Радиационно-столкновительные модели в задачах расчета интенсивности излучения ударных волн тема автореферата и диссертации по механике, 01.02.05 ВАК РФ
Дикалюк, Алексей Сергеевич
АВТОР
|
||||
кандидата физико-математических наук
УЧЕНАЯ СТЕПЕНЬ
|
||||
Москва
МЕСТО ЗАЩИТЫ
|
||||
2013
ГОД ЗАЩИТЫ
|
|
01.02.05
КОД ВАК РФ
|
||
|
005532251
На правах рукописи
ДИКАЛЮК Алексей Сергеевич
РАДИАЦИОННО-СТОЛКНОВИТЕЛЬНЫЕ МОДЕЛИ ЗАДАЧАХ РАСЧЕТА ИНТЕНСИВНОСТИ ИЗЛУЧЕНИЯ УДАРНЫХ
ВОЛН
01.02.05 - Механика жидкости, газа и плазмы
АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата физико-математических наук
2 9 АВГ 2013
Москва 2013
005532251
Работа выполнена в Федеральном государственном бюджетном учреждении науки Институте проблем механики им. А.Ю. Ишлинского Российской Академии Наук (ИПМех РАН)
Научный руководитель: член-корреспондент РАН, профессор
Суржиков Сергей Тимофеевич
Официальные оппоненты: доктор физико-математических наук, профессор
Ведущая организация: Центральный аэрогидродинамический институт им. профессора Н.Е. Жуковского
Защита состоится 19 сентября 2013 года в 1500 часов на заседании диссертационного совета Д002.240.01 при Институте проблем механики им. А.Ю. Ишлинского РАН по адресу: 119526, Москва, проспект Вернадского, д.
101, к. 1.
С диссертацией можно ознакомиться в библиотеке ИПМех РАН.
Автореферат разослан «|3» августа 2013 года.
Ученый секретарь диссертационного совета Д002.240.01 при ИПМех РАН
Райзер Юрий Петрович
доктор технических наук Залогии Георгий Николаевич
кандидат физико-математических наук
Сысоева Е.Я.
ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ
Актуальность работы. С развитием и распространением в последнее десятилетие оптической диагностической техники (ICCD-камеры, высокоскоростные камеры) во многих лабораториях мира продолжились на новом этапе систематические исследования в области регистрации излучения газов, нагретых ударными волнами. В этих исследованиях измеряются излучательные характеристики ударных волн, создаваемых в широком диапазоне параметров и распространяющихся по газовым смесям различного химического состава.
Для описания результатов этих экспериментов необходимо привлечение различных физико-химических и кинетических моделей в силу многообразия явлений, протекающих за фронтом ударной волны. Среди этих явлений такие как: колебательная релаксация; неравновесная диссоциация, а так же другие химические превращения; ионизация и неравновесное возбуждение излучающих электронных состояний молекул, атомов и ионов. При этом, в силу высокой чувствительности исследуемой величины спектральной излучательной способности к каждой составляющей, возможна не только отработка моделей отдельных элементарных процессов, но и тестирование того, как эти модели сочетаются друг с другом.
Комплексное расчетно-экспериментальное исследование проблемы излучения ударных волн позволит не только лучше понять структуру релаксационной зоны за фронтом ударной волны, но и выработать рекомендации для инженеров, выполняющих сложные газодинамические расчеты в области оценки конвективных и радиационных тепловых потоков к поверхности спускаемых космических аппаратов нового поколения, создаваемых в настоящее время. Таким образом, построение и тестирование моделей для описания излучения газов, нагретых ударной волной, является актуальной фундаментальной и прикладной задачей.
Данная работа является продолжением аналитических и теоретико-вычислительных исследований в области изучения излучения и структуры ударных волн, выполненных советскими и российскими учеными (в алфавитном порядке): Биберман Л.М., Гордиец Б.Ф., Горелов В.А., Железняк М.Б., Залогин Г.Н., Зельдович Я.Б., Киреев А.Ю., Кузнецов Н.М., Лосев С.А., Макаров В.Н., Мнацаканян А.Х., Осипов А.И., Погосбекян М.Ю., Райзер Ю.П., Старик A.M., Ступоченко Е.В., Якубов И.Т.
Цель работы заключается в разработке и тестировании модели для описания излучения ударных волн, путем сравнения с соответствующими современными экспериментальными данными, а так же в выполнении численных исследований влияния различных составляющих модели на исследуемую величину.
Научная новизна работы заключаются в следующем:
1. Разработана расчетно-теоретическая модель сильных ударных волн (скорость ударной волны Vsh ~ 4-8 км/с), в которой учитываются процессы физико-химической кинетики, возбуждения электронных состояний частиц и неравновесное излучение из релаксационной зоны. Показана применимость модели для атмосферных газов Земли и Марса в условиях экспериментов, выполненных в 2010-2012 гг. в НИИ Механики МГУ и научном центре NASA (NASA Ames);
2. Разработана новая модель и выполнены расчеты констант скоростей возбуждения электронных состояний двухатомных молекул и ионов за фронтом ударной волны. Модель основана на использовании соотношений теории Бете-Борна (теория возмущения волновой механики применительно к задаче рассеяния) и результатов квантовомеханических расчетов коэффициентов Эйнштейна Avv- Дана формулировка кинетического механизма заселения электронно-возбужденных состояний (CN(A2ri), CN(B2£+), C2(d3n), СО(А'П), NO(A2S+), Ш(В2П), NO(C2IT), Nj(A3I), N2(B3n), N2(C3n), N2+(B2£)) в релаксационной зоне ударной волны;
3. С использованием разработанной физико-химической и радиационно-столкновительной модели получены данные по абсолютным величинам спектральной излучательной способности сильных ударных волн и закономерностям их изменения в зависимости от скорости ударной волны и давления исследуемого газа;
4. Выполнено систематическое исследование закономерностей изменения неравновесного излучения сильных ударных волн в атмосферах газов N2-02, C02-N2 и CH4-N2 применительно к условиям выполненных экспериментов на ударных трубах;
5. Выполнено исследование по лабораторному моделированию неравновесного излучения сильных ударных волн посредством контролируемого подбора параметров плазмы тлеющего разряда и решена двумерная задача о структуре соответствующего нормального тлеющего разряда.
Основными защищаемыми положениями и результатами являются:
1. Результаты расчетно-теоретических исследований по абсолютным величинам спектральной интенсивности неравновесного излучения сильных ударных волн в газовых смесях N2-02, C02-N2 и CH4-N2.
2. Применение разработанной модели для обработки результатов современных ударноволновых экспериментов по регистрации излучения различных газовых смесей в широком диапазоне параметров. Сравнение
расчетных и экспериментальных данных в абсолютных единицах, анализ расхождений;
3. Количественная оценка влияния различных факторов и упрощающих предположений на точность результатов, получаемых с использованием предложенной модели;
4. Приближенная ab-initio квантовомеханическая методика для расчета констант скоростей возбуждения электронно-колебательных и электронных состояний двухатомных молекул и ионов электронным ударом.
Практическая значимость. Построенная в работе модель, а так же сформулированные механизмы кинетики возбуждения могут быть использованы при расчетах излучения ударных волн или при расчетах радиационных тепловых потоков к поверхности спускаемых космических аппаратов. Описанные расчетные методы могут быть использованы для выполнения расчетов химической кинетики. Выполненные оценки влияния различных факторов на точность предсказания излучательных характеристик ударнонагретрых газов позволяют получить представление о типичной точности соответствующих расчетов, выполняемых в настоящее время.
