Стохастические задачи максимизации робастной полезности тема автореферата и диссертации по математике, 01.01.05 ВАК РФ
Морозов, Иван Сергеевич
АВТОР
|
||||
кандидата физико-математических наук
УЧЕНАЯ СТЕПЕНЬ
|
||||
Москва
МЕСТО ЗАЩИТЫ
|
||||
2011
ГОД ЗАЩИТЫ
|
|
01.01.05
КОД ВАК РФ
|
||
|
&
Московский государственный университет имени М. В. Ломоносова Механико-математический факультет
^ г
4857414 На правах рукописи
УДК 519.21
Морозов Иван Сергеевич
СТОХАСТИЧЕСКИЕ ЗАДАЧИ МАКСИМИЗАЦИИ РОБАСТНОЙ ПОЛЕЗНОСТИ
01.01.05 — теория вероятностей и математическая статистика
Автореферат
диссертации на соискание ученой степени кандидата физико-математических наук
1 3 ОКТ 2011
Москва-2011
4857414
Работа выполнена на кафедре теории вероятностей механико-математического факультета Московского государственного университета имени М. В. Ломоносова.
Научный руководитель:
доктор физико-математических наук Гущин Александр Александрович.
Официальные оппоненты:
доктор физико-математических наук, профессор Богачев Владимир Игоревич; доктор физико-математических наук, доцент Рохлин Дмитрий Борисович.
Ведущая организация:
Центральный экономико-математический институт РАН (ЦЭМИ РАН)
Защита диссертации состоится 28 октября 2011 года в 16 часов 40 минут на заседании диссертационного совета Д 501.001.85 при Московском государственном университете имени М.В.Ломоносова по адресу: Российская Федерация, 119991, Москва, ГСП-1, Ленинские горы, д. 1, МГУ, Механико-математический факультет, аудитория 16-24.
С диссертацией можно ознакомиться в библиотеке механико-математического факультета Московского государственного университета имени М. В.Ломоносова (Главное здание, 14 этаж).
Автореферат разослан 27 сентября 2011 года.
Ученый секретарь диссертационного совета Д 501.001.85 при МГУ доктор физико-математических паук, профессор
Сс^
В. Н. Сорокин.
Общая характеристика работы
Актуальность темы. Фундаментальной проблемой финансовой математики является описание оптимального способа инвестирования при заданных предпочтениях инвестора и бюджетных ограничениях. Концепция максимизации ожидаемой полезности восходит к 1950-м годам, в частности, работе Дж. Тобина1, в которой были представлены теоретико-вероятностные обоснования портфельной теории Марковица, основанной на анализе ожидаемых средних значений и дисперсий случайных величин. Одной из предпосылок к сравнению именно средних ожидаемых доходов стали монографии Дж. фон Неймана, О. Моргенштерна2 и JI. Сэвиджа3, где поставленный набор аксиом привел к представлению полезности ^ (£) того или иного исхода £ в виде математического ожидания Ер/7(£) по некоторой вероятностной мере Р от некоторой функции полезности U: = Ер[/(£).
Если предпочтения инвестора описываются возрастающей вогнутой функцией полезности U: R —» R U {—оо} и случайность на рынке реализована через вероятностное пространство (Q,,^, Р), то стандартная задача максимизации ожидаемой полезности финального благосостояния может быть поставлена в виде
suP Epi/(0, (1)
iejr(x)
где множество ,Х'(х) состоит из всех терминальных капиталов отвечающих допустимым (с точки зрения экономического агента) стратегиям с начальным капиталом х.
Наряду с задачей максимизации полезности терминального капитала в литературе рассматриваются и более общие постановки. Так, если в терминальный момент времени агент получает случайную прибыль В (например, от реализации опциона), то мы получим задачу максимизации полезности со случайным вкладом:
sup ЕР U(£ + B).
(е Х(х)
С этой задачей связано нахождение беспристрастной цены (indifference pricing) платежного обязательства (см., например, работу4).
1 ТоЫп J. Liquidity preference as behavior towards risk // Rev. Econ. Stud., 1958, Vol. 25, p. 68-85.
2 Von Neumann J., Morgenstern 0. Theory of games and economic behavior. Princeton University Press, 1944.
3Savage L. The foundations of statistics. N. Y.: Wiley, 1954.
*Biagini S., FYittelli M.t Grasselli M. Indifference price with general semimartingales // Math. Finance, 2011, Vol. 21, TO, p. 423^46.
Еще одна проблема максимизации полезности возникает в задачах с "потреблением", когда экономический агент извлекает прибыль (и потребляет) на протяжении всего временного горизонта, а не только в терминальный момент времени. Функции полезности ¿/(£,■) могут варьироваться со временем. План потребления С в момент времени £ 6 [0,Т] определяется случайной нормой потребления с(£) ^ 0, а общий объем потребления на промежутке [£,£ + с(£] увеличивается на с(£)сй. Если за Хс,р обозначить процесс капитала, отвечающий инвестиционной стратегии Р и плану потребления С, то его изменение с1ХС'Р будет удовлетворять соотношению ¿ХС'Р = + <Г°/Р(£), где ¿Ур{{) есть изменение стоимости инвести-
ционного портфеля вследствие изменения цен торгуемых активов. Таким образом агент заинтересован в получении наибольшей интегральной полезности
sup ЕР f U(t,c(t))dt,
PW(x) Jo
где максимизация происходит по множеству si(х) допустимых пар инвестиционных стратегий и планов потребления с начальным капиталом х. Одним из естественных ограничений на допустимые стратегии является неотрицательность капитала в заключительный момент времени: > 0.
Диссертация посвящена другому обобщению задачи (1) — максимизации функционала робастной полезности. Оно ведет начало от работы5, где был рассмотрен ряд более мягких аксиом, что привело к измерению полезности того или иного исхода £ в виде робастного функционала: ^(О = infQS^ Eq U(£), где U — по-прежнему некоторая функция полезности, а нижняя грань infQS.g математических ожиданий Eq{/(£) берется по некоторому семейству i? "субъективных" вероятностных мер. Такой подход может служить описанию предпочтений не склонного к риску инвестора, который в условиях неопределенности выбора вероятностной модели для будущего состояния рынка рассматривает наихудший сценарий.
В соответствии с таким способом измерения благосостояния, задача максимизации робастной полезности выглядит как
sup inf ЕQU(H). (2)
Отметим также дальнейшее ослабление аксиоматического подхода в работе6, приводящее к появлению функционала робастной полезности со
5Gilboa /., Schmeidler D. Maxmin expected utility with nonunique prior // J. Math. Econom., 1989, Vol. 18, p. 141-153.
6Maccheroni F., Marinacci M. Ambiguity aversion, robustness, and the variational representation of preferences // Econometrica, 2006, Vol. 74, №6, p. 1447-1498.
"штрафной" функцией:
sup inf[EQ[/(0+7(Q)].
(x)
Выбор методов исследования задачи максимизации полезности зависит от структуры финансового рынка. В классических работах Р. Мертона7'8 и П. Самуэльсона9 для марковских моделей финансового рынка задача максимизации полезности решалась с помощью методов динамического программирования. Применяемые методы позволили конструктивно описать решение, однако явный вид решения был возможен только в конкретных частных случаях. Альтернативой методам динамического программирования служат двойственные методы выпуклого анализа, не требующие практически никаких предположений о структуре модели. Суть этих методов заключается в решении сначала вспомогательной (двойственной) задачи, что позволяет охарактеризовать решение исходной задачи, а также найти ее цену. К недостаткам двойственных методов можно отнести то обстоятельство, что полученные с их помощью результаты о решении исходной задачи носят характер утверждений типа существования и единственности и, вообще говоря, не позволяют найти конкретное решение (которое, впрочем, не всегда можно получить и с помощью методов динамического программирования). Отметим, что в робастном случае (2) исходную задачу минимаксного типа на поиск седловой точки двойственный подход позволяет свести к (вообще говоря, более простой) задаче на минимизацию. Для марковских моделей рынка уже двойственная задача в некоторых работах решалась методами динамического программирования, что в дальнейшем помогло решить и исходную задачу.
