Флуоресцентное исследование нейротоксинов и их взаимодействие с ацетилхолиновым рецептором тема автореферата и диссертации по химии, 02.00.10 ВАК РФ
Сурин, Александр Михайлович
АВТОР
|
||||
кандидата химических наук
УЧЕНАЯ СТЕПЕНЬ
|
||||
Москва
МЕСТО ЗАЩИТЫ
|
||||
1984
ГОД ЗАЩИТЫ
|
|
02.00.10
КОД ВАК РФ
|
||
|
ВВБЩЕНИЕ.
ГЛАВА I. ОПРЕДЕЛЕНИЕ ВНУТРИМОЛЕКУЛЯРНЫХ РАССТОЯНИЙ В
БЕЛКАХ ИОДОМ ФЛУОРЕСЦЕНЦИИ (Обзор-литературы)
1.1. Диполь-дипольный резонансный перенос энергии
1.1.1. Теоретические основы
1.1.2. Зависимость переноса энергии от ориентации донора и акцептора.
1.1.3. Подбор донорно-акцепторных пар и способы их введения в биополимер.
1.1.4. Примеры определения внутримолекулярных расстояний по переносу энергии.
1.2. Обменно-резонансное и нерезонансное гашение флуоресценции. Определение расстояния мезду флуорофором и тушащей группой.
1.2.1. Тушение ароматических флуорофоров иминоксильными радикалами.
1.2.2. Тушение флуоресценции остатков триптофана функциональными группами бежа
ГЛАВА II. СТРУКТУРА ТРИПТШШ-СОДЕРЖАЩЕГО ФРАГМЕНТА
НЕЙРОТОКСИНОВ. ТОКСИН-РЕЦЕПТОРНОЕ ВЗАИМОДЕЙСТВИЕ
II. I. Нейротоксины короткого типа.
II.I.I. Флуоресценция нейротоксинов и их моноацетильных и моноспин-меченых производных
II. 1.2. Влияние рН на флуоресценцию нейротоксинов и их производных.
II.1.3. Тушение флуоресценции нейротоксина II и его моноацетильных производных ионами иода.
II. 1.4. Поляризация флуоресценции и вращательная релаксация нейротоксина II
II.1.5. Флуоресценция тринитрофенильного и монодансильных производных нейротоксина II. Перенос энергии.
II. 2. Нейротоксины длинного типа.
11.2.1. Спектры кругового дихроизма.
11.2.2. Флуоресценция остатков триптофана в нейротоксинах длинного типа.
11.2.3. Тушение флуоресценции триптофанилов в длинных нейротоксинах акриламидом и иодидом калия.
11.2.4. Влияние рН на флуоресценцию.
11.2.5. Флуоресценция и КД-спектры монодансильных производных нейротоксина I
II. 3. Взаимодействие нейротоксина II с ацетилхолиновым рецептором.
11.3.1. Спектральные свойства солюбилизирован-ного ацетилхолинового рецептора и его комплексов с флуоресцентно-мечеными производными нейротоксина II.
11.3.2. Равновесные параметры связывания нейротоксина II и его производных с солюбилизированным рецептором.
ГЛАВА III. ЭКСПЕРШЕЙТАЛЬНАЯ ЧАСТЬ.
III.I. Материалы, аппаратура и методы измерении.
111.2. Определение межхромофорных расстояний
111.3. Расчет констант диссоциации и стехиометрии токсин-рецепторных комплексов
ВЫВОДЫ.
Одной из узловых проблем физико-химической биологии является изучение молекулярных основ возникновения и распространения нервного импульса. Современные достижения в этой области в значительной мере определяются исследованиями строения и функционирования адетилхолинового рецептора ( AChR ), выделяемого из электрических органов рыб. AChR представляет собой гликопротеин, локализованный на постеинаптической мембране, состоит из пяти субъединиц и имеет молекулярный вес около 270000 /1-3/. Изучение рецептора едва ли могло быть успешным без такого эффективного инструмента исследования, каким являются полипептидные нейроток-сины постсинаптического действия из яда змей. Нейротоксины образуют чрезвычайно црочные комплексы с AChR , блокируя связывание агонистов /4,5/. В результате в рецепторе уже не могут индуцироваться специфические процессы, которые в норме приводят к увеличению К+ - Ка+ проницаемости постсинаптичеекой мембраны /6,7/. Благодаря этим свойствам, постсинаптические нейротоксины находят широкое применение как для выделения и тестирования чистоты препаратов рецептора, так и для изучения его структуры и механизма действия.