Научные исследования, проведенные в диссертационной работе, осуществлялись в рамках проектов РФФИ № 10-01-00544, 10-01-00468-а, 11-08-12072-офи-м, 09-08-00272а; федеральной целевой программы «Научные и научно-педагогические кадры инновационной России» 2010-1.1-112-024-055; 7ой Европейской рамочной программы (FP7/2007-2013) грант №242311 и программы фундаментальных исследований Российской Академии Наук.
Достоверность результатов диссертации подтверждается физической обоснованностью постановок задач и строгим аналитическим характером их рассмотрения с применением современных теоретических концепций и математических средств физической и химической механики, сравнением собственных численных результатов с расчетами других авторов, а так же соответствием расчетных и экспериментальных данных.
Апробация работы. Основные результаты работы докладывались и обсуждались на всероссийских и международных профильных научных конференциях и семинарах:
1. International School of Quantum Electronics, 53rd Course Molecular Physics and Plasmas in Hypersonics, Ettore Majorana Centre, Erice, Sicily (Italy), 8-15 September 2012.
2. 44 AIAA Thermophysics Conference, 24 - 27 June 2013, San Diego, California.
3. 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 09 - 12 January 2012, Nashville, Tennessee.
4. 41st AIAA Plasmadynamics and Laser conference, 28 June - 1 July 2010, Chicago, Illinois.
5. 4th International Workshop on Radiation of High Temperature Gases in Atmospheric Entry. Lausanne, Switzerland, 12- 15 October, 2010.
6. Семинар «Физико-химическая кинетика в газовой динамике», НИИ Механики МГУ им. М.В. Ломоносова, Москва, 01.11.2012.
7. Всероссийская научно-техническая конференция молодых ученых и специалистов «Новые решения и технологии в газотурбостроении», 5-8 октября, ЦИАМ, Москва, 2010.
8 XVIII Школы-семинара молодых ученых и специалистов под руководством акад. РАН А.И. Леонтьева «Проблемы газодинамики и тепломассообмена в новых энергетических технологиях».
9. Международный симпозиум по радиационной плазмодинамике, Москва, Московский государственный технический университет имени Н.Э. Баумана, 2012 г.
10. Всероссийская школа-семинар «Аэрофизика и физическая механика классических и квантовых систем» (АФМ), Москва, Институт проблем механики им. А.Ю. Ишлинского РАН, 2008-2012;
11. Научная конференция МФТИ, Москва-Долгопрудный, Московский Физико-Технический Институт, 2011-2012 гг;
12. Научный семинар профессора В.В. Лунева в ЦНИИМАШ.
Публикации. По теме диссертации опубликовано 14 печатных работ, в том числе 2 статьи в журналах из перечня Высшей аттестационной комиссии РФ. Список работ приведен в конце автореферата.
Структура и объем работы. Диссертация состоит из введения, 8 глав, заключения и списка литературы. Общий объем работы составляет 140 страниц, включая 64 рисунка и 10 таблиц. Список литературы содержит 121 наименование.
СОДЕРЖАНИЕ РАБОТЫ
Во введении обоснована актуальность темы исследований. Сформулирована цель и задачи диссертационной работы, перечислены представленные в диссертации новые результаты, их практическая ценность и положения, выносимые на защиту. Кратко изложена структура диссертации.
В первой главе приводится обзор работ посвященных использованию радиационно-столкновительных моделей для описания различных неравновесных систем, а так же современных экспериментальных работ, посвященных регистрации излучения газов, нагретых ударной волной.
В первой части этой главы рассматриваются многотемпературный (МТ) и радиационно-столкновительный (ЯС) подходы для описания состояния неравновесной системы. Обсуждаются преимущества и недостатки каждого из них. Вводится классификация ЫС-моделей по уровням сложности и затратам машинного времени. Отдельно рассматриваются работы, посвященные описанию релаксационной зоны за фронтом ударной волны, а так же излучения, испускаемого из нее, с использованием ЯС-моделей. Проводится обзор работ, посвященных описанию других неравновесных систем (пограничный слой у поверхности тела, обтекаемого гиперзвуковым потоком, сопловые течения, газоразрядная плазма) с использование радиационно-столкновительных моделей.
Во второй части первой главы проводится обзор современных экспериментальных исследований, посвященных измерению излучения газов, нагретых ударной волной. Подчеркивается, что интерес к данному кругу задач в мире возрос в последнее десятилетие в связи с развитием регистрирующего оптического оборудования (ТССВ/ССБ-камеры, высокоскоростные камеры). Особое внимание уделяется работам, в которых проводилась регистрация излучения в абсолютных единицах измерения, так как адекватное тестирование создаваемых ЯС-моделей возможно только с привлечением этих результатов. Отмечается, что в настоящее время исследуются различные газовые смеси (С02-К2, СНгИг, Ог-Иг) в лабораториях, расположенных в России, США, Европе, Японии, Австралии. Описываются неравновесные радиационные характеристики, которые измеряются в современных работах. В этой части работы в виде графиков представлен обзор данных по наборам параметров (скорость ударной волны - давление исследуемого газа р), для которых выполнены эксперименты по регистрации излучения ударных волн за прошедшие пятнадцать лет (так же известны как матрицы экспериментальных параметров).
Компьютерная модель, развиваемая в данной работе, предназначена для расчета неравновесного излучения различных газовых смесей, нагретых ударной волной. В данную модель включаются различные элементы. Наиболее важными, с точки зрения качества описания рассчитываемой величины,
являются механизмы химической кинетики за фронтом ударной волны, а так же еЯС-модель заселения электронных возбужденных излучающих состояний молекул и их ионов. Тестирование модели выполнено путем сравнения с результатами современных экспериментальных измерений. Развитие такого подхода позволяет надеяться на более точное качественное и количественное описание процессов неравновесного излучения за фронтом ударных волн.
Во второй главе формулируются основные положения и уравнения модели для расчета излучения ударных волн. Среди них: система уравнений для расчета газодинамических параметров за фронтом ударной волны, дополненная термическим уравнением состояния многокомпонентного химически реагирующего газа; система уравнений химической кинетики для расчета концентраций химических компонент газовой смеси (определяются на основе механизма химической кинетики) и заселенностей электронных возбужденных состояний молекул и их ионов (определяются на основе еЯС-модели); уравнение колебательной релаксации для расчета температуры колебательных мод молекул; уравнение баланса энергии свободных электронов для расчета соответствующей температуры. Температура газа свободных электронов используется на кинетической стадии расчета. С использованием этой температуры рассчитываются константы скорости процессов, в которых участвуют электроны. Приведено описание созданных и используемых баз данных.
Уравнения, описанные выше, составляют вместе систему уравнений кинетической стадии расчета. Результаты, полученные на этой стадии, выступают в качестве входных параметров для стадии, на которой рассчитывается собственно величина интенсивности излучения в абсолютных единицах. При этом предполагается, что излучение не влияет на распределение параметров в релаксационной зоне (не влияет на результаты кинетической стадии расчетов). Таким образом, полная система уравнений модели (в системе отсчета, связанной с фронтом ударной волны) выглядит следующим образом:
0;
МЛ,
Р =
л/.