В задачах стохастического управления впервые двойственные методы были применены Ж.-М. Висмутом10, а в задаче максимизации полезности — С. Плиска11. Во многом на развитие двойственных методов повлияла работа Д. Крамкова и В. Шахермайера12, где приводятся ссылки на предшествующую литературу.
7Merton R. С. Lifetime portfolio selection under uncertainty: The continuous-time case // Rev. Econom. and Statist., 1969, Vol. 51, №3, p. 247-237.
'Merton R. C. Optimum consumption and portfolio rules in a continuous-time model // J. Econom. Theory, 1971, Vol. 3, №4, p. 373-413.
9Samuelson P. A. Lifetime portfolio selection by dynamic stochastic programming // Rev. Econom. and Statist., 1969, Vol. 51, №3, p. 239-246.
10Bismut J.-M. Conjugate convex functions in optima] stochastic control // J. Math. Anal. Appl., 1973, Vol. 44, »2, p. 384-404.
nPliska S. R. A stochastic calculus model of continuous trading: optimal portfolios // Math. Oper. Res., 1986, Vol. 11, №2, p. 370-382.
12Kramkov D., Schachermayer W. The asymptotic elasticity of utility functions and optimal investment in incomplete markets // Ann. Appl. Prob., 1999, Vol. 9, №3, p. 904-950.
При изучении задач (1) и (2) в качестве моделей финансового рынка зачастую рассматривают динамические модели, в которых дисконтированные цены базовых рисковых активов описываются случайным процессом S (при самых общих предположениях являющегося семимартин-галом), инвестиционные стратегии — предсказуемыми S-интегрируемыми процессами Я, а доходы инвестора Xt к моменту времени t при заданной стратегии Я представляются векторными стохастическими интегралами Xt = Я ■ St = fg HudSu. В качестве Ж(х) тогда берут множество J(f(x) := {х + Н ■ St- Я £ Ж (а:)} , где Т — заключительный момент времени операций на финансовом рынке, а Ж{х) — множество допустимых стратегий, реализуемых при начальном капитале х.
С экономической точки зрения кредитная линия, открываемая инвестору, имеет конечные пределы, что привело к появлению классического ограничения о допустимости только таких инвестиционных стратегий Я, при которых доходы Xt = Н-St оказывались бы равномерно ограниченными снизу: Xt ^ const для всех моментов времени t. В частности, это ограничение позволило исключить мартингальные (удваивающие) стратегии, приводящие к появлению арбитража.
Существующая литература по максимизации полезности в основном разделяется на два общих случая: 1) функция полезности U конечна на полупрямой (а,+оо), а 6 R, и равна —оо на (—оо,а); 2) функция полезности U конечна всюду на R. В первом случае в стандартной (1) и робастной (2) постановках задачи максимизации полезности ограничение Xt ^ const, t € [О, Т], никак не ограничивает выбор инвестиционных стратегий. Действительно, из всех капиталов к = х + Хт 6 Ж(х) итоговая полезность не обращается в —оо только в тех случаях, когда х 4- Хт ^ а (соответственно Р-п.н. или Q -п.н. при всех Qe^), а при условии отсутствия арбитража (NA) условие Хт ^ с эквивалентно условию Xt ^ с, t е [О,Т].
Благодаря этому обстоятельству в работе12 (где был внесен наиболее существенный вклад в исследование задачи максимизации стандартной полезности с функцией полезности, конечной на полупрямой) авторы использовали следующую схему рассуждений. Сначала все основные результаты были сформулированы и доказаны для абстрактной модели рынка, в которой заданным предполагалось только множество Ж(х) терминальных капиталов, после чего полученные результаты переносились на случай динамической семимартингальной модели.
В случае конечной на R функции полезности допустимость только ограниченных снизу процессов капиталов является существенным предположением. Более того, оно является не вполне естественным, так как в классе стратегий с ограниченными снизу капиталами не приходится рассчитывать
на существование оптимальной стратегии. Так, в работе13 фактически решалась задача (1) со множеством Jfi(x), которое получалось расширением множества {х + Н ■ St- Н ■ St ^ const для всех t е [О,Г]} с помощью некоторой процедуры замыкания. При определенных условиях доказывалось существование оптимального решения к задачи (1), при этом случайная величина к, вообще говоря, уже не ограничена снизу, но представима в виде к = х + Н ■ St, где процесс {Я • 5(}(6[о,г], естественно, также может не быть ограниченным снизу. Отметим, что упомянутое расширение множества {х + Н • St - Н • St~Z const для всех t е [0,Т]} до Ж[х) не изменило ожидаемую полезность.
В работе13 было также отмечено, что множество стратегий с ограниченными снизу капиталами и вовсе может оказаться тривиальным. Например, такое возможно в семимартингальной модели рынка, если процесс цены S не является локально ограниченным. В то же время задача максимизации полезности может быть поставлена и иметь нетривиальное решение в более широком классе стратегий. А именно, такая задача максимизации стандартной полезности была рассмотрена С. Бьяджини и М. Фрител-ли14'15 •16'17, где в качестве допустимых они рассматривали такие стратегии Н, что Н ■ St > —cW для всех моментов времени t 6 [О, Т] и некоторого с > 0, где W есть положительная случайная величина, удовлетворяющая некоторым условиям интегрируемости. Особенно стоит выделить работу17, где было отмечено, что подобное расширение класса допустимых стратегий может привести к увеличению ожидаемой полезности.
В диссертации мы ставим целью расширить применимость двойственных методов в задаче максимизации робастной полезности. Исследуемая нами постановка носит абстрактный характер, т.е. мы имеем дело с задачей (2). Наши ограничения на множество Ж (х) оказываются более слабыми, чем в предшествующих работах. В частности, в стандартной задаче (1) от множества Ж{х) требуется только представимость в виде Ж(х) = х + Ж, где Ж — выпуклый конус.
Другим объектом исследования является вопрос о дифференцируемо-сти целевой функции и(-) в задаче максимизации робастной полезности (2).
13Schachermayer W. Optimal investment in incomplete markets when wealth may become negative // Ann. Appl. Probab., 2001, Vol. 11, №3, p. 694-734.
14 Biagini S. An Orlicz spaces duality for utility maximization in incomplete markets // Seminar on Stochastic Analysis, Random Fields and Applications V, Progress Probab., Birkhauser, Basel, Vol. 59, Part 2, p. 445-455.
15 Biagini S-, Prittelli U. Utility maximization in incomplete markets for unbounded processes 11 Finance Stoch., 2005, Vol. 9, №4, p. 493-517.
Biagini S., Frittelli M. The supermartingale property of the optimal portfolio process for general semimartingales // Finance Stoch., 2007, Vol. U, №2, p. 253-266.
17Biagini 5-, Frittelli M. A unified framework for utility maximization problems: an Orlicz space approach // Ann. Appl. Probab., 2008, Vol. 18, №3, p. 929-969.