Нейротоксины постсинаптического действия из яда змей представляют собой небольшие белки с молекулярным весом 7000-8000. По длине полипептидной цепи и количеству внутримолекулярных ди-сульфидных связей они подразделяются на короткие (60-62 аминокислотных остатка, 4 дисульфидных связи) и длинные (71-74 остатка, 5 дисульфидных мостиков) нейротоксины /8,9/. Высокая степень гомологии первичной структуры и сходство фармакологического действия служат важными аргументами в пользу подобия их пространственной организации. Поэтому выяснение особенностей строения отдельных представителей этого класса белков служит основой познания структуры токсинов в целом.
К 1983 г. установлены аминокислотные последовательности более чем 60 нейротоксинов /9/ и к тому же для многих из них получены селективно меченые производные. Благодаря этому появляется возможность на таком обширном ряде сравнительно простых белков проследить в деталях за тем, как при одинаковой пространственной организации и общем механизме действия, индивидуальные особенности аминокислотной последовательности отражаются на кон-формационной лабильности, равновесной динамике нативной структуры и биологической активности.
В Институте биоорганической химии им. М.М.Шемякина АН СССР в течение ряда лет химическими и физическими методами проводятся комплексные исследования конформации нейротоксинов в растворе и топографии токсин-связывающего участка ацетилхолинового рецептора из электрического органа ската Torpedo maimorata. Настоящая работа является частью этих исследований и посвящена установлению расположения функционально важных остатков лизина и триптофана в нейротоксинах короткого и длинного типа из яда кобр Naja nigricollis , Haja naja oxiana Haja naja siamensis, а также изучению взаимодействия нейротоксина короткого типа и. п. оxiana с ацетилхолиновым рецептором. Исследование проводилось методами флуоресцентной спектроскопии в сочетании с круговым дихроизмом и УФ-спектроскопией. Выбор флуоресценции как ведущего метода обусловлен прежде всего тем, что флуоресценция выделяется среди методов спектроскопии электронных переходов разнообразием параметров, отражающих структурно-функциональное состояние объекта исследования. Кроме того, рекордная чувствительность флуоресценции позволяет работать с низкими концентрациями белков, что весьма существенно при изучении токсин-рецепторного взаимодействия.
ВЫВОДЫ
1. Методами флуоресценции и БД проведено исследование пост-синаптических нейротоксшов из яда кобр и ряда их селективно модифицированных производных. Показано, что введение меток не искажает структуру токсинов, благодаря чему флуоресцентно меченые производные могут служить адекватной моделью нативных белков при изучении токсин-рецепторного взаимодействия.
2. Установлено взаимное расположение боковых цепей функционально важного фрагмента -Lys26-Lys27-Trp28-Trp29- в молекуле нейротоксина II Naja naja oxiana и показано, что оно находится в соответствии с /з-структурной конформацией этого участка центральной петли нейротоксинов. Боковые цепи остатков Ъуа27и Тгр29 в нейротоксине длинного типа из яда Nada naja siamensis , также о как и в коротком нейротоксине II сближены до расстояния 4-6 А.
3. Нейротоксин II и его производные, модифицированные по остаткам Leu1 и bys27 , связываются с солюбилизированным рецептором в соотношении 2:1. Константы диссоциации токсин-рецеп-торных комплексов лежат в диапазоне от 0,3-10"*8 М (для нативного токсина) до 7'Ю""8 М(для производного Lys27(Dns)NT-II ) .
4. Боковые цепи функционально-инвариантных для коротких токсинов остатков Lys27 и Тгр29 при образовании токсин-рецеп-торного комплекса взаимодействуют с поверхностью рецептора, при
Р7 чем флуоресцентная метка на остатке Lye' попадает в гидрофобное окружение. Флуоресцентная метка, связанная с N-концевым остатком нейротоксина II, напротив, контактирует с участком рецептора, содержащим полярные группировки.
1. Heidmam Т., Changeux J.P. Structural and fimctional properties of the acetylcholine receptor protein in its purified and membrane bound states. - Ann. Rev. Biochem., 1978» v. 47, p. 317-357*
2. Karlin A. Molecular properties of nicotinic acetylcholine receptor. Ins The cell surface and neuronal function.
3. Cotman C.W., Poste g., Nicolson g.l., eds., Elsevier North-Holland Biomedical Press, 1980, p. 191-260.
4. Malhotra S.K. Macromolecular organization of the nicotinic acetylcholine receptors. In* Subcellular Biochemistry, /Roodyn D.B., ed. Plenum Press, New York, 1981, v. 8, p. 273-309.
