Статистическое описание деления ядер частицами средних энергий тема автореферата и диссертации по физике, 01.04.16 ВАК РФ
Мебель, Михаил Владимирович
АВТОР
|
||||
кандидата физико-математических наук
УЧЕНАЯ СТЕПЕНЬ
|
||||
Москва
МЕСТО ЗАЩИТЫ
|
||||
1997
ГОД ЗАЩИТЫ
|
|
01.04.16
КОД ВАК РФ
|
||
|
\
Государственный научный центр Российской Федерации ^ «ИНСТИТУТ ЯДЕРНЫХ- ИССЛЕДОВАНИЙ РАН»
На правах рукописи
МЕБЕЛЬ Михаил Владимирович
Статистическое описание деления ядер частицами средних энергий
(01.04.16 — физика ядра и элементарных частиц)
АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата физико-математических наук
Москва-1997
Работа выполнена в Институте ядерных исследований РАН
Научный руководитель
доктор физико-математических наук
заведующий лаборатории
А.С.Ильинов
Официальные оппоненты:
доктор физико-математических наук Директор ФЛЯР ОИЯИ ;
М.Г.Иткис
кандидат физико-математических наук старший научный сотрудник
Г.Е.Беловицкий
Ведущая организация:
Государственный Научный Центр Российской Федерации - Физико-Энергетический Институт
Защита диссертации состоится " 1997 г.
в "15е0 часов на заседании Диссертационного совета Д 003.21.01 ГНЦ РФ "Институт ядерных исследованийРАН" (117312 Москва, проспект 60-летия Октября, дом 7а).
С диссертацией можно ознакомиться в библиотеке Государственного научного Центра Российской Федерации "Институт ядерных исследований РАН".
Автореферат разослан ШиСуШХ1997 г.
Ученый секретарь специализированного Совета
кандидат физико-математических наук БА.Тулупов
ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ
Актуальность темы. В изучении реакций глубоконеупругого взаимодействия частиц средних энергий с ядрами обычно выделяют два аспекта, две стадии протекания процесса, характеризующиеся как различной физической основой, так и временами, за которые они осуществляются. Первая, быстрая стадия внутриядерного каскада приводит к образованию высоковозбузденных остаточных ядер, которые распадаются на второй, более медленной стадии девозбужденпя ядер. Принципиальный характер такой физической картины процесса глубоконеупругого взаимодействия частиц средних энергий с ядрами достаточно хорошо обоснован как с теоретической, так и с экспериментальной точек зрения.
Успешное описание быстрой стадии взаимодействия нуклонов с ядрами моделью внутриядерных каскадов, обусловило непрерывное развитие модели с обобщением ее на случай взаимодействия фотонов, пионов и антипротонов с ядрами. В то же время описание процесса девозбужденпя высоковозбужденных остаточных ядер, образующихся в результате таких взаимодействий, к настоящему времени стало недостаточно адекватным как тому уровню теоретического понимання особенностей протекания процесса девозбужденпя и деления, так и появившимся новым экспериментальным данным.
Спецификой ядерных реакций с частицами средних энергий является образование ансамбля ядер-остатков, характеризующихся широким распределением по энергии возбуждения. Вместе с тем, в ансамбле горячих ядер всегда присутствует определенная доля низковозбужденных ядер. К тому же при эмиссии частиц из ядра-остатка на различных ступенях испарительного каскада образуются промежуточные ядра с энергией возбуждения, изменяющейся от начальной величины вплоть до энергии связи нейтрона. Поэтому для анализа данных по делению ядер частицами средних энергий необходимо иметь испарительную модель, способную корректно описывать распад ядер в широком диапазоне энергии
возбуадения от нескольких МэВ до нескольких сотен МэВ. Очевидно, что данный подход должен обладать возможностью учета оболочечных эффектов в плотности уровней возбужденных ядер и правильно описывать процесс затухания этих эффектов с ростом энергии возбуждения.
Процесс девозбуждения остаточных ядер, образующихся после завершения начальной, быстрой стадии взаимодействия частиц средних энергий с ядром, представляет собой испарительный каскад, в ходе которого возбужденное составное ядро испускает нуклоны, легкие заряженные частицы, гамма-кванты и подвергается делению. Таким образом, с помощью испарительной модели можно было рассчитывать только вероятность деления в каждом звене испарительной цепочки и полную вероятность деления в ней. В результате этого в рамках комбинированной каскадно-испарительной модели можно было анализировать лишь простейшую интегральную характеристику деления ядер частицами средних энергий - делимость. Процесс образования осколков деления, их свойства и девозбуждение фрагментов оставались за рамками такого подхода.
