширение группы рассматриваемых дефектов и объединение их в два класса SW¡-, 2V¡-, AD¡-дефекты и SW2-, 2Vr, ЛД2-дефекты Для первого класса дефектов характерна ориентация вдоль большей диагонали гексагона, для второго класса - под углом к большей диагонали (рис 9) В таблице 6 размещены значения потенциала ионизации НТН zigzag и armchair с дефектами обоих классов Для НТН zigzag можно утверждать, что эмиссионная способность НТН с каркасом типа zigzag практически не зависит от наличия (отсутствия) дефектов типа SW, 2V, "ad-dimer" Модуль Юнга кластеров zigzag и armchair с дефектами заметно меняется в диапазоне 0,35-1,7 ТПа
а б в
Рис 9 Нанокластер С96 (4,4) с дефектами a) SW, б) 2V, в)AD
Таблица 6
Потенциалы ионизации кластеров с дефектами_
Кол-во дефектов 0 1 2 0 1 2
Дефект SW, SfV2
I, эВ (6,0) 6,59 6,63 6,60 6,59 6,60 6,59
I, эВ (4,4) 6,26 6,24 6,28 6,26 6,39 6,50
Дефект 2V, 2V2
I, эВ (6,0) 6,59 6,58 6,58 6,59 6,62 6,64
I, эВ (4,4) 6,26 6,34 6,43 6,26 6,21 6,16
Дефект AD, ad2
I, эВ (6,0) 6,59 6,59 6,61 6,59 6,60 6,60
I, эВ (4,4) 6,26 6,47 6,64 6,26 6,23 6,34
Как уже отмечалось, получены новые результаты по нанокластерам сложной формы
Известным типом сложной формы нанотрубных кластеров является изгиб трубки, сопровождающийся появлением пентагонов в каркасе Такой тип усложнения принято называть тором Для нанотрубных торов группы симметрии DSd исследованы атомная и электронная структуры и установлено убывание энергии Еат с увеличением количества атомов в каркасе
Усложнение формы нанотрубных кластеров введением внутренних перемычек (бамбукоподобных тубулярных нанокластеров) приводит к повышению их механической прочности Например, с увеличением числа перемычек на единицу длины в НТН armchair (10,10) модуль Юнга возрастает на ~1 ТПа (см рис 10)
Число перемычек
Рис 10 Зависимость модуля Юнга У бамбукоподобной трубки от количества перемычек на единицу длины
Рис 11 Зависимость энергии взаимодействия тубелена Qo с полем капсулы от его положения (учтена симметрия капсулы)
Другой тип усложнения формы нанотрубного закрытого кластера (капсулы) путем инкапсуляции в него углеродного нанокластера С„ с минимальной деформацией капсулы (оптимально — нулевой) и под условием экзотермичности может привести к свободному движению (поступательному или вращательному) Сп При этом в капсуле всегда будут существовать две симметричные относительно центра капсулы потенциальные ямы (см рис 11, на котором z = 0 есть плоскость симметрии)
Основные результаты и выводы изложены в заключении. В соответствие с целью работы и сформулированными задачами, получены следующие результаты
1 Разработаны способ вычисления координат атомов моделей нерегулярных тубулярных нанокластеров различных конфигураций по трем линейным параметрам — трехпараметрический метод генерации атомной структуры, и методика расчета электронной структуры НТН, основу вычислительных процедур составил модифицированный метод сильной связи, адаптированный, в частности, для расчета атомной и электронной структур C-N тубулярных нанокластеров
2 Создан пакет вычислительных программ RING, позволяющий рассчитывать атомную и электронную структуры моделей НТН, потенциал ионизации, параметры упругости (модули Юнга и кручения), в том числе деформированных, дефектных и нанокластеров сложных форм
3 Тубулярные нанокластеры типа zigzag и armchair не имеют определенного значения потенциала ионизации, их эмиссионная способность определяется строением каркаса и его линейными размерами (длиной и в незначительной степени - диаметром) С появлением SW-, 2V-, "ad-dimer"'Reфектов в каркасе эмиссионная способность НТН типа zigzag практически не меняется, а НТН типа armchair меняется в некотором диапазоне, характерном для данных длины и диаметра каркаса
4 Высокой упругостью характеризуются бездефектные НТН длиной более 2,5 нм и диаметром ~ 1 нм, а также бамбукоподоные тубулярные нанокластеры
Основные результаты опубликованы в следующих работах:
Публикации в центральных изданиях, включенных в перечень периодических изданий ВАК РФ
1 О Е Глухова, О А Терентьев "Теоретическое изучение зависимостей модулей Юнга и кручения тонких однослойных углеродных нанотру-бок zigzag и armchair от геометрических параметров" // Физика твердого тела, 2006, т. 48, N 7, с 1329-1335
2 О Е. Глухова, О А Терентьев "Моделирование физических свойств углеродных нанотрубок" // Вестник ННГУ Математическое моделирование и оптимальное управление Изд-во Нижегородского ун-та, 2006, N 3 (32), с 64-75
3 О Е Глухова, А И Жбанов, О А Терентьев "Теоретическое изучение структуры и свойств углеродных нанокластеров по квантовой модели с применением теории симметрии" // Вестник ННГУ Математическое моделирование и оптимальное управление Изд-во Нижегородского унта, 2006, N 2 (31), с 37-46
Публикации в других изданиях
4 ОЕ Глухова, О.А Терентьев "Конструирование наноустройств на углеродных нанотрубках с локальными дефектами остова" // Сб. науч тр Российской школы-конференции молодых ученых и преподавателей «Биосовместимые наноструктурные материалы и покрытия медицинского назначения» Изд-во Белгород госуниверситета, 2006, с 119-122