5. Stevens C.P. The acetylcholine receptor. Nature, 1980, v. 287, N 5777, p. 13-14.
6. Moore H.-P.H., Raftery M.A., Direct spectroscopic studies of cation translocation by Torpedo acetylcholine receptor on a time scale of physiological relevance. Proc. Natl. Ac£d. Sci. USA, 1980, v. 77, N 8, p. 4509-4573.
7. Karlsson E. Chemistry of protein toxins in snake venoms, -In: Handbook of experimental pharmacology, /bee C.Y., ed. Springer Verlag, Berlin, 1979, v. 52, p. 159-212.
8. Dufton M.J., Hider R.C. Conformational properties of the neurotoxins and cytotoxins isolated from elapid snake venoms. OEC Critical Rev. Biochem., 1983, v. 14, N 2, p. 113-171.
9. Steinberg 1.2. Long-range nonradiative energy transfer of electronic exitation energy in protein and polypeptides. -In: Ann. Rev. Biochem. 1971, v. 40, p. 83-114.
10. Shiller P.W. The measurement of intramolecular distances by energy transfer. Ins Biochemical fluorescences Concepts. /Chen R.F., Edelhoch H., eds. M.Dekker, Inc., Hew York, 1975, v. 1, p. 285-303.
11. Fairlongh R,H., Cantor C.R. The use of singlet-singlet energy transfer to study macromolecular assemblies. Ins Methods Enzymol., 1978, v. 48, p. 347-379.
12. Taylor R.P., Riley R.L., Weber D. Energy transfers a general method for the study of protein-nucleic acid interactions.- Arch. Biochem. Biophys., 1977, v. 180, H 1, p, 208-213.
13. Englert A., Lecberc И. Intramolecular energy transfer in molecules with a large number of conformations. Proc. Natl, Acad, Sci. USA, 1978, v, 75, N 3, p. 1050-1051.
14. Haas E., Katchalski-Katzir E., Steinberg I.Z. Brownian motion of the ends of oligopeptide chains in solution. -Biopolymers, 1978, v. 17, N 1» p. 11-32.
15. Stryer L., Thomas D.D., Meares C.F., Diffusion-enchanced fluorescence energy transfer. In: Ann. Rev. Biophys. Bio-eng., 1982, v. 11, p. 203-222.
16. Eshaghpour H., Dieterich A.E., Cantor C.R., Crothers D.H. Singlet-singlet energy transfer studies of the internal organization of nucleosomes. Biochemistry, 1980, v. 19» N 9, p. 1797-1805.
17. Snyder В., Freire E. Fluorescence energy transfer in two dimensions, A numeric solution of random and nonrandom distributions. Biophys. J., 1982, v. 40, N 1, p. 137-148.
18. Duttierrez-Merino C. Quantitation of the Porster energy transfer for two dimensional systems. Biophys. Chem., 1981, v. 14, N 3, p. 247-263.
19. West M. Developments in picosecond spectroscopy, Eur. J. Spectr. Hews, 1983, v. 47, p. 9-14.25, Hilinski E.F., Rentzepis P.M. Biological applications of picosecond spectroscopy. Mature, 1983, v. 302, H 5908, p. 481-487.
20. Visser A.J.W.G., Muller F. Time-resolved fluorescence on flavins and flavoproteins. Methods Bnzymol., 1980, v. 66, p. 373-385.
21. Lakowicz J.R., Cherck H. Phase-sensitive fluorescence spect-roscopys A new method to resolve fluorescence lifetimes or emission spectra of components in a mixture of fluorophores. J. Biochem. Biophys. Meth., 1981, v. 5, N 1, p. 19-35.
22. Latt S.A., Sahar G., Eizenhard M.E. Pairs of fluorescent dyes as probes of ША and chromosomes. J. Histochem. Cyto-chem., 1979, v. 27, N 1, p. 65-71.
23. Fukunaga Y., Katsurzgi Y. Fluorescence characteristics of kynurenine and H'-folrraylkynurenine. Their use as a reporters of the environment of tryptophane 62 in hen egg-white lysozyme. J. Biochem., 1982, v. 92, U, 1, p. 129-141.
24. Hashe S., Ikenaga 2?., Matsushima Y. A highly sensitive method of analysis of sugar moieties of glycoproteins by fluorescence labeling. J. Biochem., 1981, v. 90, H 2,p. 407-414.