Развитие экспериментальных методов детектирования осколков деления и создание новых ускорителей позволило существенно продвинуться в области изучения деления ядер частицами средних энергий: расширить число измеряемых характеристик осколков деления и значительно повысить их точность. Так были получены' распределения индивидуальных масс осколков, их суммарной массы,' кинетической энергии осколков и полной кинетической энергии в реакциях деления, инициированного частицами средних энергий: протонами с энергией 1 ГэВ (ЛПЯФ), нейтронами с энергией до ~500 МэВ (LAMPF) и антипротонами (LEAR CERN). Причем в последнем случае в эксперименте были также измерены средние множественности пред- и после-разрывных нейтронов, несущих важную информацию о динамике процесса деления.
Столь успешный прогресс в экспериментальном изучении процесса деления ядер, инициированного частицами средних энергий, вызвал настоятельную необходимость создания соответствующих теоретических методов расчета, способных корректно описывать все стадия этого
сложного, многоступенчатого процесса, включающего в себя широкую временную шкалу от характерного времени быстрой стадии -10" с. делительные времена ~10-:" с, до испарительных времен > )0,s с. Деление, сопровождающееся глобальной перестройкой ядерной материи, является медленным процессом и, поэтому, может происходить лишь на испарительной стадии, предоставляя таким образом уникальные возможности для изучения диссипации энергии в глубоконеупругом взаимодействии частиц средних энергий с ядрами и получения новой физической информации об ансамбле возбужденных остаточных ядер.
Цель работы состоит в разработке на основе статистического подхода методов описания деления ядер частицами средних энергий, в применении этих методов для систематического анализа экспериментальных данных и выявления характеристик, чувствительных к деталям рассматриваемых процессов.
Научная новизна данной работы состоит в том, что впервые в рамках единого подхода был проведен систематический анализ экспериментальных данных 'по делению ядер частицами средних энергий: делимости, массово-энергетических распределении - осколков, множественностей испускаемых частиц на различных стадиях процесса. Определены характеристики, чувствительные к испарительной стадии и динамике процесса деления.
Практическая ценность работы состоит в том, что развитые теоретические методы способствуют проведению систематических экспериментальных исследований по изучению деления ядер частицами средних энергий. Предложенный подход широко использовался при анализе новых экспериментальных данных, полученных на пучках антипротонов в CERN на LEAR, в экспериментах с нейтронами средних энергий в LAMPF, а также при подготовке планируемых экспериментов на Московской Мезонной Фабрике. Развитый подход может быть применен при решении проблемы трансмутации радиоактивных отходов.
На защиту выносятся следующие основные положения:
1. Создана объединенная статистическая динамическая каскадно-испарителыю-делительная модель деления ядер частицами средних энергий, последовательно учитывающая все стадии этого процесса: внутриядерный каскад, формирование высоковозбужденных остаточных ядер, испарение из них частиц и последующее деление, формирование массово-энергетического и зарядового распределения первичных фрагментов и завершающую стадию их разлета с испарением частиц из возбужденных осколков деления.
2. В рамках единого подхода впервые получено описание различных характеристик деления ядер частицами средних энергий (нейтронами, протонами, фотонами, антипротонами): делимости, массовых распределений осколков деления, распределения полной массы и полной кинетической энергии, множественности испускаемых частиц, в частности, пред- и после-разрывных нейтронов.
3. Из анализа широкого круга данных по свойствам возбужденных ядер уточнены основные параметры модели и получено подтверждение разрушения оболочечных эффектов с ростом энергии возбуждения.
4. Впервые выполнена оценка роли динамических эффектов в делении ядер антипротонами. В частности, получены эмпирические значения коэффициента ядерной вязкости у ~ 1 и времени спуска с седловой точки до точки разрыва тВс - НО-20 с.