5 ОЕ Глухова, OA Терентьев "Теоретическое исследование влияния дефектов каркаса на электронные и механические свойства углеродных нанотрубок'7/Вопросы прикладной физики Изд-во СГУ, 2006, N 13, с 81-86
6 О Е Глухова, А С Колесникова, О А Терентьев "Моделирование и теоретическое исследование бамбукоподобных углеродных нанотрубок" // Вопросы прикладной физики Изд-во СГУ, 2006, N 13, с. 86-88
7 О Е Глухова, О В Орлова, О А Терентьев "Влияние геометрических параметров на потенциал ионизации углеродной нанотрубки armchair" // Вопросы прикладной физики Изд-во СГУ, 2005, N 12, с 108-111
8 О Е Глухова, О А Терентьев "Теоретическое изучение электронной структуры и упругих свойств углеродных нанотрубок" // Сб тр 4-й межрегион молодежной науч школы "Материалы нано-, микро- и оп-тоэлектроники физические свойства и применение" Изд-во Мордовского гос университета имени H П Огарева, Саранск, 2005, с 21-24
9 OA Терентьев "Влияние дефектов на электронные и упругие свойства углеродных нанотрубок" // Материалы научной школы-конференции
«Нелинейные дни в Саратове для молодых - 2005» Изд-во Государственного учеб-науч центра «Колледж», Саратов, 2005, с 51-54
10 О Е Глухова, А И Жбанов, О А Терентьев "Теоретическое изучение влияния кривизны остова и незамкнутых связей концов на модуль Юнга и модуль кручения углеродных нанотрубок zigzag" // Проблемы оптической физики Материалы 8 Междун молодежной научной школы по оптике, лазерной физике и биофизике, Саратов, 2005, с 66-69
11 О Е Глухова, А И Жбанов, О А. Терентьев "Расчет механических свойств тонких углеродных нанотрубок малой длины с открытыми концами" // Вопросы прикладной физики Изд-во СГУ, 2004, N 10, с 72-75
12 О Е Глухова, А И Жбанов, О А Терентьев "Расчет упругих свойств углеродных нанотрубок малого диаметра" // Сб науч трудов Моделирование процессов в радиофизических и оптических устройствах Издательство "Научная книга", Саратов, 2003, с 52-55
13 ОЕ Глухова, А И Жбанов, О А Терентьев "Исследование зависимости потенциала ионизации однослойных углеродных нанотрубок от их длины" // Вопросы прикладной физики Изд-во СГУ, 2003, N 9, с 77-78
14 О Е Глухова, А И Жбанов, О А Терентьев "Теоретическое изучение упругих свойств однослойных углеродных нанотрубок" // Вопросы прикладной физики Изд-во СГУ, 2002, N 8, с 39-41
15 О Е Глухова, А И Жбанов, О А Терентьев "Генерирование и визуализация геометрической структуры однослойных углеродных нанотрубок" // Сб науч статей Моделирование в радиофизических устройствах ООО "Исток-С", Саратов, 2002, с 47-49
16 О Е Глухова, А И Жбанов, О А Терентьев "Упругие свойства однослойных углеродных нанотрубок" // Вопросы прикладной физики Изд-во СГУ, 2001, N7, с 57-59
Подписано в печать 13 04 2007 Формат 60x84 1/16 Бумага офсетная Печать трафаретная Объем 1,0 уел печ л Тираж 100 экз Заказ 50
Типография АВП «Саратовский источник»
Лиц ПД № 7-0014 от 29 мая 2000 г г Саратов, ул Университетская, 42, оф 106 т 52-05-93
ВВЕДЕНИЕ.
Глава 1. МЕТОДЫ РАСЧЕТА КОНФИГУРАЦИИ УГЛЕРОДНЫХ НЕРЕГУЛЯРНЫХ ТУБУЛЯРНЫХ НАНОКЛАСТЕРОВ.
1.1. Генерирование координат. Трехпараметрический метод.
1.2. Квантовая модель углеродных нанокластеров.
1.3. Алгоритм расчета геометрии и характеристик нанокластеров.
1.4. Пакет вычислительных программ RING.
1.5. Атомное строение и энергетика акиральных углеродных тубулярных нанокластеров.
Объектом исследования в диссертационной работе являются молекулярные цилиндрические поверхности (плотно упакованные атомными углеродными гексагонами), или короткие трубки, насчитывающие от нескольких десятков до нескольких сотен атомов. Подобные структуры по своей сути являются тубулярными нанокластерами. Эти тубулярные нанокластеры могут быть нерегулярными структурами из-за, например, краевых эффектов, возможных локальных дефектов в каркасе, деформации каркаса, а также изменения конфигурации атомного остова вдоль оси.
Выбор объекта исследования обусловлен широким применением таких структур в различных областях физики и техники, например, в качестве тончайших проводников электрического тока и автоэмиттеров, основы базового блока макроячейки с элементами памяти, гибких зондов в микроскопии, нановибраторов и др.
Вопросам изучения физических и химических свойств углеродных наноструктур, разработке математических моделей и их обоснованию, разработке методов исследования этих структур посвящены фундаментальные работы отечественных [1-15] и зарубежных [16-35] авторов.
Характерной особенностью изучаемого объекта, помимо уже отмеченной нерегулярности, является его непериодичность, что с необходимостью требует расчета атомного каркаса по нескольким линейным параметрам. Другими словами, нерегулярность и непериодичность тубулярных нанокласте-ров предполагает наличие математической модели, учитывающей краевые эффекты и деформации остова. Причинами последних могут быть внутренние перемычки (бамбукоподобная структура), изомеризация с поворотом С-С связи на 90° (изомеризация Стоуна-Велса, или £Ж-дефект), элиминирование двух атомов (2К-дефект) или допирование несколькими атомами углерода ("ad-dimer"-дефект), замещение атомов углерода атомами азота (iV-дефект) или других химических элементов.