25. Kanaoka Y. Organic fluorescence reagents in the study of enzymes and proteins. Angew. Chem., 1977, v. 16, H 2, p. 137-147.
26. Dockter M.E., Koseki T. Covalent modification of hydrophobic and hydrophilic domains of yeast cytochrome с oxidase with fluorescent azides. Biochemistry, 1983, v. 22, N 16, p. 3954-3961.
27. Goocho C.G. A fluorometric assay for available lysine in proteins. Anal. Biochem., 1981, v. 115, К 1, p. 203-211.
28. Khanna P.L., Ullman E.F. 4,,5,-Dimethoxy-6-carboxyfluores-cein: a novel dipol-dipole coupled fluorescence energy transfer acceptor useful for fluorescence immunoassays. -Anal, Biochem., 1980, v. 108, N 1, p. 156-161.
29. London E. Investigation of membrane structure using fluorescence quenching by spin-labels review of recent studies. - Mol. Cell Biol., 1982, v. 45, H 3, p. 181-188.
30. Ермолаев В.Л., Бодунов Е.Н., Свешникова Е.Б., Шахвердов
31. Т.А. Безызлучательный перенос энергии электронного возбуждения. Л., "Наука", 1977.
32. Паркер С.А. Фотолюминесценция растворов. М., "Мир", 1972, с. 5-276.
33. Forster Th. Delocali2e& exitation and exitation transfer. -'In: Modern Quantum Chemistry. Lect. Instanbul Int. Summer Sch., part 3. /Sinanoglu 0., ed., 1965, p. 93-137.
34. Агранович B.M., Галанин М.Д. Перенос энергии электронного возбуждения в ковденсированных средах М., "Наука", 1978, с. II-66.49* Dexter D.L. A theory of sensitized luminescence in solids.- J. Chem. Phys., 1953, 21, N 5, p. 836-850.
35. Eisinger J., Pener В., Lamola A.A. Intramolecular singlet energy transfer. Applications to polypeptides. Biochemistry, 1969, v. 8, N 10, p. 3908-3915.
36. Dale R.E., Bisinger J. Intramolecular distance determined by energy transfer. Dependence on orientational freedom of donor and acceptor. Biopolymers, 1974, v. 13, H 8, p. 1573-1605.
37. Dale R.E., Eisinger J. Polirized exitation energy transfer.- In: Biochemical Fluorescence: Concepts /Chen R.P., Edel-hoch H., eds. N.Y. Marcel Dekker Inc., 1975, v. 1, p. 115284.
38. Dale R.E., Blumberg W.B., Eisinger J. The orientational freedom of molecular probes. The orientation factor in intramolecular energy transfer» Biophys. J., 1979, v. 26, U 2, p. 161-193.
39. Wahl P. Decay of fluorescence anisotropy. Ins Biochemical Fluorescences Concepts. /Chen R.F., Edelhoch H., eds. New York, Marcel Dekker Inc., 1975, v. 1, p. 1-41.
40. Tanaka P., Mataga N. Dynamic depolarization of interacting fluorophores. Effect of internal rotation and energy transfer. Biophys. J., 1982, v. 39, N 1, p. 129-140.
41. Hillel Z., Wu C.-W. Statistical interpretation of fluorescence energy transfer measurememnts in macroraolecular systems. Biochemistry, 1976, v. 15, N 10, p. 2105-2113.
42. Li T.M., Hook J.W., Drickamer H.G., Weber G. Effect of pressure upon the fluorescence of the riboflavin binding protein and its flavin mononucleotide complex.- Biochemistry, 1976, v. 15, N 15, p. 3205-3211.
43. Goldberg M.E., York S., Stryer L. Fluorescence studies of substrate and subunit interaction of the protein of Escherichia coli tryptophane synthetase. Biochemistry, 1968, v. 7, N 10, p. 3662-3667.
44. Leonard J.J., Yonetani Т., Callis J.B. A fluorescence study of hybrid hemoglobins containing free base and zinc protoporphyrin IX. Biochemistry, 1974, v. 13, N 7, p. 14601464.
45. Vanderkooi J.M., Adar P., Erecinska M. Metalloeytochromes cs characterization of electronic absorption and emission1. Ax p+spectra of Sn^ and Zn cytochromes c. Eur. J. Biochem., 1976, v. 64, U 2, p. 381-387.