Апробация работы и публикации. Полученные в диссертации результаты докладывались на научных семинарах ШШ РАН, 011ЯИ, Болонского университета, а также на международных конференциях "50-летие исследования ядерного деления" (Берлин, 1989 г.), "Физика промежуточных энергий" (Москва, 1990 г.), "Физика деления ядер" (Обнинск, 1993 г.), "Ядро-ядерные столкновения" (Таормина, 1994 г.) и конференции по ядерной физике (Пекин, 1995 г.). Исследования, по материалам которых была написана диссертация, были проведены в ИЛИ РАН с 1986 по 1996 год. Результаты диссертации опубликованы в 15-ти работах. Список основных публикация приведен в конце реферата.
Объем н структура диссертации. Диссертация состоит из введения, четырех глав и заключения. Общий объем диссертации 117 страниц, включая 37 рисунков, 7 таблиц и список литературы, содержащий 110 наименований.
СОДЕРЖАНИЕ РАБОТЫ
Во введении обосновывается актуальность работы, формулируется предмет и цель диссертации, а также дается краткое описание содержания диссертации.
В Главе I рассмотрена феноменологическая систематика плотности уровней, основанная на компиляции экспериментальных данных по р(11), извлекаемых из данных по средним расстояниям между уровнями ядра в нейтронных резонансах и, для расширенного интервала энергий, из данных по подсчету уровнен, реакций с легкими заряженными частицами и др.
В разделе 1.1 описаны основные выражения для плотности уровней, полученные в рамках модели ферми-газа, с учетом коллективных эффектов и оболочечных эффектов в массе ядра. Экспериментальные данные, извлеченные из анализа расстояний между уровнями в нейтронных резонансах, показывают, что в зависимости параметра плотность уровней я от массового числа А при энергиях возбуждения и к В„ оболочечные эффекты проявляют себя достаточно четко. С другой стороны, в модели ферми-газа параметр плотности уровней зависит только от массового числа, т.е. асимптотическое значение о", соответствующее высокой энергии возбуждения, должно быть свободно от влияния оболочечных эффектов. С целью реализации такого подхода зависимость параметра плотности уровней была выбрана в виде в(и,2,Ы) = с(А) [1 + 8\\г£(г,Н)Г(и)/и], где о(А)=аА + РА^-'Ь, - ферми-газовое значение параметра плотности уровней, (7, К) - оболочечная поправка в массе ядра и /(11) = 1 - ехр(-у1_!) -функция энергии возбуждения и.
В разделе 1.2 приведена компиляция экспериментальных данных по плотности уровней p«4p(U) и получены выражения, связывающие эту величину с наблюдаемыми средними расстояниями между уровнями ядра Dobs-
КоМПИЛЯЦИЯ экспериментальных данных состоит из двух типов данных. В первую часть собраны экспериментальные данные по средним расстояниям между уровнями ядра, измеряемым в нейтронных резонансах. Данные для 284 нуклидов были отобраны в соответствии со следующими критериями: (i) представлены s-волновые нейтронные резонансы; (ii) достаточно большое число (>5-10) нейтронных резонансов; (iii) измерения представлены по крайней мере двумя различными экспериментальными группами. Во вторую часть собраны экспериментальные данные, соответствующие расширенному интервалу энергии возбуждения: для низких (несколько МэВ) энергий возбуждения, данные полученные посредством подсчета уровней, и для более высоких (до ~20 МэВ), извлеченные из анализа реакций (у,п), (р/у), Ср,р'). (Р>а). («,"/)> (а,п). (d,p), (JHe.d), (3Не,а) и из измерений эриксоновских флуктуации. Вторая часть содержит 228 экспериментальных значений плотности уровней ядра pnp(U), удовлетворяющих следующим критериям: (i) энергия возбуждения ядра U-A > 2 МэВ; (ii) абсолютные значения p(U ~ Вп) согласуются с данными нейтронных резонансов.
В разделе 1.3 исследовано влияние оболочечных эффектов на плотность уровней ядра. В извлеченных значениях экспериментального параметра плотности уровней ае>.р наблюдается отчетливая структура, которая скоррелирована с зависимостью от массового числа А значений оболо.чечной поправки в массе ядра 6Ws(A,Z)=Mkp(A,Z)-Mld(A,Z,Po)- В анализе использовалось два варианта значений эмпирических оболочечных поправок, соответствующих массовым формулам Майерса-Святецкого (MS) и Камерона (С).