Выбор оптимального способа инвестирования позволяет при начальном капитале х получить итоговую полезность и(х): х и(х). В этом смысле целевая функция и(-) позволяет оценивать возможности финансового рынка, и поэтому сама может рассматриваться как функция полезности. А для функций полезности условия гладкости во многих задачах являются необходимыми, что ставит соответствующие вопросы и в задачах максимизации полезности.
Цель исследования. Целью исследования являются: постановка двойственной задачи к задаче максимизации робастной полезности при минимальных предположениях на множество капиталов; установление минимаксных соотношений между основной и двойственной задачами; изучение вопроса дифференцируемости целевой функции в задаче максимизации робастной полезности.
Научная новизна. Основные результаты диссертации являются новыми и состоят в следующем:
1) в задаче максимизации робастной полезности при минимальных предположениях на множество капиталов доказана минимаксная теорема и установлена двойственная характеризация целевой функции;
2) доказано, что в задаче максимизации робастной полезности целевая функция может быть не всюду дифференцируемой, если только функция полезности не является степенной, экспоненциальной или логарифмической;
3) установлены свойства сопряженных пространств для некоторого класса пространств Орлича по семейству мер.
Методы исследования. В работе применяются методы теории вероятностей и функционального анализа.
Теоретическая и практическая ценность. Работа носит теоретический характер. Ее результаты могут быть полезны в теории вероятностей, функциональном анализе, математической статистике, теории случайных процессов и различных областях ее применения, в частности, в задачах финансовой математики.
Апробация работы. Результаты, относящиеся к диссертации, излагались на следующих семинарах
1. Большой семинар кафедры теории вероятностей (МГУ, механико-математический факультет) под руководством члена-корреспондента РАН профессора А. Н. Ширяева, Москва, 2010;
2. Семинар "Стохастический анализ: теория и приложения", проводимый в Математическом институте им. В. А. Стеклова под руководством члена-корреспондента РАН профессора А. Н. Ширяева и доктора физико-математических наук А. А. Гущина, Москва, 2009
и конференциях
3. Международная конференция "Современная стохастика: теория и применения II", Киев, Украина, 2010;
4. Международная научная конференция студентов аспирантов и молодых ученых "Ломоносов-2009", Москва, 2009;
5. Международная научная конференция студентов, аспирантов и молодых ученых "Ломоносов-2010", Москва, 2010;
6. Российско-японский симпозиум "Стохастический анализ сложных статистических моделей", Москва, 2007.
Публикации. Основные результаты диссертации опубликованы в пяти работах [1-5] (полный список приведен в конце автореферата). Из них три — в журналах, внесенных в список ВАК. Работ, опубликованных в соавторстве, нет.
Структура и объем работы. Диссертация изложена на 93 страницах и состоит из списка обозначений, введения, трех глав и списка литературы, включающего 48 наименований.
Содержание работы
Глава 1 посвящена исследованию некоторых вспомогательных вопросов, которые также имеют и самостоятельный интерес.
В разделе 1.1 определяются пространства Орлича, построенные по семейству мер. Дадим некоторые определения.
Функцией Юнга называется ненулевая неотрицательная четная выпуклая функция Ф: К -+ К+ и {+оо} с Ф(0) = 0.
Пусть задано измеримое пространство (П,^) и семейство ¿2 вероятностных мер. Пространство Орлича Ьф(£2), построенное по семейству мер ¿2 и ассоциированное с функцией Юнга Ф, определяется как
Ьф(£) := {£ е L°(«2): sup Е0Ф(еС) < +оо для некоторого £ > 0}, QS.2
где пространство L°(J2) состоит из классов эквивалентности случайных величин, совпадающих Q-п.н. при всех Q е £?. Это пространство является банаховым (см. монографию Р. Розенберга18)относительно нормы Люксембурга
АГФ(0 := sup JVf (О = inf ¡К > 0: sup Е0Ф Ш < l) .
Qe3 I Qs.2 \л/ J
В разделах 1.2-1.5 свойства пространств Орлича по семейству мер £1 и сопряженных к ним изучаются при следующих предположениях на множество 3-:
• Л? — выпуклое подмножество вероятностных мер на (П, ;
• Q -С Р для всех Q 6 ¿2 и некоторой вероятностной меры Р;
• найдется такая Q0 € .3, что Qo ~ Р;
• семейство {^зр Р-равномерно интегрируемо и L^P)-замкнуто для любой случайной величины г), такой что supqgigEq|t?| < +оо.
В разделе 1.2 показано, что последнее свойство эквивалентно компактности В в »-слабой топологии о{1}{12)*, Ll(J2)). В этом же разделе доказаны некоторые свойства пространств Орлича по семейству мер, характерные для стандартных пространств Орлича.
Условие компактности на множество В не является интуитивно понятным, поэтому в разделе 1.3 дается описание широкого класса множеств, обладающих этим свойством.
Как и в случае любых банаховых решеток элементы ß сопряженного пространства допускают разложение на регулярные ff 6 Ьф(£?)г
и сингулярные fis Е Ьф(£?)в составляющие. Сингулярные функционалы г е Ьф(£2у могут быть охарактеризованы как функционалы, принимающие нулевые значения на L°°(P). Регулярным функционалам т 6 Ьф(£!)г можно поставить в соответствие меру dm, такую что для всех £ Е Ьф(£!)
18Hosenberg R. Orlicz spaces based on families of measures // Studia Math., 1970, Vol. 35, p. 15-49.
будет иметь место соотношение m(£) = Jü£dm. Для сингулярного функционала г £ ЬФ(12У с любой точностью е > О можно подобрать такое множества G £ &, что P(G) < е и z(£) = 0 при fie = 0.
Следуя подходу, предложенному А. А. Гущиным19, в разделах 1.4 и 1.5 вводится понятие /-дивергенции функционалов на пространствах Орлича, построенных по семейству мер, и исследуются ее свойства. Полученные результаты существенно используются для доказательства результатов главы 2.
Перейдем к задаче максимизации робастной полезности, которая исследуется в главе 2.
Пусть U — конечная функция полезности экономического агента, действующего на финансовом рынке, т.е. U: R —► К вогнута и возрастает. Свяжем с ней функцию Юнга Ф(л;) := -(7(-|а;|) 4- U{0).
Пусть также на измеримом пространстве (12, задано множество случайных величин Ж, которое мы будем интерпретировать как множество всех реализуемых на финансовом рынке доходов. Для начального капитала х 6 К в качестве допустимых предлагается рассматривать множество
Хх := {к е Х-. inf EqU(x - к~) > -оо}.
L Qe.2
Ожидаемая робастная полезность при начальном капитале х тогда определяется соотношением
и(х) := sup inf EqU(x + к), кале Qe.s
Индивидуальные целевые функции по мерам Q £ i? имеют вид uq(x) := suPfcSx,EQ U(x + k), Q € ¿2.
В теореме 2.1 доказываются основные свойства целевой функции и:
l(i) Функция и(х), I £ 1, принимает значения в RU {+оо}, является возрастающей и вогнутой, а также и(х) ^ U(x) для всех xel.
l(ii) Либо и(х) = +оо для всех i£l, либо и( х) £ К для всех
l(iii) Для любого начального капитала х £ К выполнены минимаксные соотношения:
и(х) = min uq(x).
19Гущин А. А. О расширении понятия /-дивергенции // Теория вероятн. и ее примен., 2007, т. 52, в. 3, с. 468-489.