Сформированные к настоящему времени методы расчета атомной и электронной структур и соответствующие им математические модели условно можно разбить на две группы. Методы первой группы эффективны для исследования нерегулярных, но периодических наноструктур (квазиодномерных кристаллов). К ним можно отнести, например, метод линейной комбинации атомных орбиталей и метод линейных присоединенных плоских волн, использующие континуальную модель структуры. При этом структура полимера воспроизводится трансляцией минимального фрагмента (элементарной ячейки), а влияние концевых эффектов исключается циклическими граничными условиями Борна-Кармана.
Другая группа методов (и математических моделей), основанная на теории групп точечной симметрии, молекулярно-динамических и квантово-химических моделях, допускают изучение нерегулярных непериодических нанообъектов. Несмотря на кажущуюся универсальность, методы этой группы из-за требуемых высоких затрат ресурсов компьютера, применяются, как правило, для изучения малоатомных кластеров. В связи с этим научный интерес представляет разработка "универсального" метода и эффективного программно-математического обеспечения, не требующего значительных затрат машинного времени для изучения атомной и электронной структур, свойств нерегулярных тубулярных нанокластеров (НТН) и физических явлений в них.
Акцент в диссертационной работе ставится на изучение эмиссионной способности и упругости НТН в силу практической важности именно этих свойств нанокластеров в электронных приборах. Известно, что в электрическом поле нанотрубки-автоэмиттеры могут растягиваться под действием пондеромоторной силы, что приводит к возрастанию коэффициента усиления поля на эмитирующих центрах и, как следствие, к увеличению плотности эмиссионного тока.
Таким образом, выбор объекта и направления исследований являются своевременными и актуальными, что и предопределило цель и задачи диссертации.
Целью диссертационной работы является исследование атомного и электронного строения углеродных нерегулярных тубулярных нанокластеров и физических явлений в них на математических моделях.
Достижение цели может быть реализовано решением следующих задач:
- разработка способа вычисления координат атомов моделей НТН различных конфигураций;
- разработка методики расчета электронной структуры НТН;
- разработка вычислительной программы расчета атомной и электронной структур, эмиссионной характеристики (ионизационного потенциала) и параметров упругости (модуля Юнга и модуля кручения) НТН;
- исследование влияние дефектов каркаса на электронное строение, эмиссионную способность и механические свойства НТН.
Методы исследования
Основу исследований составили математический аппарат квантовой химии и компьютерное моделирование.
Научная новизна результатов работы заключается в следующем:
1. Метод сильной связи адаптирован для расчета атомной и электронной структур C-N нерегулярных тубулярных нанокластеров [36].
2. Впервые установлена зависимость параметров упругости (модулей Юнга и кручения) от размеров (длины и диаметра) и строения НТН. Установлено, что большей упругостью отличаются кластеры длиной более 2,5 нм и диаметром ~ 1 нм [37-41].
3. Установлено, что с увеличением длины путем наращивания остова нанокластеров кольцами из гексагонов наблюдается монотонное убывание потенциала ионизации в НТН со структурой каркаса типа armchair. В случае увеличения длины путем наращивания остова нитями из атомов углерода наблюдаются затухающие осцилляции. Потенциал ионизации НТН со структурой каркаса типа zigzag монотонно убывает с увеличением длины независимо от способа наращивания остова [42-44].
4. Впервые количественно оценено влияние дефектов каркаса на электронную структуру, эмиссионную способность и упругость НТН [45-47].
5. Впервые показана высокая механическая прочность бамбукоподобных тубулярных нанокластеров на модели нанотрубных кластеров с внутренними перемычками [48].
6. Установлено влияние замещения атомов углерода атомами азота на ионизационный потенциал и параметры упругости: модуль Юнга снижается с появлением атомов азота, потенциал ионизации практически не меняется [36].
7. Показано, что наносистема С60(тубелен)@С450, образованная одностенной трубкой С450 и инкапсулированным тубеленом С6о, стабильна и может служить основой для создания наногироскопа или элемента памяти.
Достоверность полученных результатов обусловлена адекватностью математической модели нанокластеров физическим процессам, сравнением (где это было возможно) и удовлетворительным совпадением полученных результатов с опубликованными (в том числе - экспериментальными) в отечественной и зарубежной печати, результатами решения контрольных задач.
На защиту выносятся следующие положения и результаты:
1. Эмиссионная способность нерегулярных тубулярных нанокластеров с каркасом типа zigzag практически не зависит от наличия (отсутствия) дефектов типа SW, 2V, "ad-dimer".
2. Существует такое значение отношения диаметра к длине, или "точка насыщения", начиная с которого прекращается увеличение модуля Юнга с ростом линейных размеров (длины и/или диаметра) нерегулярных тубулярных нанокластеров со структурой каркаса zigzag и armchair.
3. Разработанные трехпараметрический метод генерации координат атомов каркаса по трем линейным параметрам и его программно-математическая реализация позволяют рассчитывать атомную и электронную структуры, потенциал ионизации и модули упругости бездефектных НТН с погрешностью не более 2%.
Научно-практическая значимость результатов
1. Результаты исследования зависимости потенциала ионизации НТН со структурой типа zigzag и armchair позволяют в качестве автоэмиттеров рекомендовать трубки длиной более 5 нм.
2. Наличие точки насыщения предопределяет условия создания тубулярных нанколастеров большой прочности: наибольшей упругостью будут характеризоваться трубки длиной более 2,5 нм и диаметром ~1 нм [37].
3. Разработанные и апробированные методики расчета атомной и электронной структур, параметров упругости и характеристики эмиссионной способности НТН могут служить базой для обоснованного научного прогнозирования свойств как коротких тубулярных наноструктур с появлением дефектов, так и протяженных (под условием циклических граничных условий Борна-Кармана).