Из сравнения рассчитанных (с использованием извлеченных параметров а. (3 и у) значений величины плотности уровней pcaic с экспериментальными рлр сделан вывод, что систематика, основанная на MS
оболочечных поправках описывает эксперимент лучше, чем с С оболочечными поправками. Также параметр •{, определяющий скорость затухания оболочечных эффектов, оказался близок к величине, полученной из микроскопических расчетов в рамках оболочечной модели у=0.05-0.06, и его зависимость от массового числа А,' используемая некоторыми авторами, не улучшает согласие с экспериментом.
В разделе 1.4 рассмотрено влияние коллективных эффектов на плотность уровней ядра. Учет -таких эффектов в адиабатическом приближении для разделения вращательных н колебательных степеней свободы определяет зависимость плотности уровней в виде р(1!) = КГ01Ку1ърт|(и), где величины Кг« и Кчь являются коэффициентами ротационного и вибрационного увеличения плотности внутренних, неколлективных возбужденных состоянии ядра рм:(и). С использованием такого подхода величина асимптотического значения параметра плотности уровней, основанная на -полученных значениях аскг, оказывается равной «=А/10-АУ 15, что находится в хорошем согласии с экспериментальными и теоретическими предсказаниями.
В разделе 1.5 приведено сравнение феноменологической систематики с экспериментальными данными по плотности уровней. Из исследования энергетической зависимости р(17) можно сделать вывод, что вариант систематики с МБ оболочечными поправками описывает зависимость от энергии возбуждения лучше, чем вариант с С оболочками. Также, учет коллективных эффектов дает менее крутую энергетическую зависимость и описывает экспериментальные данные лучше при более высоких энергиях возбуждения и « 20-30 МэВ, что находится в полном соответствии с предсказаниями о величине ферми-газового значения параметра плотности уровней а.
В главе II проведен анализ экспериментальных данных по статистическим распадным свойствам возбужденных ядер: полным радиационным ширинам нейтронных резонансов, временам жизни возбужденных ядер и их делимости. Извлечены величины барьеров деления и параметра о/я„. '
В разделе 2.1 приведены основные выражения для парциальных ширин основных каналов статистической модели, описывающей процесс распада возбужденного ядра: эмиссии частиц (п. р, (1,1, 3Не, а), длпольных гамма-квантов и деления. Одной из основных величин, определяющих значения парциальных ширин, а значит и вероятность распада по данному каналу, является плотность уровней возбужденного ядра. Для расчета р(и) использовались параметры полученной феноменологической систематики плотности уровней.
В разделе 2.2 анализируются полные средние радиационные ширины нейтронных резонансов. Анализ показал, что как в экспериментальной, так и в расчетной зависимости радиационных ширин от массового числа А проявляется оболочечная структура, наиболее четко заметная вблизи замкнутой оболочки, соответствующей магическому числу нейтронов N=126. В целом расчет хорошо описывает экспериментальные данные, причем наилучшее согласие соответствует систематике плотности уровней, основанной на использовании МБ оболочечных поправок и с учетом коллективных эффектов.
В разделе 2.3 проанализированы экспериментальные данные по временам жизни возбужденных ядер с энергией возбуждения 5 < и < 15 МэВ, образующихся в реакциях, инициированных низкоэнергетическими нейтронами, протонами и а-частицами. С помощью соотношения т = Л/Гш из этих данных можно извлечь абсолютное значение полной распадной ширины, представляющую собой сумму ширин по всем распадным каналам Гц. =
Расчетные времена жизни падают с энергией быстрее, чем экспериментальные величины, поэтому для более детального исследования необходимо получение данных для разных ядер при энергии возбуждения 10-15 МэВ. Однако, в целом, расчеты с учетом коллективных эффектов описывают времена жизни лучше, чем значения, полученные без их учета.
В разделе 2.4 исследуется плотность уровней при больших деформациях (в седловой точке) посредством анализа экспериментальных данных по делимости возбужденных ядер. Важной характеристикой, определяющей вероятность деления возбужденного ядра, является барьер
деления, который в случае доактинидных ядер является одногорбым Вг = + ЗМ^. Делимость до актинидов сильно падает при приближении энергии возбуждения к величине барьера деления, что позволяет извлечь величину барьера деления из экспериментальной зависимости делимости от энергии возбуждения.