Перейдем к описанию двойственной задачи. Зададим множество := (Ж — ¿°(Р)) п Ьф(£>), а также множество разделяющих функционалов
@ := {ц € Ьф{£)*: ц{1и) = 1 и /ДО ^ 0 для любой С £ Щ,
Пусть V — двойственная к II функция, т.е. У(у) := зир:с€К[С/'(ж) — ху], у € К. В случае = 0 положим щ(0) := ^(0) и ь{у) := +оо при у > 0. Если же М ф 0, положим двойственную целевую функцию v равной
v(y) := inf fr<Q
2/1И1 + EqK (у^
У> 0, (3)
где /л = цг + ц8 есть разложение функционала ц на регулярную // и сингулярную // составляющие.
Определим также для всех <3 € £1 функции г>о(у) := ь{у) в случае М = 0 и
vQ(y) := inf tiiM
У> о, (4)
в случае ф 0.
Основные свойства двойственной функции v перечислены в теореме 2.2:
2(i) Функция v(y), у > 0 принимает значения в RU{+oo}, является выпуклой и полунепрерывной снизу, а также v(y) ^ У {у) для всех
У> о.
2(ii) Нижняя грань в (3) и (4) достигается. 2(iii) Для любого у ^ 0
Решение двойственной задачи позволяет найти решение основной задачи, поскольку целевые функции и и v являются двойственными друг другу. Более того, между основной и двойственной задачами выполнены следующие соотношения:
3(i) Если dorn v = 0, то и(х) = + оо для любого isR. Если dorn v ф 0, то и[х) € R для любого х е R.
3(ii) Между функциями и и v выполнены двойственные связи:
и( х) = min[^(j/) + ху], I6R, (5)
у^О
и
v(y) = sup[u(z) - ху],
X6R
3(iii) Для любой Q € .2 двойственные связи выполнены между функциями uq и vq:
uq{x) = min[t)Q(y) + ху\, х € R,
и
Щ(У) = sup[uQ(y) - ху], 2У ^ 0.
гей
3(iv) Зафиксируем iel. Если минимум в (5) достигается на у, а минимум в (3) при у = у — на паре (fr, Q) 6 !% х ¿2, то
и(х) = Uq(x) = sup ЕqU(x + к). (6)
keJff,
Обратно, если для некоторой Q € £1 выполнено (6), то найдутся такие у ^ 0 и fr € ^, что минимум в (5) достигается на у, а минимум в (3) при у = у — на паре (/¿, Q).
Глава 3 имеет дело со следующей моделью финансового рынка:
• Функция полезности U: R KU {— оо} возрастает, вогнута, полунепрерывна сверху, не тождественно равна —оо и не является линейной. Совокупность int dorn U внутренних точек области конечности U обозначим (о, +оо), где а 6 R U {—оо} .
• Пространство элементарных событий Q дискретно и состоит из четырех исходов: П := {о> 1,0)2,0)3,0)4}. Сигма-алгебра & := Вероятностные меры и случайные величины тогда можно отождествить с четырехмерными векторами.
• Зафиксируем произвольные ri,r2 € (0,1) и зададим процессы (дисконтированных) цен двух рисковых активов (ß\)t=0,1 для ¿ = 1,2 соотношениями Sg := Sq := 1,
5f:=( 2-n, 1-n, 1, 1 ), S?:=( 1, 1, 2 — r2, l-r2 ).
Множество Ж допустимых доходов определим стандартным образом как X := {Л¡(S} - Si) + А2(S? - Sg): Аь Л2 € Щ.
• Зафиксируем произвольные <71,92 £ (0,1), две вероятностные меры зададим равенствами
Qi:=( 9ь 1-91, 0, 0 ), Q2:=( 0, 0, <72, 1-92 )
и положим множество субъективных мер 2 равным выпуклой оболочке и С)2: .2:= :=0()1 + (1-/3)02: 0^/3^1}.
Будем говорить, что функция V является степенной, логарифмической или экспоненциальной, если с точностью до константы, сдвига и умножения на положительную константу
... . Г —оо, х < 0. , . „ . Г —|х|", х < О,
и{х) = —е~х, ж 6 К
или
и(х) = ( Г00' Х?п
4 ' 1п х, х ^ О
соответственно.
Тогда в рассматриваемой постановке следующие условия эквивалентны:
1. Для любой рассматриваемой модели рынка целевая функция и(х) в случае конечности дифференцируема на (а, +оо) и при а > —оо удовлетворяет условию Инада на левом конце: НтХ|аи'_(х) = +оо.
2. Функция полезности и(х) имеет степенной, экспоненциальный или логарифмический вид.
А именно, если функция II(х) имеет один из указанных видов, то для любых параметров п, гг, 91, <72 € (0,1) целевая функция и(х) в случае конечности будет дифференцируемой на (а, +оо) и при а > —оо удовлетворять условию Инада на левом конце. Если же функция II(х) имеет иной вид, то всегда можно подобрать такие п, Г2, <71, <п £ (0,1), что целевая функция и(х) будет либо недифференцируемой по крайней мере в одной точке, либо не будет выполнено условие Инада на левом конце а > —оо.
Работа выполнена под руководством доктора физико-математических наук Александра Александровича Гущина, которому автор выражает искреннюю благодарность за помощь в выборе направления исследования и постоянную поддержку.
Работы автора по теме диссертации
[1] Морозов И. С. Расширение класса допустимых стратегий в задаче максимизации робастной полезности с конечной на К функцией полезности // Обозрение прикл. и промышл. матем., 2010, т. 17, в. 5, с. 617-634.
[2j Морозов И. С. Дифференцируемость целевой функции в задаче максимизации робастной полезности // Теория вероятн. и ее примен., 2011, т. 56, в. 2, с. 374-384.
[3] Морозов И. С. О характеристическом свойстве степенных, экспоненциальных и логарифмических функций полезности // Обозрение прикл. и промышл. матем., 2011, т. 18, в. 2, с. 309.
[4] Морозов И. С. Дифференцируемость целевой функции в задаче максимизации робастной полезности // Тезисы докладов Секции "Математика и механика" XVI Международной научной конференции студентов, аспирантов и молодых ученых "Ломоносов-2009". М.: Механико-математический факультет МГУ имени М. В. Ломоносова, 2009, с. 47.
[5] Morozov I. S. On an extension of the class of admissible trading strategies in the robust utility maximization problem // Abstracts of International Conference "Modern Stochastics: Theory and Applications II", Kyiv, Ukraine, 2010, p. 58.
Подписано в печать: 16.09.11
Объем: 1,5 усл.п.л. Тираж: 100 экз. Заказ № 501 Отпечатано в типографии «Реглет» 119526, г. Москва, ул.Рождественка, 5/7,стр.1 (495)978-43-34; www.reelet.ru
Список обозначений
Введение
ГЛАВА 1. Вспомогательные результаты
1.1 Общие сведения о пространствах Орлича.
1.2 Свойства пространств Орлича по семейству мер, удовлетворяющему условию компактности.
1.3 Примеры выполнения условия компактности.
1.4 /-дивергенция функционалов на пространствах Орлича
1.5 /-дивергенция, связанная с функцией полезности.
ГЛАВА 2. Расширение класса допустимых стратегий в задаче максимизации робастной полезности
2.1 Постановка задачи и формулировка результатов.
2.2 О решении в задаче максимизации робастной полезности
2.3 Доказательство результатов.
ГЛАВА 3. Дифференцируемость целевой функции в задаче максимизации робастной полезности
3.1 Основные результаты.
3.2 Описание в двойственных терминах.
3.3 Доказательство.
Диссертация подготовлена на кафедре теории вероятностей механико-математического факультета Московского государственного университета и затрагивает вопросы, связанные с задачей максимизации робастной полезности в финансовой математике.