£
сЬс рЯТ Му
—
= 0
(1)
А,
= ¿.ад; «7, = «Д<
£1
л
Н,
м
I м 1 м 1 (=1
<9,
ехр(^./Гм)-1
¿е
—2- = От +От . - УУТ Т Ист-ш
(2)
(3)
(4)
(7)
Здесь р, р, и, Л - давление, плотность, скорость и энтальпия газа в релаксационной зоне, Я - универсальная газовая постоянная, ЫА - постоянная Авогадро, Мг - молярная масса газовой смеси, г?, - молярная масса химической компоненты газовой смеси, т, - масса молекулы, х, - относительная концентрация химической компоненты газовой смеси, - полное число химических компонент газовой смеси, + - число молекулярных
компонент газовой смеси, - число линейных молекулярных компонент газовой смеси, - число нелинейных молекулярных компонент газовой
смеси, - число колебательных мод данной молекулярной компоненты
газовой смеси, g(; - вырожденность ./-ой колебательной моды 1-ой молекулярной компоненты, в9 - характеристическая температура ;'-ой колебательной моды г'-ой молекулярной компоненты, Ту ц - температура /-ой колебательной моды /-ой молекулярной компоненты, - энтальпия
образования вещества при 298,15 К, Хк - молярная объемная концентрация кой компоненты газовой смеси, Л^ - полное количество химических компонент (включая учитываемые в качестве отдельных компонент электронные возбужденные излучающие состояния молекул и их ионов), аЪи -
стехиометрические коэффициенты прямых и обратных реакций, Ц к к^ -константы скорости прямых и обратных реакций, ет = [ехр(0„ / Ту
)-Г -
количество колебательных квантов т-ой колебательной моды при температуре, Т¥а, вт - характеристическая температура ш-ой моды, О^ - слагаемое, описывающее скорость изменения количества колебательных квантов т-ой моды вследствие обмена энергии между поступательными и колебательными степенями свободы, 0£у - слагаемое, описывающее скорость изменения количества колебательных квантов т-ой моды вследствие протекания химических реакций, Те - температура свободных электронов в смеси, ()е/, Qe,, О, » > 0о„> в (6) ■ источниковые слагаемые, описывающие процессы обмена энергией при упругих электронно-ионных столкновениях, упругих электронно-атомных столкновениях, в реакциях ассоциативной ионизации и
диссоциативной рекомбинации, ионизации атомов электронным ударом, при электронно-колебательном взаимодействии, Neel - заселенность излучающего
электронного состояния [см"3], а> = 104 /Л - волновое число [см'1], Л - длина волны [мкм], аг,у. - волновое число электронно-колебательного перехода, Eeel(V) - колебательная энергия V'-ro уровня возбужденного электронного состояния, ABy = By.-Ву,, BY„ Bv. - вращательные постоянные соответствующих электронно-колебательных уровней, QVR - колебательно-вращательная статистическая сумма возбужденного электронного состояния, Ту, Т„ - колебательная и вращательная температуры соответственно, Srv. • сила электронно-колебательного перехода. При расчете излучения с использованием модели перекрывающихся линий (7) TR=T. Колебательная температура Ту электронного возбужденного излучающего состояния молекулы полагается равной колебательной температуре основного электронного состояния этой молекулы. Величина Sv,r. определяется с использованием ab-initio коэффициентов Эйнштейна. База данных [1] коэффициентов Эйнштейна создана в результате анализа многочисленных ab-initio квантовомеханических расчетов и верифицирована в работах Кузнецовой JI.A. и Суржикова С.Т. [2, 3].
В соответствии с соотношениями системы уравнений (1)-(7) на рис. 1 приведено схематическое изображение влияния различных неравновесных процессов друг на друга в релаксационной зоне за фронтом ударной волны. Согласно этому рисунку в модель включено взаимное влияние процессов колебательной релаксации и химических превращений. Влияние колебательной релаксации на химическую кинетику учтено в соответствии с моделями неравновесной диссоциации (использовались подходы, созданные в работах Осипова А.И. и Лосева С.А. [4]):
k(T,Ty) = Z(T,Ty)-k\T) (8)
Здесь к(Т,Т) и к°(Т) - соответствующие неравновесная и равновесная константы' скорости диссоциации, Z(T,Ty) - фактор неравновесно™. Существует множество моделей [5], которые могут быть использованы для расчета этой величины. В данной работе для этого была применена модель диссоциации ангармонического осциллятора Кузнецова Н.М.
Учет влияния химической кинетики на колебательную релаксацию выполнен с использованием модели Тринора-Мэррона [6].
Третья глава посвящена численным методам, положенным в основу компьютерных кодов, реализующих модель, описанную во второй главе. Условно третью главу можно разделить на две части.
В первой части рассматривается маршевый метод решения системы газодинамических уравнений, описывающих течение газа в релаксационной
зоне за фронтом ударной волны в системе отсчета, связанной с фронтом ударной волны.
Во второй части описан неявный метод решения жестких систем уравнений вида:
— = ?&) (9)
ск
Здесь х =(х,.....хп)т - вектор неизвестных размерностью п, Г(х) - вектор
правых частей. Система нелинейных дифференциальных уравнений (9) переписывается следующим образом:
^^ = ]?(?) (Ю)
г
Для решения дискретизованной системы (10) используется метод квазилианеризации.
Так же, в диссертации описан один из возможных методов автоматического выбора временного шага для численного решения системы (10), основанный на условии диагонального преобладания.
В четвертой главе приведены механизмы химической кинетики, определяющие протекание химических реакций в газовых смесях СОг-Ыг, N2-02 и СНсИг. Наряду с механизмами и соответствующими им параметрами, включенными в еИС-модель, адекватные механизмы химической кинетики являются определяющими при расчетах спектральной интенсивности излучения в абсолютных единицах. В рассматриваемой главе приводятся таблицы, в которые включены химические реакции и соответствующие им прямые и обратные константы скорости. Последние в работе рассчитываются с использованием констант равновесия [7]. Приведенные в таблицах параметры
Рис. 1 Схематическая картина взаимного влияния неравновесных процессов друг на друга в релаксационной зоне за фронтом ударной волны.
А, В, С связаны с константами скоростей следующим соотношением:
к = АТвехр(-|) (И)
В главе обсуждаются проблемы, которые могут возникнуть при использовании этой методики.
Для газовых смесей C02-N2 и N2-02 приведен единый механизм химических превращений. Это означает, что в его рамках можно успешно описывать химические превращения в этих смесях, не привлекая дополнительные реакции или параметры. Эффективность используемого механизма при описании спектральных излучательных характеристик указанных газовых смесей нагретых ударной волной продемонстрирована в последующих главах.
Тестирование численных методик, применяемых в данной работе на кинетической стадии для расчета неравновесных физико-химических процессов в релаксационной зоне за фронтом ударной волны, выполнено на примере газовой смеси CH4-N2, для которой в четвертой главе так же представлен механизм химической кинетики, в основном заимствованный из работы [8] Гоксена Т. Для этого проведены расчеты и выполнено сравнение с результатами, представленными в [9]. Параметры моделирования были следующими: состав газовой смеси - 98% СНа-2% N2, Vsh=5A5 км/с, р= 13.3 Па. Соответствующие результаты приведены на рис. 2-4. В целом можно констатировать хорошее согласие между этими данными. Основные различия наблюдаются для концентраций частиц, а именно атомов N и молекул NH. Это в первую очередь связано с различием в параметрах механизмов химических реакций. В [9] для реакций диссоциации N2 использовались
константы скорости из [8].