Это, в свою очередь, позволяет извлечь жидкокапельные барьеры деления и сравнить их с расчетными величинами. Проведенный анализ с использованием плотности уровней с учетом коллективных эффектов показал, что извлеченные ¡таким образом значения ВгШ, хорошо согласуются с барьерами, рассчитываемыми в рамках модели жидкой капли Майерса-Святецкого, что позволяет делать в дальнейшем самосогласованные расчеты с использованием в плотности уровней оболочечных поправок этих же авторов (МБ).
В случае деления трансурановых ядер барьер деления является двугорбым и величина его во многом определяется величиной оболочечных поправок в горбах А и В: Вг1 =У(а1)-б\У5+5\У5Р (¡=А,В). На основе экспериментальных данных по двугорбым барьерам деления были извлечены эмпирические значения 8\"/,рА и 5\УЧ,В для ядер трансурановой области, что составило основу систематики барьеров деления.
Для ядер от 239Р« до :мМс( был проведен анализ отношения Гп/Гю, в области энергий возбуждения 10 < и < 60 МэВ, который позволил сделать важный вывод о роли затухания оболочечных эффектов при энергии возбуждения и » 30-50 МэВ.
В Главе III описан метод расчета деления ядер частицами средних энергий, представляющий собой объединенную каскадно-испарительно-делительную модель.
В разделе 3.1 дано краткое описание подхода для деления ядер с высокой энергией возбуждения. Как" было показано выше, оболочечные эффекты заведомо исчерпывают свое влияние при энергии возбуждения больше 50 МэВ. В этом случае поверхность потенциальной энергии становится гладкой, а деление - симметричным. Таким образом, для описания деления высоковозбужденных (Ш50 МэВ) ядер, был выбран
неравновесный статистический подход, основанный на решении уравнения Фоккера-Пданка. В рамках такой диффузионной модели, процесс деления описывается небольшим числом коллективных степеней свободы, которые взаимодействуют с термостатом, образованным всеми остальными одночастичными степенями свободы. Диффузионная модель позволяет проследить динамику процесса движения ядра от седловой точки до точки разрыва и учесть флуктуации коллективных ядерных переменных. Одним из основных доводов в пользу выбора этой модели является то, что с помощью диффузионной модели удалось описать широкий круг данных по характеристикам осколков деления, в частности, решить проблему роста дисперсий массового и энергетического распределений с ростом параметра делимости и увеличением энергии возбуждения делящегося ядра. Таким образом, данный подход является хорошей основой для предсказания свойств деления ядер в мало исследованной области возбуждении и > 100 МэВ.
В разделе 3.2 дано описание метода расчета деления ядер с энергией возбуждения и<50 МэВ. В этой области энергий возбуждения поверхность потенциальной энергии имеет сложную структуру, обусловленную сильным влиянием оболочечных эффектов. В результате действия этих эффектов появляются две (или даже большее число) долины деления, что приводит к сосуществованию мод симметричного и асимметричного деления. Современные модели предсказали и качественно объяснили мультимодальную природу деления, а также добились определенных успехов в количественном описании массово-энергетического распределения осколков спонтанного деления и вынужденного деления с и< В„. Однако в настоящее время все еще нет теоретических подходов, способных последовательно учесть проявление оболочечных эффектов при больших энергиях возбуждения и их тепловое затухание в массово-энергетическом распределении осколков деления. Поэтому была получена эмпирическая аппроксимация для этого распределения, опирающаяся на анализ экспериментальных данных при и< 50 МэВ.
Так, массовое распределение представляет собой сумму симметричной и асимметричной компонент У(А) = Ущ>т(А) + РУ!ут(А), где
Р(и<|,Ап.£>) - функция, определяющая соотношение этих мод деления, зависимость которой от энергии возбуждения и(>, массы Аи и заряда Тм делящегося ядра была извлечена из анализа экспериментальных данных. Сами распределения УЩ™(А) и У5>та(А) аппроксимировались гауссианами, характеристики которых также извлекались из эксперимента. Подобным же образом аппроксимировались характеристики зарядового и кинетической энергии распределений.
В раздые 33 описана общая схема расчета деления ядер чатицами средних энергий. В частности, расчеты по диффузионной .модели характеристик массово-энергетического распределения выполнялись до основного монте-карловского расчета. При этом область трехмерного пространства 74<2лй 96, 160 < Аи < 244, 50 < 1/о < 800 МэВ разбивалась на ячейки с шагом Мл = 2, ДАи = 4 и Ди» = 50 МэВ. Для всех ядер, находящихся в узлах этой решетки, были рассчитаны значения параметров оА*. сгг:(А), сЕ№:(А), Ек.п(А). Зависимость этих величин от массы осколка
аппроксимировалась на'основе расчета и все необходимые коэффициенты этих аппроксимаций также были вычислены для узловых ядер. Для промежуточных значений Ъ\, Ао и 1Го в этом трехмерном пространстве использовалась интерполяция.