Актуальность темы. Фундаментальной проблемой финансовой математики является описание оптимального способа инвестирования при заданных предпочтениях инвестора и бюджетных ограничениях. Концепция максимизации ожидаемой полезности восходит к 1950-м годам, в частности, работе [46], в которой были представлены теоретико-вероятностные обоснования портфельной теории Марковица, основанной на анализе ожидаемых средних значений и дисперсий случайных величин. Одной из предпосылок к сравнению именно средних ожидаемых доходов стали монографии [47] и [42], где поставленный набор аксиом привел к представлению полезности того или иного исхода £ в виде математического ожидания Ер £/(£)> по некоторой вероятностной мере Р от некоторой функции полезности U: = Ер £/"(£).
Если предпочтения инвестора описываются возрастающей вогнутой функцией полезности U: R —> М U {—схэ} и случайность на рынке реализована через вероятностное пространство (f2, J^, Р), то стандартная задача максимизации ожидаемой полезности финального благосостояния может быть поставлена в виде sup Eptfg), (0.1) х) где множество <Ж(х) состоит из всех терминальных капиталов £, отвечающих допустимым (с точки зрения экономического агента) стратегиям с начальным капиталом х.
Наряду с задачей максимизации полезности терминального капитала в литературе рассматриваются и более общие постановки. Так, если в терминальный момент времени агент получает случайную прибыль В (например, от реализации опциона), то мы получим задачу максимизации полезности со случайным вкладом: sup I Ер U(£ + B).
С этой задачей связано нахождение беспристрастной цены (indifference pricing) платежного обязательства (см., например, [19]).
Еще одна проблема максимизации полезности возникает в задачах с "потреблением", когда экономический агент извлекает прибыль (и потребляет) на протяжении всего временного горизонта, а не только в терминальный момент времени. Функции полезности U(t, ■) могут варьироваться со временем. План потребления С в момент времени t G [О, Т] определяется случайной нормой потребления c(t) ^ 0, а общий объем потребления на промежутке [:t, t+dt] увеличивается на c(t)dt. Если за обозначить процесс капитала, отвечающий инвестиционной стратегии Р и плану потребления С, то его изменение dXc>p будет удовлетворять соотношению dX°'P = —c(t)dt+dVF{t), где dVp{t) есть изменение стоимости инвестиционного портфеля вследствие изменения цен торгуемых активов. Таким образом агент заинтересован в получении наибольшей интегральной полезности sup ЕР [ U(t,c(t))dt,
C,P)es/(x) JO где максимизация происходит по множеству «я/(х) допустимых пар инвестиционных стратегий и планов потребления с начальным капиталом х. Одним из естественных ограничений на допустимые стратегии является неотрица
С4 Р тельность капитала в заключительный момент времени: Хт' ^ 0.
Диссертация посвящена^ другому обобщению задачи (0.1) — максимизации функционала робастной: полезности. Оно ведет начало от работы [25], где был рассмотрен: ряд более мягких аксиом, что привело к измерению полезности (£) того или иного- исхода £ в виде робастного функционала: = mfQ&£> EQU(£) , где U — по-прежнему некоторая функция* полезности, а нижняя грань. infqg^. математических ожиданий Eq£/(£) берется по некоторому семейству £2, "субъективных" вероятностныхмер.Такой подход может служитБ» описанию предпочтений не склонного к риску инвестора, который: в условиях неопределенности выбора вероятностной модели?для; будущего состояния рынка .рассматривает наихудший сценарий. *
В соответствии с таким способом измерения благосостояния; задача- максимизации робастной полезности выглядит как sup inf Eq£/(0- (0.2) еЛ'(х) Qe^
Отметим; также дальнейшее ослабление аксиоматического; подхода в [32], приводящее к появлению функционала робастной- полезности* со "штрафной" функцией: sup: inf[EQC/(0+7(Q)]. елг(х)
Выбор методов исследования! задачш максимизации полезности зависит от структуры финансового рынка. В классических работах Р. Мертона [33, 34] и П. Самуэльсона [41] для: марковских; моделей финансового рынка задача, максимизации полезности решалась с помощью методов динамического программирования. Применяемые методы позволили конструктивно описать решение, однако явный вид решения был возможен только в конкретных частных случаях. Альтернативой методам динамического программирования служат двойственные методы выпуклого анализа, не требующие практически никаких предположений о структуре модели. Суть этих методов заключается в решении сначала вспомогательной (двойственной) задачи, что позволяет охарактеризовать решение исходной задачи, а также найти ее цену. К недостаткам двойственных методов можно отнести то обстоятельство, что полученные с их помощью результаты о решении исходной задачи носят характер утверждений типа существования и единственности и, вообще говоря, не позволяют найти конкретное решение (которое, впрочем, не всегда можно получить и с помощью методов динамического программирования). Отметим, что в робастном случае (0.2) исходную задачу минимаксного типа на поиск седловой точки двойственный подход позволяет свести к (вообще говоря, более простой) задаче на минимизацию. Для марковских моделей рынка уже двойственная задача в некоторых работах решалась методами динамического программирования, что в дальнейшем помогло решить и исходную задачу.
В задачах стохастического управления впервые двойственные методы были применены Ж.-М. Висмутом в работе [20], а в задаче максимизации полезности — С. Плиска в работе [37]. Во многом на развитие двойственных методов повлияла работа Д. Крамкова и В. Шахермайера [30], где приводятся ссылки на предшествующую литературу.
При изучении задач (0.1) и (0.2) в качестве моделей финансового рынка зачастую рассматривают динамические модели, в которых дисконтированные цены базовых рисковых активов описываются случайным процессом 5 (при самых общих предположениях являющегося семимартингалом), инвестиционные стратегии — предсказуемыми Б-интегрируемыми процессами Я, а доходы инвестора Х± к моменту времени £ при заданной стратегии Н представляются векторными стохастическими интегралами XI = Н • = $Нис13и. В качестве <Ж(х) тогда берут множество Ж(х) := {х+Н-Зт- Н 6 Ж{х)}, где Т — заключительный момент времени операций на финансовом рынке, а Ж(х) — множество допустимых стратегий, реализуемых при начальном капитале х. 1 <
С экономической точки зрения кредитная линия, открываемая инвестору, имеет конечные пределы, что привело к появлению классического ограничения о допустимости только таких инвестиционных стратегий Н, при которых. доходы Xf= Н 5г~бказывал11сь бы равномерно ограниченными снизу:. Xt ^ const для всех моментов времени t. В частности, это ограничение позволило! исключить мартингальные (удваивающие) стратегии, приводящие к появлению арбитража. ■
Существующая литература по максимизации полезности в основном разделяется на два общих случая:. 1) функция полезности U конечна на; полупрямой- (а, +ос), а б My и равна —оо на. (—сю,а); 2} функция- полезности1 U конечна всюду на Ш. В первом случае в стандартной (0.1) и робастиой (0.2) постановках задачи максимизации полезности^ ограничение Xt ^ const , t Е [0, Т], никак не:; ограничивает выбор инвестиционных стратегий. Действительно, из всех капиталов к = ■ х X? € Ж{х) итоговая полезность не обращается в —со только в тех случаях, когда х+Хт ^ а (соответственно- Р-п.и. или Q -n.il. при всех Q € а при условии?отсутствия-арбитража (NA) условие Хт ^ с эквивалентно условию^ с , i Е [0, Т].