Апробация работы и публикации. Основные результаты диссертации докладывались и обсуждались на 6 российских и международных конференциях:
- Российская школа-конференция молодых ученых и преподавателей «Биосовместимые наноструктурные материалы и покрытия медицинского назначения», Белгород, 25 сентября -1 октября 2006 г.;
- «Saratov Fall Meeting - SFM'06» X International School for Young Scientists and Students on Optics, Laser Physics & Biophysics, September 26 - 29, 2006, Saratov, Russia;
- Четвертая межрегиональная молодежная научная школа «Материалы на-но-, микро- и оптоэлектроники: физические свойства и применение», Саранск, 5-7 октября 2005 г.;
- «Saratov Fall Meeting - SFM'05» IX International School for Young Scientists and Students on Optics, Laser Physics & Biophysics, September 27 - 30, 2005, Saratov, Russia;
- Научная школа-конференция «Нелинейные дни в Саратове для молодых -2005»;
- «Saratov Fall Meeting-SFM'04» ИХ International School for Young Scientists and Students on Optics, Laser Physics & Biophysics, 2004, Saratov, Russia; и представлены в 16 печатных работах, 3 из которых - в изданиях, включенных в перечень рекомендуемых ВАК РФ.
Личный вклад автора состоит в развитии (адаптации) метода сильной связи для расчета атомной и электронной структур C-N нанокластеров, в разработке алгоритма расчета атомной структуры нанокластеров, создании пакета вычислительных программ; автор также принимал участие в обсуждении и интерпретации полученных результатов.
Структура и объем работы. Диссертационная работа состоит из введения, четырех глав, заключения и списка цитируемой литературы. Общий объем диссертации составляет 151 страницу, включая 46 рисунков, 26 таблиц, список литературы из 121 наименования и приложение.
ЗАКЛЮЧЕНИЕ
В соответствие с целью работы и сформулированными задачами, получены следующие результаты:
1. Разработаны способ вычисления координат атомов моделей нерегулярных тубулярных нанокластеров различных конфигураций по трем линейным параметрам - трехпараметрический метод генерации атомной структуры, и методика расчета электронной структуры НТН; основу вычислительных процедур составил модифицированный метод сильной связи, адаптированный, в частности, для расчета атомной и электронной структур C-N тубулярных нанокластеров.
2. Создан пакет вычислительных программ RING, позволяющий рассчитывать атомную и электронную структуры моделей НТН, потенциал ионизации, параметры упругости (модули Юнга и кручения), в том числе деформированных, дефектных и нанокластеров сложных форм.
3. Тубулярные нанокластеры типа zigzag и armchair не имеют определенного значения потенциала ионизации, их эмиссионная способность определяется строением каркаса и его линейными размерами (длиной и, в незначительной степени, - диаметром). С появлением SW-, 2V-, "ad-dimer"-дефектов в каркасе эмиссионная способность НТН типа zigzag практически не меняется, а эмиссионная способность НТН типа armchair меняется в некотором диапазоне, характерном для данных длины и диаметра каркаса.
4. Высокой упругостью характеризуются бездефектные НТН длиной более 2,5 нм и диаметра ~ 1 нм, а также бамбукоподоные тубулярные нанокластеры.
1. П.Н. Дьячков "Углеродные нанотрубки: строение, свойства, применения" М.: БИНОМ. Лаборатория знаний, 2006,293 с.
2. А.В. Елецкий "Углеродные нанотрубки и их эмиссионные свойства" // Успехи физических наук, 2002, Т. 172, N 4, с. 401-438.
3. Yu.E. Lozovik, A.M. Popov "Formation and growth of carbon nanostruc-tures: fullerenes, nanoparticles, nanotubes and cones" // Uspekhi Fizicheskikh Nauk, 1997, V. 40, N 7, P. 717-737.
4. И.В Запороцкова, Н.Г. Лебедев, Л.А. Чернозатонский "Электронное строение углеродных нанотрубок, модифицированных атомами щелочных металлов" // Физика твердого тела, 2004, Т. 46, N 6, с. 1137-1142.
5. Т.Л. Макарова "Электрические и оптические свойства мономерных и полимеризованных фуллеренов" // Физика и техника полупроводников, 2001, Т. 35, N3, с. 257-293.
6. Т.Л. Макарова "Магнитные свойства углеродных структур" // Физика и техника полупроводников, 2004, Т. 38, N 6, с. 641-664.
7. Ф.Н. Томилин, П.В. Аврамов, А.А. Кузубов, С.Г. Овчинников, Г.Л. Пашков "Связь химических свойств углеродных нанотрубок с их атомной и электронной структурами" // Физика твердого тела, 2004, Т. 46, N 6, с.1143-1146.
8. Е.Г.Гальперн, И.В.Станкевич, JI.A.Чернозатонский, АЛ.Чистяков "Структура и электронное строение барреленов" // Письма в ЖЭТФ, 1992, Т. 55, N8, с. 469-472.
9. С.В. Лисенков, И.В. Пономарева, Л.А. Чернозатонский "Базисная конфигурация Y-соединений однослойных углеродных нанотрубок симметрии D3h: структура и классификация" // Физика твердого тела, 2004, Т. 46, N 8, с. 1529-1534.
10. Н.Г. Лебедев, Л.А. Чернозатонский "Квантово-химические расчеты пьезоэлектрических характеристик боронитридных и углеродных нанотрубок" // Физика твердого тела, 2006, Т. 48, N 10, с. 1909-1915.
11. Е. Belova, L.A. Chemozatonskii "Mechanical properties of carbon nanotube bough junctions: A theoretical study" // Phys. Rev. В 2007, V. 75, P. 073412 (4).