Пятая глава посвящена разработке и описанию механизма возбуждения электронных излучающих состояний двухатомных молекул и их ионов. В диссертации рассматриваются следующие электронные состояния: CN(A П), CN(B2L+), C2(d3n), СО(А'П), NO(A2E+), КО(В2П), NO(C П), N2(A3£), N2(B П), N2(C3n), N2+(B2£). В качестве механизмов, ответственных за заселение этих состояний, выбраны: возбуждение/тушение тяжелыми частицам, электронами, процессы спонтанного излучения. Константы скорости тушения электронных состояний при столкновениях с тяжелыми частицами были заимствованы из работы [10], в которой был выполнен обзор соответствующих экспериментальных данных. Времена жизни те1 верхнего излучающего электронного состояния были рассчитаны на основе ab-initio коэффициентов Эйнштейна Arv.. Рассчитанные значения те1 сравнивались с данными,
представленными в книге Кузнецовой Л.А. и др. [11].
Константы скорости возбуждения некоторых электронных состояний электронным ударом были заимствованы из данных доступных в литературе.
х [см1
Рис. 2 Поступательная температура: сплошная линия -расчет по данным с использованием кинетического механизма, приведенного в диссертации (Табл. 3), о - результаты, представленные в [9].
Рис. 3 Концентрация нейтральных частиц. Обозначения такие же, как на Рис. 2.
о 5 10 15 хгсм1 20
Рис. 4 Концентрация заряженных частиц. Обозначения такие же, как на Рис. 2.
Для других - параметры этих процессов были рассчитаны с использованием приближенной методики, развиваемой в работе. В ее основе лежит использование формулы Бете-Борна [12]:
, = 4тг о„
<Тлш"'"ШоА£!
Яуг , 1п[с(1 + «)] (! + «)
(12)
(13)
Здесь Яу - постоянная Ридберга, о0 - радиус Бора, и = (е-АЕт)/№„т, е -энергия электрона, с - численный множитель, точное значение которого не определено, /т - сила осциллятора. Величина силы осциллятора связана с коэффициентами Эйнштейна следующим соотношением:
4- -JHE-l.MiL А Ч'У)~<'П ~ %л2е2 У2 Яе.
Совместное использование формул (12), (13) и последующее усреднение получившихся сечений по распределению электронов по энергиям (предполагается, что функция распределения F(u) - максвелловская) позволяет получить константы скорости возбуждения электронно-колебательных уровней двухатомной молекулы:
Чтобы получить константу скорости возбуждения всего электронного состояния, необходимо усреднить константы скорости возбуждения электронно-колебательных уровней. Процедура усреднения описана подробным образом в диссертации. Данная методика подходит для описания оптически разрешенных переходов.
Результаты применения этой методики для расчета констант скоростей возбуждения электронных состояний А2!, и В2П молекулы NO из основного состояния Х2П электронным ударом приведены на рис. 5 и 6. Там же представлены аппроксимации, приведенные в [13]. Можно констатировать, что различия между наборами данных невелико (учитывая специфику рассчитываемой величины).
В настоящее время наиболее плохо исследованными являются механизмы возбуждения электронных состояний молекул при столкновении с тяжелыми частицами ввиду сложной структуры обеих взаимодействующих частиц. Это означает, что к приведенным в данной работе параметрам, описывающим скорости соответствующих процессов, следует относиться как к оценочным и требующим дальнейшего уточнения.
1е151
1e14-j
1e13-í i—. 1E12-Í
ъ й 1E11l
0
1E10-I
ГЛ
1 1еэ-j 1е8-
1е7-1000000 100000
10000 —u—i-1-1-1-1-1-'-1-1-
0 10000 20000 30000 40000 50000
Рис. 5 Константа скорости возбуждения состояния А2!, молекулы NO электронным ударом из состояния Х2П: 1 -расчет по методике, представленной в диссертации; 2 - данные [13].
Шестая глава посвящена численному исследованию разработанной модели. Для анализа выбраны следующие параметры: 100% N2, Vsh =6.76 км/с,
rvi
р=40 Па. На примере этих условий было рассмотрено влияние различных факторов на разброс в рассчитываемых интегральных по времени спектральных интенсивностях излучения в электронных системах полос+ N2(2®* положительная): М2(С3П) - М2(В3П) и №+(1м отрицательная): N2 (В 2) -К2+(Х2Е) с помощью модели, изложенной в предыдущих главах диссертации. Среди этих факторов - различные модели неравновесной диссоциации, учет С\Т)У взаимодействия, параметры реакций ассоциативной ионизации.
1е15
1е14-,
1е13-]
1е12 п
/—> о
¿3 1Е11 п
о
1е10-
^
Л 1Е9' Л 1Е8-
1е7 ■
1000000100000'
10000 , .
о 10000 20000 30000 40000 50000
Рис. 6 Константа скорости возбуждения состояния В1 П молекулы N0 электронным ударом из основного электронного состояния X П. Обозначения
те же, что на рис. 5.
При этом установлено, что рассчитываемые радиационные характеристики, получающиеся в результате использования С\Т)У-, С\Т>-модели или неучета взаимодействия между колебательной релаксацией и процессами диссоциации, могут отличаться друг от друга в -5 раз. Отличие в интегральной спектральной интенсивности излучения системы Ы2(2 положительная): Ы2(С3П) - Ы2(В3П), предсказываемое с использованием различных моделей неравновесной диссоциации составляет -45%, а системы отрицательная): М2+(В21) - Ы2+(Х2Е) - 5%. Отличие между спектральным излучением системы N2(2** положительная) в зависимости от используемой константы скорости процесса N + И -^Щ + е составляет -70%, для К2+(1м
отрицательная) — 7%.
Так же в главе рассмотрено влияние упрощающих предположений на величину рассчитываемой интегральной по времени спектральной
интенсивности излучения. Среди таких предположений: отказ от использования уравнения баланса энергии для газа свободных электронов; использование распределения Больцмана для расчета заселенностей излучающих электронных возбужденных состояний двухатомных молекул с поступательной температурой тяжелых частиц или колебательной температурой соответствующей моды в качестве параметра. Оказалось, что в рассмотренных условиях (80% N2 - 20% 02, р=1 торр, Vsh=5.56 км/с) использование распределения Больцмана (независимо от температуры, выбранной в качестве параметра) для расчета заселенностей излучающих электронных состояний молекул приводит к значительным погрешностям при расчете величины интенсивности излучения релаксационной зоны по сравнению с результатами, получаемыми с помощью полной cRC-модели.