Благодаря этому обстоятельству в [30] (где был внесен наиболее существенный вклад в исследование задачи максимизации- стандартной: полезности с функцией полезностиj конечной на полупрямой) авторы использовали- следующую, схему рассуждений, ©начала все: основные результаты', были; сформулированы, и доказаны для абстрактной модели, рынка] в которой заданным; предполагалось только; множество сЖ(х) терминальных капиталов,. после чего полученные^результаты переносились на случай; динамической се-мимартингальной; модели.,.
Из большого числа последующих публикаций, отметим также работы [14, 15, 16, 17, 18, 23, 28, 31, 43] по максимизации стандартной полезности и [3, 21, 24, 26, 27, 45] по максимизации робастной, полезности.
В случае конечной на М функции полезности допустимость только ограниченных снизу процессов капиталов является существенным предположением. Более того, оно является;не вполне естественным, так как в классе стратегий с ограниченными; снизу капиталами не приходится рассчитывать на существование оптимальной стратегии. Так, в [43] фактически решалась задача (0.1) со множеством Ж{х), которое получалось расширением множества {х + Н - St- Н • St > const для всех t € [О,Т]} с помощью некоторой процедуры замыкания. При определенных условиях доказывалось существование оптимального решения к задачи (0.1),1 при этом случайная величина к, вообще говоря, уже не ограничена снизу, но представима в виде л к = х + Н - ST, где процесс {Н ■ <Si}i«=[o,r] > естественно, также может не быть ограниченным снизу. Отметим, что упомянутое расширение множества {х + Н • St : Н - St ^ const для всех t G [О, Т]} до Ж{х) не изменило ожидаемую полезность.
В [43] было также отмечено, что множество стратегий с ограниченными снизу капиталами и вовсе'может оказаться тривиальным. Например, такое возможно в семимартингальной- модели рынка, если процесс цены S не является локально ограниченным. В то же время задача' максимизации полезности может быть поставлена и иметь нетривиальное решение в более широком классе стратегий. А именно, такая задача максимизации стандартной полезности была рассмотрена С. Бьяджини и М. Фрителли в [15, 16, 17, 18], где в качестве допустимых они'рассматривали такие стратегии if, что Н • St ^ —cW для всех моментов времени t € [О, Т] и некоторого с > 0, где IV есть положительная случайная величина, удовлетворяющая некоторым условиям интегрируемости. Особенно стоит выделить работу [18], где было отмечено, что подобное расширение класса допустимых стратегий может привести к увеличению ожидаемой полезности.
В диссертации мы ставим целью расширить применимость двойственных методов в задаче максимизации робастной полезности. Исследуемая нами постановка носит абстрактный характер, т.е. мы имеем дело с задачей (0.2). Наши ограничения на множество оказываются более слабыми, чем в предшествующих работах. В частности, в стандартной задаче (0.1) от множества Jif(x) требуется только представимость в виде Ж(х) = х + Jif, где
Ж — выпуклый конусі
Другим объектом исследования является вопрос о дифференцируемости целевой функции и(-) в задаче максимизации робастной полезности (0.2). Выбор оптимального способа инвестирования позволяет при начальном капитале х получить итоговую полезность и{х)\ х . В этом смысле целевая функция и(-) позволяет оценивать возможности финансового рынка, и поэтому сама может рассматриваться как функция полезности. А для функций полезности условия гладкости во многих задачах являются необходимыми, что ставит соответствующие вопросы и в задачах максимизации полезности.
Цель исследования. Целью исследования являются:
1) постановка двойственной задачи к задаче максимизации робастной полезности при минимальных предположениях на множество капиталов; установление минимаксных соотношений между основной и двойственной задачами;
2) изучение вопроса дифференцируемости целевой функции в задаче максимизации робастной полезности.
Научная новизна. Основные результаты диссертации являются новыми и состоят в следующем:
1) в задаче максимизации робастной полезности при минимальных предположениях на множество капиталов доказана минимаксная теорема и установлена двойственная характеризация целевой функции;
2) доказано, что в задаче максимизации робастной полезности целевая функция может быть не всюду дифференцируемой, если только функция полезности не является степенной, экспоненциальной или логарифмической;
3) установлены свойства сопряженных пространств для некоторого класса пространств Орлича по семейству мер.
Методы исследования. В работе применяются методы теории вероятностей и функционального анализа.
Теоретическая и практическая ценность. Работа носит теоретический характер. Ее результаты могут быть полезны в теории вероятностей, функциональном анализе, математической статистике, теории случайных процессов и различных областях ее применения, в частности, в задачах финансовой математики.
Апробация работы. Результаты, относящиеся к диссертации, излагались на следующих семинарах
1. Большой семинар кафедры теории вероятностей (МГУ, механико-математический факультет) под руководством члена-корреспондента РАН профессора А. Н. Ширяева, Москва, 2010;
2. Семинар "Стохастический анализ: теория и приложения", проводимый в Математическом институте им. В. А. Стеклова под руководством члена-корреспондента РАН профессора А. Н. Ширяева и доктора физико-математических наук А. А. Гущина, Москва, 2009 и конференциях
3. Международная конференция "Современная стохастика: теория и применения II", Киев, "Украина, 2010;
4. Международная научная конференция студентов аспирантов и молодых ученых "Ломоносов-2009", Москва, 2009;
5. Международная научная конференция студентов, аспирантов и молодых ученых "Ломоносов-2010", Москва, 2010;
6. Российско-японский симпозиум "Стохастический анализ сложных статистических моделей", Москва, 2007.
Публикации. Результаты диссертации опубликованы в работах [5, б, 7, 8, 9, 35].
Структура и объем работы. Диссертация изложена на 93 страницах и состоит из списка обозначений, введения, трех глав и списка литературы, включающего 48 наименований.
Содержание работы. Глава 1 посвящена исследованию некоторых вспомогательных вопросов, которые также имеют и самостоятельный интерес.
В разделе 1.1 определяются пространства Орлича, построенные по семейству мер. Дадим некоторые определения.
Функцией Юнга называется ненулевая неотрицательная четная выпуклая функция Ф: R —> U {+оо} с Ф(0) = 0.
Пусть задано измеримое пространство (П, и семейство £И вероятностных мер. Пространство Орлича Ьф(£), построенное по семейству мер и ассоциированное с функцией Юнга Ф, определяется как {£ 6 L°(«0): sup < +оо для некоторого £ > 0},
Qe£? где пространство L°(J2) состоит из классов эквивалентности случайных величин, совпадающих Q-п.н. при всех Q € Это пространство является банаховым (см. [40]) относительно нормы Люксембурга
ЛГф(0 := sup = inf S.K > 0: sup ЕдФ f |Л < 1
В разделах 1.2-1.5 свойства пространств Орлича по семейству мер £1 и сопряженных к ним изучаются при следующих предположениях на множество J2\
• ¿2 — выпуклое подмножество вероятностных мер на (П, ;
• (3 Р для всех <3 6 и некоторой вероятностной меры Р;
• найдется такая 6 ¿И, что Оо ~ Р;
• семейство Р-равномерно интегрируемо и 2/*-(Р)-замкнуто ДЛЯ любой случайной величины Г] , такой ЧТО 5ирде<0 Ед|?7{ < +оо .
В разделе 1.2 показано, что последнее свойство эквивалентно компактности в *-слабой топологии Ь1(£?)). В этом же разделе доказаны некоторые свойства пространств Орлича по семейству мер, характерные для стандартных пространств Орлича.
Условие компактности на множество Л2 не является интуитивно понятным, поэтому в разделе 1.3 дается описание широкого класса множеств, обладающих этим свойством.