В Главе IV проанализированы экспериментальные данные по делению ядер частицами средних энергий.
' В разделе 4.1 анализируются делительные данные, полученные в реакциях, инициированных частицами низких (< 20 МэВ) энергий. В этом случае с большой вероятностью образуются составные ядра с фиксированной энергией возбуждения. Поэтому, анализ таких данных позволяет тестировать как испарительную модель, так и полученную для описания низкоэнергетического деления эмпирическую аппроксимацию. Из сравнения экспериментальных и расчетных распределений осколков деления тяжелых ядер с 226<А<243 и 88< 2, < 95 нейтронами и протонами с энергией 2 < Е < 14 МэВ можно сделать вывод, что модель правильно описывает как увеличение вклада симметричного деления сростом энергии возбуждения, так и эволюцию формы массового распределения с ростом
массы делящегося ядра, включая трехгорбую форму для 226Б1а. Что касается зарядового распределения (в среднем следующего за распределением массы) осколков деления, хорошее описание получается не только для распределения осколков сданным Ъ (пи, +:з51Г; п(14.7 МэВ) + 238и) н выхода изобар (фракционный выход в пш + 235и), но и для экранированных ядер (п(14.7 МэВ) + 232ТЬ, 235и; р(13 МэВ)+ 238и), что является хорошим тертом для теории.
Зависимость ТКЕ от массы осколка деления также хорошо описывается (пц> + 2:5ТЬ, "'и; р(7.4 МэВ) + :ззЦ) не только для делительных событий, но и для малой их части (-ТО5) очень редких событий, в которых величина ТКЕ близка к максимальной, (^-реакции для данного массового расщепления, т.е. образуются практически холодные (I) < 5 МэВ) фрагменты.
В разделе 4.2 представлен развернутый анализ деления ядер частицами средних энергий. Так в анализе массовых распределений осколков деления 23811 протонами с энергией 100<Е<340 МэВ (рис.1). показано, что вклад асимметричного деления резко уменьшается с увеличением налетающей энергии и массовое распределение становится симметричным для Е > 300 МэВ. Таким образом, модель правильно описывает увеличение вклада в ансамбль остаточных ядер, доли составных ядер с энергией -возбуждения и > 50 МэВ. Следует также отметить, что модель хорошо описывает не только выход осколков с данной массой А. но также двумерный К-Ъ выход изотопов. На рис. 2 показан выход изотопов ЯЪ и Сз в реакции р(1 ГэВ) +
В исследовании высокоэнергетлческого деления наиболее интересным является рассмотрение ядерного деления частицами, вносящими в ядро-мишень достаточно большую энергию. В этом случае наиболее полно исследованными являются деление, инициированное протонами с энергией 1 ГэВ и остановившимися антипротонами. В последнем случае в силу поверхностного поглощения антипротона, половина аннигиляционной энергии 1 ГэВ) вносится в ядро, что является близким к случаю протона 1 ГэВ. Таким образом, средние характеристики массово-энергетических распределений в делении этими частицами будут
близки. Такие теоретические предсказания, сделанные в рамках разработанного подхода, подтверждаются в эксперименте (см. Таблицу I).
Анализ массовых распределений осколков деления (рис.3), полной кинетической энергнн и полной массы осколков, зависимости полной кинетической энергии от полной массы в реакциях деления, инициированного протонами 1 ГэВ и остановившимися антипротонами, показал, что модель может успешно применяться для описания деления ядер частицами средних энергий.
В заключении сформулированы основные результаты диссертации, которые представляются к защите.
Основные результаты диссертации опубликованы в работах:
). Lucherini V., Guaraldo С......Mebel M.V.
Au photofission cross section by quasimonociioromatic photons in the intermediate energy region. Phys. Rev. C39(1989) 911-916.
2. Iljinov A.S., Mebel M.V., et al.
Comparison of fission of heavy nuclei induced by different probes. Phys. Rev. C39(1989) 1420-1424.