В седьмой главе модель для расчета неравновесного излучения газовых смесей нагретых ударной волной применена для описания современных экспериментальных данных. В основном производится сравнение с результатами измерений, выполненных на установках НИИ Механики МГУ им. М.В. Ломоносова в Лаборатории кинетических процессов в газах; Университет Квинсланд - установка Х2; научный центр NASA (NASA Ames) - установка EAST. Сравниваются как интегральные по времени спектральные интенсивности излучения, так и изменение интегральных по спектру интенсивностей излучения в зависимости от расстояния до фронта ударной волны. Сравниваются расчетные и экспериментально измеренные интенсивности излучения в абсолютных единицах измерения. Анализируется излучение газовых смесей 70% С02 - 30% N2, 80% N2 - 20% 02, 2% СИ, - 98% N2, нагретых ударными волнами, реализованными при следующих параметрах: скорость ударной волны Vsh =5-7, 5-8, 4-6 км/с; давление исследуемого газа р=0.3-1, 0.25-1, 1 торр соответственно. Для газовой смеси C02-N2 так же рассчитана равновесная спектральная интенсивность излучения и выполнено сравнение с доступными экспериментальными данными. На рис. 7-9 представлены примеры сопоставления расчетных и экспериментальных данных для различных газовых смесей для газовых смесей C02-N2, N2-02 и CH4-N2 соответственно.
В работе приведены так же парциальные вклады различных электронных систем полос в полные спектры. Пример такого распределения представлен на рис. 10. Подобные расчетные данные облегчают идентификацию отдельных спектральных особенностей регистрируемых в экспериментах.
Восьмая глава посвящена анализу возможности использования плазмы тлеющего разряда для лабораторного моделирования неравновесного излучения сильных ударных волн. Предварительные расчеты спектров выполнены с использованием модели перекрывающихся линий. Параметры газоразрядной азотной плазмы для расчета излучения получены в результате анализа данных работ [14] и [15]. В работе так же представлен анализ
300 400 500 600 700 800
Рис. 7 Неравновесная спектральная интенсивность излучения релаксационной зоны за фронтом ударной волны, созданной в газовой смеси 70% С02 - 30% N2 прир=0.3 mopp, Vsh=6.76 км/с. Экспериментальные данные - сплошная линия,
расчетные - штриховая.
ю1
200
Цнм] 400
Рис. 8 Неравновесная спектральная интенсивность излучения релаксационной зоны за фронтом ударной волны (80% N2 - 20% 02, р=1 mopp, V=5.56 км/с). Сплошная линия-эксперимент, штриховая -расчет.
В 0.8
0.6
0.4
0.2
-
— 1
1 i v *» \ »
I 1 I • 1 1 1 1 1
1 1 II Ii J» l 1—1—1— 1 1 1 1 1 1 1 1 X [i лм]
v wl fcw ------
Рис. 9 Пространственное распределение излучения за фронтом ударной волны, проинтегрированного в спектральном диапазоне 310-450 нм. Газовая смесь 2% СН4 - 98% N2, давление невозмущенного газ р=1 mopp, Vsh=5.00 км/с. Сплошная линия - расчет, штриховая — эксперимент.
10°
200
350 Цнм] 400
Рис. 10 Парциальные вклады различных молекулярных полос в неравновесный спектр: газовая смесь 80% N2 - 20% 02, р=*1 mopp, Vsh=5.56 км/с (суммарный
спектр-рис. 8).
0.8 0.6 0.4
0.2 0
Рис. 11 Спектральные интенсивности излучения полосы N2(lm положительная): N2(B3IJ)- N2(A3L) разрядной плазмы постоянного тока в потоке N2: р=3 mopp, 1=17 мА, скорость потока N2 200 см/мин. Экспериментальные данные - о, линии - расчетные данные при постоянной колебательной температуре Т-7000К.
чувствительности спектральных распределений к входным параметрам, таким как вращательная и колебательная температура соответствующих излучающих электронных возбужденных состояний молекул. Пример такого расчета представлен на рис. 11. На рисунке представлен расчет спектральной интенсивности излучения электронной системы полос ЩДая положительная): N2(B3n)- N2(A3S) в разрядной плазме постоянного тока в потоке N2: jp=3 торр, /=17 мА, скорость потока N2 200 см3/мин. Расчеты выполнены при фиксированной колебательной температуре Гу=7000 К. Символы о -экспериментальные данные, штриховая линия соответствует расчету с вращательной температурой Г,=500 К, сплошная линия - расчет с Гг=1000 К, линия из точек - расчет с 7V=1500 К.
В заключении сформулированы основные результаты, полученные в работе, отражающие ее новизну и практическую значимость.
ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ВЫВОДЫ
1. Разработана расчетно-теоретическая модель сильных ударных волн (скорость ударной волны Vsh ~ 4-8 км/с), в которой учитываются процессы физико-химической кинетики, возбуждения электронных состояний
частиц и неравновесное излучение из релаксационной зоны. Показана применимость модели для атмосферных газов Земли и Марса в условиях экспериментов, выполненных в 2010-2012 гг. в НИИ Механики МГУ и научном центре NASA (NASA Ames);
2. Разработана новая модель и выполнены расчеты констант скоростей возбуждения электронных состояний двухатомных молекул и ионов за фронтом ударной волны. Модель основана на использовании соотношений теории Бете-Борна (теория возмущения волновой механики применительно к задаче рассеяния) и результатов квантовомеханических расчетов коэффициентов Эйнштейна Avv. Дана формулировка кинетического механизма заселения электронно-возбужденных состояний (CN(A2n), CN(B2S+), C2(d3n), СО(А'П), NO(A2Z+), Ш(В2П), NO(C2n), N2(A3E), N2(B3n), N2(C3n), N2+(B2£)) в релаксационной зоне ударной волны;
3. С использованием разработанной физико-химической и радиационно-столкновительной модели получены данные по абсолютным величинам спектральной излучательной способности сильных ударных волн и закономерностям их изменения в зависимости от скорости ударной волны и давления исследуемого газа;
4. Выполнено систематическое исследование закономерностей изменения неравновесного излучения сильных ударных волн в атмосферах газов N2-02, COrNj и CH4-N2 применительно к условиям выполненных экспериментов на ударных трубах;
5. Выполнено исследование по лабораторному моделированию неравновесного излучения сильных ударных волн посредством контролируемого подбора параметров плазмы тлеющего разряда и решена двумерная задача о структуре соответствующего нормального тлеющего разряда.
СПИСОК ЦИТИРУЕМОЙ ЛИТЕРАТУРЫ
1. Кузнецова Л.А., Суржиков С.Т., Митрофанов Д.В. Атлас спектральных сечений поглощения электронных и колебательных систем полос двухатомных молекул. Препринт № 660. М.: ИПМех РАН, 1999.
2. Суржиков С.Т. Оптические свойства газов и плазмы. М.: Изд-во МГТУ им. Баумана, 2004.
3. Kuznetsova L.A. and Surzhikov S.T. Spectral radiation of shock waves and radiative models of diatomic molecules // AIAA Paper, AIAA 97-2564.
4. Лосев C.A., Осипов А.И. Исследование неравновесных явлений в ударных волнах // УФН. 1961. Т. 74. В. 3. С. 393-434.
5. Физико-химические процессы в газовой динамике, т. 1: Справочник под ред. Черного Г.Г. и Лосева С.А. М.: Изд-во МГУ, 1995. 349 с.
6 Treanor С E , Marrone P.V. Effect of Dissociation on-the Rate of Vibrational Relaxation // Phys. Fluids. 1962. V. 5. N. 9. P. 1022-1026.
7. Глушко В.П., Гурвич Л.В., Бергман Г.А., Вейц И.В. и др. Термодинамические свойства индивидуальных веществ. Справочное издание: В 4-х т. М.: Наука, 1978.