Как и в случае любых банаховых решеток элементы ¡л сопряженного пространства Ьф(£?)* допускают разложение на регулярные // 6 ЬФ(Л2)Г и сингулярные ¡^ Е ЬФ(£2У составляющие. Сингулярные функционалы г е могут быть охарактеризованы как функционалы, принимающие нулевые значения на Ь°°(Р). Регулярным функционалам т £ ЬФ{Л2)Г можно поставить в соответствие меру с/га, такую что для всех £ € Ьф(<£2) будет иметь место соотношение т(£) = /п£с1т. Для сингулярного функционала г е ЬФ(£У с любой точностью е > 0 можно подобрать такое множества в € что Р(£) < е и = 0 при = 0.
Следуя подходу, предложенному в [2], в разделах 1.4 и 1.5 вводится понятие /-дивергенции функционалов на пространствах Орлича, построенных по семейству мер, и исследуются ее свойства. Полученные результаты существенно используются для доказательства результатов главы 2.
Перейдем к задаче максимизации робастной полезности, которая исследуется в главе 2.
Пусть и — конечная функция полезности экономического агента, действующего на финансовом рынке, т.е. V: М —> К вогнута и возрастает. Свяжем с ней функцию ЮнгаФ(ж). := — £/(— |я|) + ¿7(0).
Пусть также на измеримом пространстве (Г2, задано множество случайных величин Ж, которое мы будем интерпретировать как множество всех реализуемых на финансовом рынке доходов. Для начального капитала жбК в качестве допустимых предлагается рассматривать множество
Ожидаемая робастная полезность при начальном капитале х тогда определяется соотношением
Индивидуальные целевые функции по мерам £ ¿2 имеют вид щ(х) зирле^Ео Щх + к),
В теореме 2.1 доказываются основные свойства целевой функции и:
1(1) Функция и(х), хеШ, принимает значения в 1и {+оо}, является возрастающей и вогнутой, а также и(х) ^ II {х) для всех х £ 1.
1(11) Либо и{х) = +оо для всех х € М, либо и(х) 6 М для всех жбЕ.
1(Ш) Для любого начального капитала х £ М выполнены минимаксные соотношения:
Перейдем к описанию двойственной задачи. Зададим множество ^ := ]> е Ьф(£)*: /¿(1П) = 1 и < 0 для любой £ €
Пусть V — двойственная к II функция, т.е. У{у) := зирж€1й[?/(а;) — ху], у Е Ж. В случае & = 0 положим -и(О) := У(0) и у (у) := +оо при у > 0. Если же & ф 0, положим двойственную целевую функцию v равной
Жх := {к Є Ж: ІІГЇ Е0ЇІ(х - к") > -сю}. и(х) := вир іігї Е(¿и(х + к). и(х) = тіп^о(а:
Ж — 1/+(Р)) П , а также множество разделяющих функционалов
0.3) где ц = {іг 4- ца есть разложение функционала ¡л на регулярную цг и сингулярную ¡Iе составляющие.
Определим также для всех с} Є л2 функции у<з(у) := у (у) в случае = 0 и в случае ф 0.
Основные свойства двойственной функции V перечислены в теореме 2.2:
2(1) Функция у (у), 2/ ^ 0 принимает значения в Ми {-Нею}, является выпуклой и полунепрерывной снизу, а также у (у) ^ У{у) для всех у ^ 0.
2(11) Нижняя грань в (0.3) и (0.4) достигается.
2(ш) Для любого у ^ О
Решение двойственной задачи позволяет найти решение основной задачи, поскольку целевые функции и и у являются двойственными друг другу. Более того, между основной и двойственной задачами выполнены следующие соотношения:
3(i) Если dorn у = 0, то и(х) — +оо для любого ж Gl. Если dorn v ф 0, то и (х) Gl для любого
3(п) Между функциями и и у выполнены двойственные связи:
0.4) v(y) =™ъу0(у). и(х) = min[i>(y) + ху], х Є R, у> о
0.5) и у(у) = вир\и(х) -ху], у > 0.
3(Ш) Для любой С) £ ¿2 двойственные связи выполнены между функциями щ и uQ(x) = nnn[vQ(2/) + ху], X Є Е, у> о и vQ(y) = sup[i/Q(2/) - xy], y^Q. x€R
3(iv) Зафиксируем x £ M. Если минимум в (0.5) достигается на у, а минил мум в (0.3) при у — у — на паре (Д, Q) £ & х ¿2, то и{х) = Uq(x) = sup EqU(x + к). (0.6) Л
Обратно, если для некоторой Q е выполнено (0.6), то найдутся такие у > 0 и ß Е &, что минимум в (0.5) достигается на у, а минимум в (0.3) при у = у — на паре (/¿, Q).
Глава 3 имеет дело со следующей моделью финансового рынка:
• Функция полезности U: R —» К U {—сю} возрастает, вогнута, полунепрерывна сверху, не тождественно равна —оо и не является линейной. Совокупность int dorn U внутренних точек области конечности U обозначим (а, +ос), где a€lU {—оо} .
• Пространство элементарных событий Г2 дискретно и состоит из четырех исходов: Q := {(^1,1^2,^3,^4} ■ Сигма-алгебра сР :=
Вероятностные меры и случайные величины тогда можно отождествить с четырехмерными векторами.
• Зафиксируем произвольные 7*1,7*2 Е (0,1) и зададим процессы (дисконтированных) цен двух рисковых активов (5£)t=од для ¿ = 1,2 соотношениями Sq := 6q := 1,
Sl:={ 2-n, 1-n, 1, 1 ), S!:=( 1, 1, 2-r2> l-r2 ).
Множество допустимых доходов определим стандартным образом как X := {AiOS? - S}) + A2(S? - 5g): Аь Л2 € Ж} .
• Зафиксируем произвольные q\■)q2 6 (0,1), две вероятностные меры зададим равенствами
Ох ( Яъ 1-91, 0, 0 ), 02:=( 0, 0, д2, 1 - ) и положим множество субъективных мер £1 равным выпуклой оболочке и 02: £-.= {01$ 001 + (1 - 0)0 < /3 < 1}.
Будем говорить, что функция II является степенной, логарифмической или экспоненциальной, если с точностью до константы, сдвига и умножения на положительную константу ч , -оо. х < 0, , ч I — Ыа, х < О,
11{х) = { а < 1,а 0 и Щх) = < а>1, и{х) = -е-х, .г- € К или щх) = / -<»■ - < °> I In х, х ^ О соответственно.
Тогда в рассматриваемой постановке следующие условия эквивалентны:
1. Для любой рассматриваемой модели рынка целевая функция и(х) в случае конечности дифференцируема на (а, +оо) и при а > —оо удовлетворяет условию Инада на левом конце: НшаЦа (х) = +оо.
2. Функция полезности U{x) имеет степенной, экспоненциальный или логарифмический вид.
А именно, если функция U{x) имеет один из указанных видов, то для любых параметров г25 <7ъ € (0,1) целевая функция и{х) в случае конечности будет дифференцируемой на (а, +оо) и при а > — оо удовлетворять условию Инада на левом конце. Если же функция U(х) имеет иной вид, то всегда можно подобрать такие Г\,Г2, <?ъ (¿2 £ (0,1), что целевая функция и(х) будет либо недифференцируемой по крайней мере в одной точке, либо не будет выполнено условие Инада на левом конце а > —сю.
Благодарность. Работа выполнена под руководством доктора физико-математических наук Александра Александровича Гущина, которому автор выражает искреннюю благодарность за помощь в выборе направления исследования и постоянную поддержку.