12. B.A. Городцов, Д.С. Лисовенко "Об изменчивости упругих свойств многослойных углеродных нанотрубок" // Письма в ЖЭТФ, 2005, Т. 31, N 1, с. 35-41.
13. S. Iijima, Т. Ichihashi "Single-shell carbon nanotubes of l-nm diameter" // Nature 1993, V. 363, P. 603-605.
14. P.M. Ajayan, T.W. Ebbesen "Nanometre-size tubes of carbon" // Rep. Prog. Phys. 1997, V. 60, P. 1025-1062.
15. P.M. Ajayan "Nanotubes from Carbon" // Chem. Rev. 1999, V.99, N7, P. 1787-1799.
16. V.M. Harik "Mechanics of carbon nanotubes: applicability of the continuum-beam models" // Сотр. Mat. Sci. 2002, V. 24, N 3, P. 328-342.
17. M.S. Dresselhaus, G. Dresselhaus, P.C. Eklund "Science of fullerenes and carbon nanotubes" Academic Press, San Diego, С A, 1996.
18. П. Харрис "Углеродные нанотрубы и родственные структуры. Новые материалы XXI века" М.: Техносфера, 2003,336 с.
19. Ч. Пул мл., Ф. Оуэне "Нанотехнологии" М.: Техносфера, 2006,336 с.
20. М. Terrones "Production and characterization of novel fullerene-related materials: nanotubes, nanofibers and giant fullerenes" PhD thesis. Univ. Sussex, 1997,232 pp.
21. R. Saito, G. Dresselhaus, M.S. Dresselhaus "Physical properties of carbon nanotube" Imperial College Press, London, 1998,272 pp.
22. Y. Saito, S. Uemura "Field emission from carbon nanotubes and its application to electron sources" // Carbon 2000, V. 38, N 2, P. 169-182.
23. D. Tomanek, RJ. Enbody "Science and application of nanotubes" Kluwer Academic Publishers, 2002,397 pp.
24. T. Guo, P. Nikoleav, A.G. Rinzler, D. Tomanek, D.T. Colbert, R.E. Smalley "Self-assembly of tubular fullerenes" // J. Phys.Chem. 1995, V. 99, N 27, P.10694-10697.
25. W.K. Hsu, J.P. Hare, M. Terrones, H.W. Kroto, D.R.M. Walton, P.J.F. Harris "Condensed-phase nanotubes" //Nature 1995, V. 377, P. 687-687.
26. W.K. Hsu, J.P. Hare, M. Terrones, H.W. Kroto, D.R.M. Walton "Electrolytic formation of carbon nanostructures" // Chem. Phys. Lett. 1996, V. 262, N 12, P. 161-166.
27. R.S. Ruoff, D. Qian, W.K. Liu "Mechanical properties of carbon nanotubes: theoretical predictionsand experimental measurements" // C.R. Physique 2003, V. 4, N9, P. 993-1008.
28. D. Qian, W.K. Liu, R.S. Ruoff "Mechanics of Сад in nanotubes" // J. Phys. Chem. В 2001, V. 105, N 44. P. 10753-10758.
29. N. Sano, M. Chhowalla, D. Roy, G.A.J. Amaratunga "Viability of sub-0.4-nm diameter carbon nanotubes" // Phys. Rev. В 2002, V. 66, N 11, P. 113403 (4).
30. H.W. Kroto, A.W. Allaf, S.P. Baum "C60: Buckminsterfullerene" // Chem. Rev. 1991, V. 91, P. 1213-1235.
31. CAO Ze-Xian "Electronic Structure and Stability of C2o Isomers" // Chin. Phys. Lett. 2001, V. 18, N 8, P. 1060-1063.
32. G. Gao, T. £agin, W.A. Goddardlll "Energetics, structure, mechanical Mid vibrational properties of single-walled carbon nanotubes" // Nanotechnology, 1998, V. 9, N3, P. 184-191.
33. O.E. Глухова, O.A. Терентьев "Теоретическое исследование электронных и механических свойств C-N однослойных нанотрубок" // Физика волновых процессов и радиотехнические системы, 2007, Т. 10, N 3.
34. О.Е. Глухова, О.А. Терентьев "Теоретическое изучение зависимостей модулей Юнга и кручения тонких однослойных углеродных нанотрубокzigzag и armchair от геометрических параметров" // Физика твердого тела, 2006, Т. 48, N7, с. 1329-1335.
35. О.Е. Глухова, О.А. Терентьев "Моделирование физических свойств углеродных нанотрубок" // Вестник ННГУ. Математическое моделирование и оптимальное управление. Изд-во Нижегородского ун-та, 2006, N 3 (32), с. 6475.
36. О.Е. Глухова, А.И. Жбанов, О.А. Терентьев "Расчет механических свойств тонких углеродных нанотрубок малой длины с открытыми концами" //Вопросы прикладной физики. Изд-во СГУ, 2004, N 10, с. 72-75.
37. О.Е. Глухова, А.И. Жбанов, О.А. Терентьев "Теоретическое изучение упругих свойств однослойных углеродных нанотрубок" // Вопросы прикладной физики. Изд-во СГУ, 2002, N 8, с. 39-41.
38. О.Е. Глухова, О.В. Орлова, О.А. Терентьев "Влияние геометрических параметров на потенциал ионизации углеродной нанотрубки armchair" // Вопросы прикладной физики. Изд-во СГУ, 2005, N 12, с. 108-111.
39. О.Е. Глухова, А.И. Жбанов, О.А. Терентьев "Исследование зависимости потенциала ионизации однослойных углеродных нанотрубок от их длины" // Вопросы прикладной физики. Изд-во СГУ, 2003, N 9, с.77-78.