8. Gokcen Т. Nj-CRt-Ar Chemical Kinetic Model for Simulations of Atmospheric Entry to Titan // AIAA Paper. AIAA 2004-2469.
9. Bose D., Wright M.J., Bogdanoff D.W., Raiche G.A., Allen Jr. G.A. Modeling and Experimental Assessment of CN Radiation Behind a Strong Shock Wave // JTHT. 2006. V. 20. No. 2. P. 220-230.
10. Park C. Rate Parameters for Electronic Excitation of Diatomic Molecules II. Heavy Particle Impact Processes // AIAA Paper. AIAA 2008-1446.
11. Кузнецова Л.А., Кузьменко H.E., Кузяков Ю.Я., Пластинин Ю.А. Вероятности оптических переходов двухатомных молекул. М.:Наука, 1980.
12. Биберман Л.М., Воробьев B.C., Якубов И.Т. Кинетика неравновесной низко-температурной плазмы М.: Наука, 1982.
13. Teulet P., Sarrette J.P., Gomes A.M. Calculation of electron impact inelastic cross sections and rate coefficients for diatomic molecules. Application to air molecules // JQSRT. 1999. V. 62. P. 549-569.
14. Шахатов В.А., Лебедев Ю.А. Исследование кинетики возбуждения N2(A Е, vA), N2(C3n, vc), N2(B3n, vB) в азотной плазме газовых разрядов методами эмиссионной спектроскопии и численного моделирования // ХВЭ. 2008. Т. 42. №3. С. 207-241.
15. Cicala G„ De Tommaso E., Raino A.C., Lebedev Yu.A., Shakhatov V.A. Study of positive column of glow discharge in nitrogen by optical emission and numerical simulation // Plasma Sources Sci. Technol. 2009. V. 18. 025032. 15 pp.
СПИСОК РАБОТ, ОПУБЛИКОВАННЫХ ПО ТЕМЕ ДИССЕРТАЦИИ
1. Дикалюк А.С., Суржиков С.Т. Расчетное исследование модели неравновесного излучения за фронтом ударных волн в марсианской атмосфере // МЖГ. 2013. № 1. С. 141-160.
2. Дикалюк А.С., Суржиков С.Т. Численное моделирование разреженной пылевой плазмы в нормальном тлеющем разряде // ТВТ. 2012. Т. 50. №
5. С. 611-620. , v
3 Dikalyuk A.S., Surzhikov S.T., Shatalov O.P., Kozlov P.V., Romanenko Yu.V. Nonequlibrium Radiation behind the Strong Shock Waves in Martian and Titan Atmospheres: Numerical Rebuilding of Experimental Data // Proceedings of 50 AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 09 -12 January 2012, Nashville, Tennessee, AIAA 20120795.
4. Dikalyuk A.S., Surzhikov S.T., Shatalov O.P., Kozlov P.V., Romanenko Yu.V. Nonequilibrium Spectral Radiation Behind the Shock Waves in Martian and Earth Atmospheres // Proceedings of 44th AIAA Thermophysics Conference, AIAA-2013-2505.
5. Dikalyuk A.S., Surzhikov S.T. The modeling of dust particles in a normal glow discharge: the comparison of two charged models // Proceedings of 41s Plasmadynamics and Laser conference 28 June - 1 July 2010, Chicago, Illinois, AIAA 2010-4310.
6. Дикалюк A.C., Суржиков C.T. Численное исследование модели неравновесного излучения за фронтом сильных ударных волн на основе сравнения с экспериментальными данными (смесь C02-N2) // Препринт № 978 Института проблем механики РАН. 2011.
7. Дикалюк А.С., Суржиков С.Т. Моделирование пылевой компоненты плазмы методами молекулярной динамики в нормальном тлеющем разряде // Препринт № 931 Института проблем механики РАН. 2010.
8. Dikalyuk A.S., Surzhikov S.T. Computational model of nonequilibrium radiation of shock waves in C02-N2 and CH4-N2 gas mixtures // Proceedings of 4th Int. Workshop on Radiation of High Temperature Gases in Atmospheric Entry. Lausanne, Switzerland, 12-15 October 2010 (ESA SP-689, February 2011).
9. Дикалюк A.C. Расчетная модель неравновесного излучения ударных волн в смеси газов C02-N2 // Тезисы докладов всероссийской научно-технической конференции молодых ученых и специалистов «Новые решения и технологии в газотурбостроении», 5-8 октября, ЦИАМ, Москва, 2010.
10. Дикалюк А.С. Изучение влияния моделей неравновесной диссоциации на излучение ударных волн в смеси газов C02-N2 // Тезисы докладов XVIII Школы-семинара молодых ученых и специалистов под руководством акад. РАН А.И. Леонтьева «Проблемы газодинамики и тепломассообмена в новых энергетических технологиях». С. 129. 2011.
11. Дикалюк А.С. Влияние моделей неравновесной диссоциации на кинетику и излучение ударных волн в воздушной газовой смеси // Труды 54-й научной конференции МФТИ «Проблемы фундаментальных и прикладных естественных и технических наук в современном информационном обществе». 2011.
12. Дикалюк А.С., Суржиков С.Т. Неравновесное спектральное излучение за ударными волнами в воздухе // Сборник научных трудов «IX Международный симпозиум по радиационной плазмодинамике РПД-2012». 2012.
13. Дикалюк А.С., Суржиков С.Т. Обзор экспериментальных работ по измерению излучения за фронтом ударных волн // Сборник научных трудов «IX Международный симпозиум по радиационной плазмодинамике РПД-2012». 2012.
14 Дикалюк A.C. Равновесное спектральное излучение за фронтом ударных волн в смесях газов C02-N2 // Труды 55-ой научной конференции МФТИ «Проблемы фундаментальных и прикладных естественных и технических наук в современном информационном обществе». 2012.
Автор выражает благодарность научному руководителю, проф. С.Т. Суржикову, за постоянное внимание, ценные советы и большую помощь в подготовке работы. Так же автор выражает признательность коллективу лаборатории Кинетических Процессов в Газах, в частности Козлову П.В., Шаталову О.П., Романенко Ю.В., за постоянное внимание, ценные замечания и обсуждение результатов. Автор благодарит коллектив лаборатории Радиационной Газовой Динамики Института Проблем Механики РАН за плодотворные обсуждения и полезные замечания, сделанные при подготовке диссертации.
РАДИАЦИОННО-СТОЛКНОВИТЕЛЬНЫЕ МОДЕЛИ В ЗАДАЧАХ РАСЧЕТА ИНТЕНСИВНОСТИ ИЗЛУЧЕНИЯ
УДАРНЫХ ВОЛН
Дшсалюк Алексей Сергеевич
Автореферат диссертации на соискание ученой степени кандидата физико-математических наук
Подписано к печати 12 августа 2013 г. Заказ № 27-2013. Тираж 100 экз.
Отпечатано на ризографе Федерального государственного бюджетного учреждения науки Института проблем механики им. А.Ю. Ишлинского РАН
119526, Москва, проспект Вернадского д.101, корп.1
Московский государственный физико-технический институт (Государственный университет)
На правах рукописи
ДИКАЛЮК АЛЕКСЕЙ СЕРГЕЕВИЧ
РАДИАЦИОННО-СТОЛКНОВИТЕЛЬНЫЕ МОДЕЛИ В ЗАДАЧАХ РАСЧЕТА ИНТЕНСИВНОСТИ ИЗЛУЧЕНИЯ УДАРНЫХ ВОЛН
01.02.05 - механика жидкости, газа и плазма
ДИССЕРТАЦИЯ на соискание ученой степени кандидата физико-математических наук
Научный руководитель: доктор физ.-мат. наук, профессор, член-корреспондент РАН Суржиков С.Т.