1. Вулих Б. 3. Введение в теорию полуупорядоченных пространств. М.: Физматгиз, 1961.
2. Гущин А. А. О расширении понятия /-дивергенции // Теория вероятн. и ее примен., 2007, т. 52, в. 3, с. 468-489.
3. Гущин А. А. Двойственная характеризация цены в задаче максимизации робастной полезности // Теория вероятн. и ее примен., 2010, т. 55, в. 4, с. 680-704.
4. Красносельский М. А., Рутицкий Я. Б. Выпуклые функции и пространства Орлича. М.: Физматлит, 1958.
5. Морозов И. С. Расширение класса допустимых стратегий в задаче максимизации робастной полезности с конечной на R функцией полезности // Обозрение прикл. и промышл. матем., 2010, т. 17, в. 5, с. 617-634.
6. Морозов И. С. О характеристическом свойстве степенных, экспоненциальных и логарифмических функций полезности // Обозрение прикл. и промышл. матем., 2011, т. 18, в. 2, с. 309.
7. Морозов И. С. Дифференцируемость целевой функции в задаче максимизации робастной полезности // Теория вероятн. и ее примсн., 2011, т. 56, в. 2, с. 374-384.
8. Неве Ж. Математические основы теории вероятностей. М.: Мир, 1969.
9. Экланд И., Темам Р. Выпуклый анализ и вариационные проблемы. М.: Мир, 1979.
10. Aliprantis С. D., Border Kim С. Infinite Dimensional Analysis: A Hitchhiker's Guide. Springer, 2006.
11. Attouch H., Brezis H. Duality for the sum of convex functions in general Banach spaces 11 Aspects of Math, and its Appl., J. A. Barroso ed., Amsterdam: North-Holland, 1986, p. 125-133.
12. Bellini F., Frittelli M. On the Existence of Minimax Martingale Measures // Math. Finance, 2002, Vol. 12, №1, p. 1-21.
13. Biagini S. An Orlicz spaces duality for utility maximization in incomplete markets // Seminar on Stochastic Analysis, Random Fields and Applications V, Progress Probab., Birkhauser, Basel, Vol. 59, Part 2, p. 445-455.
14. Biagini S., Frittelli M. Utility maximization in incomplete markets for unbounded processes // Finance Stoch., 2005, Vol. 9, №4, p. 493-517.
15. Biagini S., Frittelli M. The supermartingale property of the optimal portfolio process for general semimartingales // Finance Stoch., 2007, Vol. 11, №2, p. 253-266.
16. Biagini S., Frittelli M. A unified framework for utility maximization problems: an Orlicz space approach // Ann. Appl. Probab., 2008, Vol. 18, №3, p. 929-966.
17. Biagini S., Frittelli M., Grasselli M. Indifference price with general semimartingales // Math. Finance, 2011, Vol. 21, №3, p. 423-446.
18. Bismut J.-M. Conjugate convex functions in optimal stochastic control //J. Math. Anal. Appl., 1973, Vol. 44, №2, p. 384-404.
19. Burgert C., Rüschendorf L. Optimal consumption strategies under model uncertainty // Stat. Decisions, 2005, Vol. 23, №1, p. 1-14.
20. Csiszar I. Eine informationstheoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizität von Markoffschen Ketten // Magyar Tud. Akad. Mat. Kutatö Int. Közl, 1963, Vol. 8, p. 85-108.
21. Delbaen F., Grandits P., Rheinlander T., Samperi D., Schweizer M., Stricker, C. Exponential hedging and entropic penalties // Math. Finance, 2002, Vol. 12, №2, p. 99-123.
22. Föllmer H., Gundel A. Robust projections in the class of martingale measures // Illinois J. Math., 2006, Vol. 50, №2, p. 439-472.
23. Gilboa I., Schmeidler D. Maxmin expected utility with nonunique prior // J. Math. Econom., 1989, Vol. 18, K°-2, p. 141-153.
24. Gundel A. Robust utility maximization for complete and incomplete market models /1 Finance Stoch., 2005, Vol. 9, №2, p. 151-176.
25. Gushchin A. On robust utility maximization // International Conference "Modern Stochastics: Theory and Application", Kyiv, Ukraine, 2006, p. 134135.
26. Kabanov Y. M., Strieker C. On the optimal portfolio for the exponential utility maximization: remarks to the six-author paper // Math. Finance,2002, Vol. 12, №2, p. 125-134.
27. Kozek A. Convex integral functionals on Orlicz spaces // Ann. Soc. Math. Polonae Ser. 1. Comm. Math. XXI, 1979, p. 109-135.
28. Kramkov D., Schachermayer W. The asymptotic elasticity of utility functions and optimal investment in incomplete markets // Ann. Appl. Prob., 1999, Vol. 9, №, p. 904-950.
29. Kramkov D., Schachermayer W. Necessary and sufficient conditions in the problem of optimal investment in incomplete markets // Ann. Appl. Prob.,2003, Vol. 13, m, p. 1504-1516.
30. Maccheroni F., Marinacci M. Ambiguity aversion, robustness, and thenvariational representation of preferences // Econometrica, 2006, Vol. 74, №6, p. 1447-1498.
31. Merton R. C. Lifetime portfolio selection under uncertainty: The continuous-time case // Rev. Econom. and Statist., 1969, Vol. 51, №3, p. 247-257.
32. Merton R. C. Optimum consumption and portfolio rules in a continuous-time model // J. Econom. Theory, 1971, Vol. 3, №4, p. 373-413.
33. Morozov I. S. On an extension of the class of admissible trading strategies in the robust utility maximization problem // Abstracts of International Conference "Modern Stochastics: Theory and Applications II", Kyiv, Ukraine, 2010, p. 58.
34. Pitcher T. S. A more general property than domination for sets of probability measures // Pacific J. Math., 1965, Vol. 15, №2, p. 597-611.
35. Pliska S. R. A stochastic calculus model of continuous trading: optimal portfolios // Math. Oper. Res., 1986, Vol. 11, №2, p. 370-382.
36. Rao M. M., Ren Z. D. Theory of Orlicz Spaces. N. Y.: Marcel Dekker, 1991.
37. Rockafellar R. T. Integrals which are convex functionals, II // Pacific J. Math., 1971, Vol. 39, №2, p. 439-469.
38. Rosenberg R. Orlicz spaces based on families of measures // Studia Math., 1970, Vol. 35, p. 15-49.
39. Samuelson P. A. Lifetime portfolio selection by dynamic stochastic programming // Rev. Econom. and Statist., 1969, Vol. 51, №3, p. 239-246.
40. Savage L. The foundations of statistics. N. Y.: Wiley, 1954.
41. Schachermayer W. Optimal investment in incomplete markets when wealth may become negative // Ann. Appl. Probab., 2001, Vol. 11, №3, p. 694-734.
42. Schied A. Optimal investments for risk- and ambiguity-averse preferences: a duality approach // Finance Stoch., 2007, Vol. 11, №1, p. 107-129.
43. Schied A., Wu C.-T. Duality theory for optimal investments under model uncertainty // Stat. Decisions, 2005, Vol. 23, №3, p. 199-217.
44. Tobin J. Liquidity preference as behavior towards risk // Rev. Econ. Stud., 1958, Vol. 25, p. 68-85.
45. Von Neumann J.; Morgenstern O. Theory of games and economic behavior. Princeton University Press, 1944.
46. Zalinescu C. Convex analysis in general vector spaces. Singapore: World Scientific Publishing, 2002.