46. Docter M.E., Steinemann A., Schatz G. Mapping of yeast cytochrome с oxidase by fluorescence resonance energy transfer. Distances between subunit II, heme ol, and cytochrome с bound to subunit III. J. Biol. Chem., 1978, v. 253, N 1, p. 311-317.
47. Мое O.A., Hammes G.G. A study of the binding of thiamine diphosphate and thiochrome diphosphate to the pyruvate dehydrogenase multienzyme complex. Biochemistry, 1974, v. 13, N 12, p. 2547-2552.
48. Мое O.A., Lerner D.A., Hammes G.G. Fluorescence energy transfer between the thiamine diphosphate and flavin adenine dinucleotide binding sites on the pyruvate dehydrogenase multienzyme complex. Biochemistry, 1974, v. 13, N 12,p. 2552-2557.
49. Wittorf J.H., Gubler C.J. Coenzyme binding in yeast pyruvate decarboxylase. A fluorescent enzyme inhibitor complex. -Eur. J. Biochem., 1970, v. 14, N 1, p. 53-60.
50. Ward B.C., Reich E., Stryer L. Fluorescence studies of nucleotides and polynucleotides. I. Formycin, 2-aminopyrine riboside, 2,6-diaminopurine riboside and their derivatives. J. Biol. Chem., 1969, v. 244, N 5, p. 1228-1237.
51. Ward D.C., Reich E. Fluorescence studies of nucleotides and polynucleotides. II. 7-deazanebularin: coding ambiguity in transcription with base pairs containing fewer than two hydrogen bonds. J, Biol. Chem., 1972, v. 247, N 3, p. 705719.
52. Scopes D.I.C., Barrio J.R., Leonard J.H. Defined dimensional changes in enzyme cofactorss fluorescent "stretched-out" analogs of adenine nucleotides. Science, 1977, v. 195, N 4275, p. 296-298.
53. Leonard N.J. Etheno-substituted nucleotides and coenzymes: fluorescence and biological activity. Critical Rev. Biochem., 1984, v. 15, N 2, p. 125-199.
54. Иванов M.B., Кост А.А. Исследование белков с помощью этено-производных аденина и цитозина. Успехи биологической химии, М., "Наука", 1980, т. 21, с. II2-I29.
55. Hiratsuka 3?. Hew ribose-modified fluorescent analogs of adenine and guanine nucleotides available as substrates for various enzymes. Biochim. Biophys. Acta, 1983, v. 742,1. К 3, p. 496-508.
56. Hiratsuka T. New fluorescent analogs of cAMP and cGMP available as substrate for nucleotide phosphodiesterase. J. Biol. Chem., 1982, v. 257, N 22, p. 13354-13358.
57. Yarbrough L.R., Schlageck J.S., Baughman M. Synthesis and properties of fluorescent nucleotide substrates for DNA-dependent RNA polymerases. J.Biol.Chem.,1979,v.254, N 23, p. 12069-12073.
58. Владимиров Ю.А., Добрецов Г.Е. Флуоресцентные зонды в исследовании биологических мембран. М., "Наука", 1980, с. 9-48, 135-143.
59. Badley R.A., Teale P.W.J. Resonance energy transfer in pepsin conjugates. J. Mol. Biol., 1969, v. 44, К 1, p. 7188.
60. Schoellmann G., Striker G., Ong E.B. A fluorescent study of urokinase using active site directed probes. Biochim. Biophys. acta, 1982, v. 704, N 2, p. 403-413.
61. Schuldiner S., Weil R., Robertson D.E., Koback H.R. Micro-environment of the binding site in the lac carrier protein.- Proc. Hatl. Acad. Sci. USA, 1977, v. 74, Я 5, p. 1851-1854.
62. Cohen J.В., Weber M., Changeux J.-P. Effect of local anesthetic and calcium on the interaction of cholinergic ligands with the nicotinic receptor protein from Torpedo marmorata.- Mol. Pharmacol., 1974, v. 10, К 5, p. 904-932.
63. Kaldany R.-R.J., Karlin A. Reaction of quinacrine mustard with acetylcholine receptor from Torpedo califomica. Functional consequences and sites of labeling. J. Biol. Chem., 1983, v. 258, N 10, p. 6232-6242.
64. Greenberg M. Binding of quinacrine, a fluorescent local anesthetic probe to mammalian axonal membranes. Evidence for the local anesthetic receptor site. J. Biol. Chem., 1982, v. 257, N 15, p. 8964-8971.