Москва 2013
СОДЕРЖАНИЕ
Введение......................................................................................................................5
ГЛАВА 1. Радиационно-столкновительные модели.....................................13
1.1. Основные понятия и определения...................................................................................13
1.2. Примеры использования ЫС-моделей для решения задачи об исследовании структуры и излучении релаксационной зоны за фронтом ударной волны (УВ)....................15
1.3. Примеры использования радиационно-столкновительных моделей для исследования других неравновесных процессов и систем.................................................................................17
1.4. Обзор литературы по исследованию неравновесных эффектов с помощью различных ударных труб...................................................................................................................................20
1.5. Выводы...............................................................................................................................25
ГЛАВА 2. Модель для расчета неравновесного излучения за фронтом ударной волны.........................................................................................................28
2.1. Общие положения модели................................................................................................28
2.2. Газодинамические уравнения в релаксационной зоне за фронтом ударной волны ...30
2.3. Уравнения химической кинетики....................................................................................31
2.4. Уравнения колебательной релаксации............................................................................33
2.5. Уравнения для расчета температуры электронного газа...............................................37
2.6. Модель перекрывающихся линий для расчета неравновесных спектральных интенсивностей излучения высокотемпературных газов...........................................................39
2.7. Выводы...............................................................................................................................41
ГЛАВА 3. Численная реализация модели.......................................................43
3.1. Маршевый метод решения системы уравнений газовой динамики.............................43
3.2. Метод решения уравнений химической кинетики и колебательной релаксации.......45
3.3. Выводы...............................................................................................................................48
ГЛАВА 4. Кинетические механизмы, описывающие химические превращения за фронтом ударной волны..........................................................49
4.1. Введение.............................................................................................................................49
4.2. Кинетический механизм для газовых смесей СОг-Кг и Ог-Иг......................................49
-34.3. Кинетический механизм для газовой смеси CH4-N2......................................................52
4.4. Выводы...............................................................................................................................57
ГЛАВА 5. Кинетические механизмы заселения излучающих электронных состояний двухатомных молекул и ионов................................58
5.1. Введение.............................................................................................................................58
5.2. Метод расчета кинетических констант некоторых процессов для радиационного лкновительной модели.............................................................................................................59
5.3. Кинетический механизм заселения излучающих электронных состояний двухатомных молекул и ионов......................................................................................................65
5.4. Выводы...............................................................................................................................68
ГЛАВА 6. Численное исследование модели....................................................69
6.1. Введение.............................................................................................................................69
6.2. Влияние механизма CVDV взаимодействия на интенсивность излучения.................69
6.3. Влияние моделей неравновесной диссоциации на величину интенсивности излучения........................................................................................................................................75
6.4. Влияние параметров процесса ассоциативной ионизации на величину интенсивности излучения ударных волн................................................................................................................80
6.5. Исследование влияния возможных упрощающих предположений на величину интенсивности излучения..............................................................................................................84
6.6. Выводы...............................................................................................................................91
ГЛАВА 7. Применение модели для описания результатов экспериментов на ударных трубах в различных газовых смесях.................92
7.1. Введение.............................................................................................................................92
7.2. Газовая смесь CO2-N2........................................................................................................93
7.3. Газовая смесь N2-O2.........................................................................................................105
7.4. Газовая смесь CH4-N2......................................................................................................107
7.5. Выводы.............................................................................................................................117
ГЛАВА 8. Расчеты спектральной интенсивности излучения азотной плазмы газовых разрядов...................:................................................................118
8.1. Введение...........................................................................................................................118
-48.2. Определение параметров разрядной плазмы................................................................119
8.3. Расчеты интенсивности излучения................................................................................120
8.4. Выводы.............................................................................................................................123
Заключение.............................................................................................................125
Литература..............................................................................................................127
ПРИЛОЖЕНИЯ.....................................................................................................139
Приложение А...............................................................................................................................140
ВВЕДЕНИЕ
Актуальность. С развитием и распространением в последнее десятилетие оптической диагностической техники (ЮСБ-камеры, высокоскоростные камеры) во многих лабораториях мира продолжились на новом этапе систематические исследования в области регистрации излучения газов, нагретых ударными волнами. В этих исследованиях измеряются излучательные характеристики ударных волн, создаваемых в широком диапазоне параметров и распространяющихся по газовым смесям различного химического состава.
Для описания результатов этих экспериментов необходимо привлечение различных физико-химических и кинетических моделей в силу многообразия явлений, протекающих за фронтом ударной волны. Среди этих явлений такие как: колебательная релаксация; неравновесная диссоциация, а так же другие химические превращения; ионизация и неравновесное возбуждение излучающих электронных состояний молекул, атомов и ионов. При этом, в силу высокой чувствительности исследуемой величины к каждой составляющей, возможна не только отработка моделей отдельных элементарных процессов, но и тестирование того, как эти модели взаимодействуют друг с другом.
Комплексное расчетно-экспериментальное исследование проблемы излучения ударных волн позволит не только лучше понять структуру релаксационной зоны за фронтом' ударной волны, но и выработать рекомендации для инженеров, выполняющих сложные газодинамические расчеты в области оценки конвективных и радиационных тепловых потоков к поверхности спускаемых космических аппаратов нового поколения, создаваемых в настоящее время. Таким образом, построение и тестирование моделей для описания излучения газов, нагретых ударной волной, является актуальной фундаментальной и прикладной задачей.
Цель работы заключается в разработке и тестировании расчетно-теоретической модели для описания излучения ударных волн, путем сравнения
с соответствующими современными экспериментальными данными, а так же в выполнении численных исследований влияния различных составляющих модели на исследуемую величину.
Основные задачи исследования:
1. Разработка расчетно-теоретической электронной радиационно-столкновительной модели для расчета излучения, испущенного в релаксационной зоне за фронтом ударной волны;
2. Разработка приближенной ab-initio квантовомеханической методики для расчета констант скоростей возбуждения электронных состояний двухатомных молекул и их ионов электронным ударом. Формулировка кинетического механизма заселения излучающих электронных состояний этих частиц;
3. Применение разработанной модели для описания современных экспериментов по регистрации излучения газов, нагретых ударной волной, анализ расхождений между расчетными и экспериментальными данными. Численное исследование влияния различных компонентов созданной модели на величину излучения, испущенную за фронтом ударной волны;
4. Исследование возможности использования плазмы тлеющего разряда для лабораторного моделирования неравновесного излучения ударных волн.