3. Iljinov A.S., Mebel M.V., et al.
Fissilities of :3SU and :3'Np nuclei measured with tagged photons in the energy range 60-240 MeV. Nuc!. Phys. A539(1992) 263-275.
4. Iljinov A.S., Mebel M.V., et al.
Phenomenological statistical analysis of level densities, decay widths and • lifetimes of excited nuclei. Nucl. Phys. A453(1992) 517-557.
'5. Bianchi N......Mebel M.V., et al.
Photofissility of :32Th measured with tagged photons from 250 to 1200 MeV. Phys. Rev. C48(1993) 1785-1790. . 6. Адеев Г.Д., .... Мебель M.B, и др.
Метод расчета массово-энергетических распределений осколков деления ядер частицами средних энергий. Препринт ИЯИ-816/93, Москва, 1993 г.. 24 с.
7. Iljinov A.S., Mebel M.V., et al.
Antiproton induced nuclear fission. Материалы XII совещания по физике деления ядер, Обнинск, 27-30 сентября, 1993 г., ЯФ 57(1994) 1286-1293.
8. Schmid W......Mebel M.V., et al.
Absolute probabilities of fission induced by stopped antiprotons. Nucl. Phys. A569(1994) 689-700.
9. Hofmann P., Iljinov A.S., Kim Y.S., Mebel M.V., et al.
Fission of heavy nuclei induced by stopped antiprotons. I. Inclusive characteristics of fission fragments. Phys. Rev. C49(1994) 2555-2568. lO.Ivanov D.I., Iljinov A.S., Mebel M.V., et al.
Fission probabilities of Cu, Nb, Ag. Ho, Au and Bi nuclei exited by stopped antiprotons. Z.Phys. A351(1995) 191-195. ll.T. von Egidy,..., Mebel M.V., et al.
Nuclear physics with antiprotons. Z. Naturforsch. 50a(1995) 1077-1082. 12.Iljinov A.S., Kim Y.S., Mebel M.V., et al.
Fission of heavy nuclei induced by stopped antipr.otons. II. Correlations between fission fragments. Phys. Rev. C54(1996) 2469-2476.
Рис. !. Сечение образования осколков деления ядра ;з8и протонами средних энергий.
Рис. 2. Сечение образования изотопов ИЬ и Сз в реакции деления ядра :38и протонами с энергией 1 ГэВ.
Рис. 3. Массовое распределение осколков деления ядер и ^и
протонами с энергией 1 ГэВ и остановившимися антипротонами.
Таблица I. Средние характеристики массового (Аг). полной массы (А<*0') " полной кинетической энергии (ТКЕ) распределений осколков деления ядер -|>9Ви -ИТ1) и ;35и протонами с энергией 475 МэВ и 1 ГэВ и остановившимися антипротонами.
Characteristic 475 MeV p 1000 McV p stepped j>
Experiment 1 Theory Experiment Theory Experiment Theory
Target nucleus ""Hi
At лГ TKE(McV) 0S.7±S.J )92.9±1.7 138.-i±5.8 94.9±2/l 1S9.8±4.8 I37.6±3.5 95^2 189±'1 136±2 88.6±1.8 177.2±3.6 Ш.8±2.7 92.4±1.4 18i.7±2.1 127.9±1.5 87.6*1.2 175.2±2.5 130.2±1.8
Target nucleus ^-'Th
Ar T,ot Af TKE(MeV) - - 212±2 157±2 103.0±1.2 20e.0±2.4 J 52.4 ±1.8 101.6±1.1 203.9±2.0 14'1.1±1.3 101.4±0.5 202.9 ±1.1 148.6±0.8
Target uuclciis 213 U
Af -r-lot Af TKE(MeV) 222.0±1.7 152.0±S.9 110.-Ш.2 220.912.5 Ш.4±1.8 105±2 216±-1 165±2 105/Ш.2 210.9±2.4 15T.3±I.8 106.Ш.4 211.8±2.3 152.2*1.6 103.7±0.5 207.4±1.0 153.3±0.8
Отпечатано прямым репродуцированием с оригинала, представленного автором
Ф-т 60x84/16 Уч.-изд.л. 1,5 Заказ X» 19719 Тираж 100 экз. Бесплатно
Издательский отдел Института ядерных исследований РАН ■ Москва, проспект 60-летия Октября, 7а
IS