40. О.Е. Глухова, О.А. Терентьев "Теоретическое исследование влияния дефектов каркаса на электронные и механические свойства углеродных на-нотрубок" // Вопросы прикладной физики. Изд-во СГУ, 2006, N 13, с. 81-86.
41. О.А. Терентьев "Влияние дефектов на электронные и упругие свойства углеродных нанотрубок" // Материалы научной школы-конференции «Нелинейные дни в Саратове для молодых 2005» Изд-во Государственного учеб.-науч. центра «Колледж», Саратов, 2005, с. 51-54.
42. О.Е. Глухова, А.С. Колесникова, О.А. Терентьев "Моделирование и теоретическое исследование бамбукоподобных углеродных нанотрубок" // Вопросы прикладной физики. Изд-во СГУ, 2006, N 13, с. 86-88.
43. L. Goodwin "A new tight binding parametrization for carbon" // J. Phys.: Cond. Matter. 1991, V. 3, N 22, P. 3869-3873.
44. О.Е. Глухова, А.И. Жбанов "Равновесное состояние нанокластеров Сбо, С70, С72 и локальные дефекты молекулярного остова" // Физика твердого тела, 2003, Т. 45, N1, с. 180-186.
45. Т. Кларк "Компьютерная химия: Пер. с англ." М.: Мир, 1990,383 с.
46. А.И. Мелькер, Д.А. Корнилов "Молекулярно-динамическое исследование разрушения однослойных углеродных нанотрубок при растяжении" // Физика твердого тела, 2005, Т. 47, N 6, с. 979-985.
47. В.М. Локтев "Легированный фуллерит первый трехмерный органический сверхпроводник" // Физика низких температур, 1992, Т. 18, N 3, с. 217237.
48. Дж.А. Попл "Квантово-химические модели" // Успехи физических наук, 2002, Т. 172, N 3, с. 349-356.
49. A. Moewes, E.Z. Kurmaev, J.S. Tse, M. Geshi, M.J. Ferguson, V.A. Trofimova, Y.M. Yarmoshenko "Electronic structure of alkali-metal-doped M8Si46 (M=Na,K) clathrates" // Phys. Rev. В 2002, V. 65, N 15, P. 153106 (3).
50. У. Харрисон "Электронная структура и свойства твердых тел" М.: Мир, 1983, Т. 1,382 с.
51. J.R.D. Copley, D.A. Neumann, R.L. Cappelletti, W.A. Kamitakahara "Neutron scattering studies of C6o and its compounds" // Phys. Chem. Solids. 1992, V. 53, N11, P. 1353-1371.
52. Y. Wang, G.T. Hager, P.C. Eklund "Interband dielectric function of C^ and МбСбо (M=K,Rb,Cs)" // Phys. Rev. В 1992, V. 45, N 24, P. 14396-14399.
53. Z. Xin, Z. Jianjun, O.-Y. Zhong-can "Strain energy and Young's modulus of single-wall carbon nanotubes calculated from electronic energy-band theory" // Phys. Rev. В 2000, V. 62, N 20, P. 13692-13696.
54. J.P. Lu "Elastic properties of carbon nanotubes and nanoropes" // Phys. Rev. Lett. 1997, V. 79, N 7, P. 1297-1300.
55. K.M. Liew, X.Q. He, C.H. Wong "On the study of elastic and plastic properties of multi-walled carbon nanotubes under axial tension using molecular dynamics simulation" // Acta Materialia 2004, V. 52, N 9, P. 2521-2527.
56. M. Dequesnes, S.V. Rotkin, N.R. Aluru "Calculation of pull-in voltages for carbon-nanotube-based nanoelectromechanical switches" // Nanotechnology 2002, V. 13, N1, P. 120-131.
57. L. Shen, J. Li "Transversely isotropic elastic properties of single-walled carbon nanotubes" // Phys. Rev. В 2004, V. 69, P. 045414 (10).
58. O.E. Глухова, А.И. Жбанов, А.Г. Резков "Вращение внутренней оболочки наночастицы С2о@С8о" // Физика твердого тела, 2005, Т. 47, N 2, с. 376382.
59. Т. Hertel, R.E. Walkup, P. Avouris "Deformation of carbon nanotubes by surface van der Waals forces" // Phys. Rev. В 1998, V. 58, N 20, P. 13870-13873.
60. H.B. Хохряков, C.C. Савинский, Дж.М. Молина "Фононные спектры углеродных нанотрубок" // Письма в ЖЭТФ, 1995, Т. 62, N 7, с. 595-599.
61. Н.В. Хохряков, С.С. Савинский "Численный расчет электронного и колебательного спектров фуллерена С6о в параметрической модели сильной связи" // Физика твердого тела, 1994, Т, 36, N 12, с. 3524-3529.
62. O.E. Glukhova, A.I. Zhbanov, I.G. Torgashov, N.I. Sinitsyn, G.V. Torgashov "Ponderomotive forces effect on the field emission of carbon nanotube films" // Appl. Surf. Sci. 2003, V. 215, P. 149-159.
63. A. Rinzler, J.H.Hafner, P.Nikolaev, P. Nordlander, D.T.Colbert, R.E. Smalley, L. Lou, S.G. Kim, D. Tomanek "Unraveling Nanotubes: Field Emission from an Atomic Wire" // Science 1995, V. 269, P. 1550-1553.
64. Y.Saito, K.Hamaguchi, K.Hata , K.Uchida, Y.Tasaka, F.Ikazaki, M. Yumura, A. Kasuya, Y. Nishina "Conical beams from open nanotubes" // Nature 1997, V. 389, P. 554-555.
65. J.M. Bonard, T. Stockli, F.Maier, W.A.deHeer, A.Chatelain "Field-emission-induced luminescence from carbon nanotubes" // Phys. Rev. Lett. 1998, V. 81, N17, P. 1441-1444.