Научная новизна работы заключаются в следующем:
1. Разработана расчетно-теоретическая модель сильных ударных волн (скорость ударной волны Vs/} ~ 4-8 км/с), в которой учитываются процессы физико-химической кинетики, возбуждения электронных состояний частиц и неравновесное излучение из релаксационной зоны. Показана применимость модели для атмосферных газов Земли и Марса в условиях экспериментов, выполненных в 2010-2012 гг. в НИИ Механики МГУ и научном центре NASA (NASA Ames);
-72. Разработана новая модель и выполнены расчеты констант скоростей возбуждения электронных состояний двухатомных молекул и ионов за фронтом ударной волны. Модель основана на использовании соотношений теории Бете-Борна (теория возмущения волновой механики применительно к задаче рассеяния) и результатов квантовомеханических расчетов коэффициентов Эйнштейна АУ>У". Дана формулировка кинетического механизма заселения электронно-возбужденных состояний (СЫ(А2П), СЫ(В21+), С2(с13П), СО(А'П), М)(А22+), М)(В2П), Ш(С2П), М2(А31), М2(В3П), К2(С3П), М2+(В2!)) В релаксационной зоне ударной волны;
3. С использованием разработанной физико-химической и радиационно-столкновительной модели получены данные по абсолютным величинам спектральной излучательной способности сильных ударных волн и закономерностям их изменения в зависимости от скорости ударной волны и давления исследуемого газа;
4. Выполнено систематическое исследование закономерностей изменения неравновесного излучения сильных ударных волн в атмосферах газов N2-02, С02-К2 и СН4-Ы2 применительно к условиям выполненных экспериментов на ударных трубах;
5. Выполнено исследование по лабораторному моделированию неравновесного излучения сильных ударных волн посредством контролируемого подбора параметров плазмы тлеющего разряда и решена двумерная задача о структуре соответствующего нормального тлеющего разряда.
Основными защищаемыми положениями и результатами являются:
1. Результаты расчетно-теоретических исследований по абсолютным величинам спектральной интенсивности неравновесного излучения сильных ударных волн в газовых смесях 1Ч2-02, С02-1М2 и СН4-]\12.
2. Применение разработанной модели для обработки результатов современных ударноволновых экспериментов по регистрации
излучения различных газовых смесей в широком диапазоне параметров. Сравнение расчетных и экспериментальных данных в абсолютных единицах, анализ расхождений;
3. Количественная оценка влияния различных факторов и упрощающих предположений на точность результатов, получаемых с использованием предложенной модели;
4. Приближенная ab-initio квантовомеханическая методика для расчета констант скоростей возбуждения электронно-колебательных и электронных состояний двухатомных молекул и ионов электронным ударом.
Практическая значимость. Построенная в работе модель, а так же сформулированные механизмы кинетики возбуждения могут быть использованы при расчетах излучения ударных волн или при расчетах радиационных тепловых потоков к поверхности спускаемых космических аппаратов. Описанные расчетные методы могут быть использованы для выполнения расчетов химической кинетики. Выполненные оценки влияния различных факторов на точность предсказания излучательных характеристик ударнонагретрых газов позволяют получить представление о типичной точности соответствующих расчетов, выполняемых в настоящее время.
Научные исследования, проведенные в диссертационной работе, осуществлялись в рамках проектов РФФИ № 10-01-00544, 10-01-00468-а, 11-08-12072-офи-м, 09-08-00272а; федеральной целевой программы «Научные и научно-педагогические кадры инновационной России» 2010-1.1-112-024-055; 7ой Европейской рамочной программы (FP7/2007-2013) грант №242311 и программы фундаментальных исследований Российской Академии Наук.
Достоверность результатов диссертации подтверждается физической обоснованностью постановок задач и строгим аналитическим характером их рассмотрения с применением современных теоретических концепций и математических средств физической и химической механики, сравнением
собственных численных результатов с расчетами других авторов, а так же соответствием расчетных и экспериментальных данных.
Апробация работы.
Основные результаты работы докладывались и обсуждались на всероссийских и международных профильных научных конференциях и семинарах:
1. International School of Quantum Electronics, 53rd Course Molecular Physics and Plasmas in Hypersonics, Ettore Majorana Centre, Erice, Sicily (Italy), 8-15 September 2012.
2. 44th AIAA Thermophysics Conference, 24 - 27 June 2013, San Diego, California.
3. 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 09-12 January 2012, Nashville, Tennessee.
4. 41st AIAA Plasmadynamics and Laser conference, 28 June - 1 July 2010, Chicago, Illinois.
5. 4th International Workshop on Radiation of High Temperature Gases in Atmospheric Entry. Lausanne, Switzerland, 12-15 October, 2010.
6. Семинар «Физико-химическая кинетика в газовой динамике», НИИ Механики МГУ им. М.В. Ломоносова, Москва, 01.11.2012.
7. Всероссийская научно-техническая конференция молодых ученых и специалистов «Новые решения и технологии в газотурбостроении», 58 октября, ЦИАМ, Москва, 2010.
8. XVIII Школы-семинара молодых ученых и специалистов под руководством акад. РАН А.И. Леонтьева «Проблемы газодинамики и тепломассообмена в новых энергетических технологиях».
9. Международный симпозиум по радиационной плазмодинамике, Москва, Московский государственный технический университет имени Н.Э. Баумана, 2012 г.
-1010. Школа-семинар «Аэрофизика и физическая механика классических и квантовых систем» (АФМ), Москва, Институт проблем механики им. А.Ю. Ишлинского РАН, 2008-2012;
11. Научная конференция МФТИ, Москва-Долгопрудный, Московский Физико-Технический Институт, 2011-2012 гг;
12. Научный семинар профессора В.В. Лунева в ЦНИИМАШ.
Публикации. По теме диссертации опубликовано 5 статей, 2 препринта и
8 тезисов международных и всероссийских конференций.
Структура и объем работы. Диссертация состоит из введения, 8 глав, заключения и списка литературы. Общий объем работы составляет 140 страниц, включая 64 рисунка и 10 таблиц. Список литературы содержит 124 наименования.
Во введении обоснована актуальность темы исследований. Сформулирована цель и кратко изложена структура диссертации.
В первой главе приводится обзор работ, посвященных использованию радиационно-столкновительных моделей для описания различных неравновесных систем. Так же рассматриваются современные экспериментальные работы, посвященные регистрации излучения ударнонагетых газов, приводятся табличные сводки (матрицы) экспериментальных параметров, исследованных к настоящему времени, для различных газовых смесей.
Во второй главе формулируются основные положения и уравнения модели для расчета излучения ударных волн. Приводятся основные модели для расчета определяющих параметров модели: фактор неравновесности, времена колебательной релаксации, источниковые члены для определения температуры газа свободных электронов. Приводятся соотношения для расчета неравновесной спектральной интенсивности излучения.
Третья глава посвящена численным методам, положенным в основу компьютерных программ (кодов), реализующих модель, описанную во второй главе. Рассматривается маршевый метод решения системы газодинамических
уравнений, описывающих течение газа в релаксационной зоне за фронтом ударной волны, а так же численный метод решения уравнений химической кинетики. Обсуждаются проблемы численного решения вблизи равновесия.
В четвертой главе приведены механизмы химической кинетики, определяющие протекание химических реакций в газовых смесях CO2-N2, N2-О2, CH4-N2. Приводятся константы скорости прямых и обратных реакций, рассчитанные в данной работе с использованием констант равновесия. Обсуждаются проблемы, возникающие при использовании этой методики. Выполняется сравнение результатов расчетов для газовой смеси CH4-N2, выполненных в данной работе, с данными других авторов.
В пятой главе описана приближенная ab-initio квантово-механическая методика для расчета констант скоростей возбуждения электронных состояний двухатомных молекул и их ионов электронным ударом. Приводится сравнение величин, вычисленных с использованием этих моде