66. Y. Saito, S. Uemura, K. Hamaguchi "Cathode ray tube lighting elements with carbon nanotube field emitters" // Jpn. J. Appl. Phys. 1998, V. 37, N 3B, P. 346-348.
67. A. De Vita, J.C. Charlier, X. Blase, R. Car "Electronic structure at carbon nanotube tips" // Appl. Phys. A 1999, V. 68, N 3, P. 283-286.
68. H. Sugie, M. Tanemura, V. Filip, K. Iwata, K. Takahashi, F. Okuyama "Carbon nanotubes as electron source in an x-ray tube" // Appl. Phys. Lett. 2001, V. 78, N17, P. 2578-2580.
69. N.S. Lee, D.S. Chung, I.T. Han, J.H. Kang, Y.S. Choi, H.Y. Kim, S.H. Park, Y.W. Jin, W.K. Yi, M.J. Yun, et al. "Application of carbon nanotubes to field emission displays" // Diamond Rel. Mater. 2001, V. 10, N 2, P. 265-270.
70. R.H. Baughman, A.A. Zakhidov, W.A. de Heer "Carbon nanotubes-the route toward applications" // Science. 2002, V. 297, P. 787-792.
71. W.B. Choi, E. Bae, D. Kang, S. Chae, B. Cheong, J. Ко, E. Lee, W. Park "Aligned carbon nanotubes for nanoelectronics" // Nanotechnology 2004, V. 15, N10, P. 512-516.
72. U. Lindefelt "Resonances and rotation symmetries in the conductance of armchair carbon nanotubes with extended defect pairs" // Phys. Rev. B. 2005, V. 72, N15. P. 153405(4).
73. W. Guo, W. Zhong, Y. Dai, S. Li "Coupled defect size effects on interlayer friction in multiwalled carbon nanotubes" // Phys. Rev. В 2005, V. 72, N7, P. 075409 (10).
74. Q. Zhang, H. Yang, C. Zhang, Z. Ma "Shot noise and conductance in metallic carbon nanotubes in the presence of correlated defects" // Phys. Rev. В 2006, V. 73, N23, P. 235438(6).
75. J.-M. Bonard, J.-P. Salvetat, T. Stockli, L. Forro, A. Chatelain "Field emission from single-wall carbon nanotube films" // Appl. Phys. Lett. 1998, V. 73, N 7, P. 918-920.
76. S. Suzuki, C. Bower, Y. Watanabe, O. Zhou "Work functions and valence band states of pristine and Cs-intercalated single-walled carbon nanotube bundles" // Appl. Phys. Lett. 2000, V. 76, N 26, P. 4007-4009.
77. S. Hanand, J. Ihm "Role of the localized states in field emission of carbon nanotubes" // Phys. Rev. В 2000, V. 61, N 15, P. 9986-9989.
78. M.J. Treacy, T.W. Ebbsen, J.M. Gibson "Exceptionally high Young's modulus observed for individual carbon nanotubes" // Nature 1996, V. 381, P. 678680.
79. A. Krishnan, E. Dujardin, T.W. Ebbesen, P.N. Yianilos, M.M.J. Treacy "Young's modulus of single-walled nanotubes" // Phys. Rev. В 1998, V. 58, N 20, P. 14013-14019
80. E.W. Wong, P.E. Sheehan, C.M. Lieber "Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes" // Science 1997, V. 277, P. 1971-1975.
81. J.-P. Salvetat, G.A.D. Briggs, J.-M. Bonard, R.R. Bacsa, A.J.Kulik, T. Stockli, N.A. Burnham, L. Forro "Elastic and shear moduli of single-walled carbon nanotube ropes" // Phys. Rev. Lett. 1999, V. 82, N 5, P. 944-947.
82. C.F. Cornwell, L.T. Wille "Elastic properties of single-walled carbon nanotubes in compression" // Solid State Comm. 1997, V. 101, N 8, P. 555-558.
83. B.I. Yakobson, C.J. Brabec, J. Bernholc "Nanomechanics of carbon tubes: instabilities beyond linear response" // Phys. Rev. Lett. 1996, V. 76, N14, P. 25112514.
84. E. Hernandez, C. Goze, P. Bernier, A. Rubio "Elastic properties of С and BxCyNz composite nanotubes" // Phys. Rev. Lett. 1998, V. 80, N 20, P. 4502-4505.
85. Л.Д. Ландау, E.M. Лившиц. Теоретическая физика. T.7. Теория упругости. М. 2001.
86. P.L. McEuen, M.S. Fuhrer, H. Park "Single-walled carbon nanotube electronics" // IEEE Transaction on Nanotechnology 2002, V. 1, N 1, P. 78-85.
87. J.-M. Bonard, Th. Stockli, O. Noury, A. Chatelain "Field emission from cylindrical carbon nanotube cathodes: Possibilities for luminescent tubes" // Appl. Phys. Lett. 2001, V. 78, N 18, P. 2775-2777.
88. N. Abanshin, E. Muchina, N. Nikishin, B. Gorfinkel, A. Kastalsky, D. Kru-sos, F. DiSanto, S. Shokhor "New field emission display technology" // IVeSC 2002, Proceedings, Supplement, Saratov, Russia, July 15-19,2002, P. 13-14.
89. W.B. Choi, D.S.Chung, J.H.Kang, H.Y.Kim, Y.W.Jin, I.T.Han, Y.H. Lee, J.E. Jung, N.S. Lee, G.S. Park, J.M. Kim "Fully sealed, high-brightness carbon-nanotube field-emission display" // Appl. Phys. Lett. 1999, V. 75, N20, P. 3129-3131.
90. V.H. Crespi, M.L. Cohen "/« situ band gap engineering of carbon nanotubes" // Phys. Rev. Lett. 1997, V. 79, N 11, P. 2093-2096.
91. S.G. Louie "Electronic properties, junctions, and defects of carbon nanotubes" // Topics in Applied Physics (Carbon Nanotubes) 2001, V. 80, P. 113-145.
92. J.W.G. Wildoer, L.C. Venema, A.G. Rinzler, R.E. Smalley,C. Dekker "Electronic structure of atomically resolved carbon nanotubes" // Nature 1998, V. 391, P. 59-62.
93. Y. Miyamoto, A. Rubio, S. Berber, M. Yoon, D. Tomanek "Spectroscopic characterization of Stone-Wales defects in nanotubes" // Phys. Rev. В 2004, V. 69, N12, P. 121413(4).
94. J.-P. Salvetat, J.-M. Bonard, N.H. Thomson, A.J. Kulik, L. Forro, W. Benoit, L. Zuppiroli "Mechanical properties of carbon nanotubes" // Appl. Phys. A 1999, V. 69, N3, P. 255-260.
95. B.B. Белавик, A.B. Окотруб, Л.Г. Булушева "Исследование влияния дефектности на электронное строение углеродных нанотруб по данным рентгеновской спектроскопии и квантовой химии" // Физика твердого тела, 2002, Т. 44, N4, с. 638-640.
96. D.-H. Oh, J.M. Park, K.S. Kim "Structures and electronic properties of small carbon nanotube tori" // Phys. Rev. В 2000, V. 62, N 3. P. 1600-1603.
97. L. Liu, C.S. Jayanthi, S.Y. Wu "Structural and electronic properties of a carbon nanotorus: Effects of delocalized and localized deformations" // Phys. Rev. В 2001, V. 64, N3, P. 033412(4).
98. V. Meunier, Ph. Lambin, A.A. Lucas "Atomic and electronic structures of large and small carbon tori" // Phys. Rev. В 1998, V 57, N 23, P. 14886-14890.
99. J. Chen, Y. Li , Y. Ma , Y. Qin, L. Chang "Formation of bamboo-shaped carbon filaments and dependence of their morphology on catalyst composition and reaction conditions" // Carbon 2001, V. 39, N 10, P. 1467-1475.
100. X. Wang, W. Hu , Y. Liu, C. Long , Y. Xu, S. Zhou, D. Zhu, L. Dai "Bamboo-like carbon nanotubes produced by pyrolysis of iron(II) phthalocyanine" // Carbon 39, V. 2001, P. 1533-1536.
101. S. Ihara, S. Itoh "Helically coiled cage forms of graphitic carbon" // Phys. Rev. В 1993. V. 48, N 8, P. 5643-5647.
102. M. Otani, S. Okada, A. Oshiyama "Energetics and electronic structures of one-dimensional fullerene chains encapsulated in zigzag nanotubes" // Phys. Rev. В 2003. V. 68, N 12. P. 125424 (8).
103. E.G.Noya, D. Srivastava, L.A. Chernozatonskii, M. Menon "Thermal conductivity of carbon nanotube peapods" // Phys. Rev. В 2004. V. 70, N11, P. 115416(5).
104. T. Pichler, X. Liu, M. Knupfer, J. Fink "Electronic properties of intercalated single-wall carbon nanotubes and Сбо peapods" // New Journal of Physics 2003. V. 5, P. 156.1-156.23
105. J. Lu, S. Nagase, S. Zhang, L. Peng "Strongly size-dependent electronic properties in Ceo-encapsulated zigzag nanotubes and lower size limit of carbon nanopeapods" // Phys. Rev. В 2003. V. 68, N 12. P. 121402 (4).
106. K.S. Troche, V.R. Coluci, S.F. Braga, D.D. Chinellato, F. Sato, S.B. Legoas, R. Rurali, D.S. Galvao "Prediction of ordered phases of encapsulated Сбо, C70, mid C78 inside carbon nanotubes" // Nano Lett. 2005. V. 5, N 2, P. 349-355.
107. I. Ponomareva, L.A. Chernozatonskii, A.N. Andriotis M. Menon "Formation pathways for single-wall carbon nanotube multiterminal junctions" // New Journal of Physics 2003, V. 5,P. 119.1-119.12.
108. R. Egger, B. Trauzettel, S. Chen, F. Siano "Transport theory of carbon nanotube Y junctions" // New Journal of Physics 2003. V. 5, P. 117 (14).
109. C.H. Lee, К.Т. Kang, K.S.Park, M.S. Kim, H.S.Kim, H.G. Kim, J.E. Fischer, A.T. Johnson "The nano-memory devices of a single wall and peapod structural carbon nanotube field effect transistor" // Jpn. J. Appl. Phys. 2003. V. 42, N 8, P. 5392-5394.
110. M. Krause, M. Hulman, H. Kuzmany, O. Dubay, G. Kresse, K. Vietze, G. Seifert, C. Wang, H. Shinohara "Fullerene quantum gyroscope" // Phys. Rev. Lett. 2004. V. 93, N 13. P. 137403 (4).
111. M.C. dos Santos, F. Alvarez "Structure and property relationships of amorphous CNX: a joint experimental and theoretical study" // Braz. J. Phys. 2000. V. 30, N 3, P. 499-507.
112. S. Itoh, S. Ihara, J. Kitakami "Toroidal form of carbon C360" // Phys. Rev. В 1993. V. 47, N3, P. 1703-1704.
113. Y-K. Kwon, D. Tomanek, S. Iijima ""Bucky shuttle" memory device: synthetic approach and molecular dynamics simulations" // Phys. Rev. Lett. 1999, V. 82, N7, P. 1470-1473.
114. О.Е. Глухова, А.А. Дружинин, А.И. Жбанов, А.Г. Резков "Структура фуллеренов высоких групп симметрии" // Журнал структурной химии, 2005, Т. 46, N3, с. 514-520.