65. Angelides K.J. Fluorescent and photoactivable fluorescent derivatives of tetrodotoxin to probe the sodium channel of exitable membranes. Biochemistry, 1981, v. 20, N 14, p. 4107-4118.
66. Fortes P.A.G. Antroylouabain: a specific fluorescent probe for the cardiac glycoside receptor of the Na-K ATPase. -Biochemistry, 1977, v. 16, H 3, p. 531-540.
67. Langlois R., Lee C.C., Cantor C.R., Vince R., Pestka S. The distance between two functionally significant regions of the 50S Escherichia coli ribosome: the erythromycin binding site and proteins L7/L12. J. Mol. Biol., 1976, v. 106, N 2, p. 257-313.
68. Bunting J.B., Cathou R.E. Energy transfer distance measurements in immunoglobulins. III. Location of the light-heavy interchain disulfide bond in rabbit immunoglobulin G antibody. J. Mol. Biol., 1974, v. 87, N 2, p. 329-338.
69. Luedtke R., Owen C.S., Karush F. Proximity of antibody binding sites studies by fluorescence energy transfer. Biochemistry, 1980, v. 19, И б, p. 1182-1192.
70. Wallace R.W., Tallant E.N., Dockter И.Е., Cheung W.У. Calcium binding domains of calmodulin. Sequence of fill as determined with terbium luminescence. J. Biol. Chem., 1982, v. 257, XI 4, p. 1845-1854.
71. Morby P.J., Martin R.B., Boatman S. Characterization of exi3+tation spectra for Tb-' luminescence from nucleic acids: calcium binding environs in icosohedral viruses. Biochem. Biophys. Res. Commun., 1981, v. 101, N 4, p. 1123-1130.
72. Yeh S.M., Meares C.F. Characterization of transferrin metal binding sites by diffusion enchanced energy transfer.- Biochemistry, 1980, v. 19, N 22, p. 5057-5062.
73. Rice L.C., Meares C.F. Diffusion-enchanced energy transfer shows accessibility of ribonucleic acids polymerase inhibitor binding sites. Biochemistry, 1981, v. 20, N 3, p. 610-617.
74. Thomas D.D., Stryer L. Transverse location of the retinal chromophore of rhodopsin in rod outer segment disc membranes. J. Mol. Biol., 1982, v.154, U 1, p. 145-157.
75. Wu C.-W., Stryer L. Proximity relationships in rhodopsin.- Proc. Natl. Acad. Sci. USA, 1972, v. 69, N 5, p. 11041108.
76. Chen R.F. Fluorescence of dansyl amino acids in organic solvents and protein solutions. Arch. Biochem. Biophys., 1967, v. 120, N 3, p. 609-620.
77. Berman H.A., Yguerabide J.,Taylor P. Fluorescence energy transfer in acetylcholinesterase: spatial relationships between peripheral site and active center. Biochemistry, 1980, v. 19, N 10, p. 2226-2235.
78. Zantema A., Maassen A.J., Kriek Y., Moller W. Preparation and characterization of fluorescent 50S ribosomes. Specific labeling of ribosoraal proteins L7/L12 and Ы0 of Escherichia coli. Biochemistry, 1982, v. 21, К 13, p. 30693076.
79. Zantema A., Maassen A.J., Kriek J., Moller W. Fluorescence studies on the location of L7/L12 relative to L10 in the50S ribosomes of Escherichia coli. Biochemistry, 1982, v. 21, N 13, p. 3077-3082.
80. Fager R.S., Kutina C.B., Abrahamson E.W. The use of NBD-chloride (7-chloro-4-nitrobenzo-2-oxa-1,3-diazole) in detecting amino acids and as an N-terminal reagent. Anal. Biochem., 1973, v. 53, N 1, p. 290-294.
81. Craig I.F., Via D.P., Mantulin W.W., Pownell H.J., Gotto A.M., Smith L.C. Low density lipoproteins reconstituted with steroids containing the nitrobenzoxadiazole fluoro-phore.- J. Lipid Res., 1981, v. 22, N 4, p. 687-696.
82. Waskiewicz D.E., Harames G.G. Fluorescence polarization study of the -ketoglutarate dehydrogenase complex from Escherichia coli. Biochemistry, 1982, v. 21, N 25, p. 6489-6496.
83. Hagag N., Birnbaum E.R., Darnall D.W. Resonance energy transfer between cysteine-34, tryptophan-214, and tyrosine -411 of human serum albumin. Biochemistry, 1983, v. 22, N 10, p. 2420-2447.
84. Dreyfuss G., Schwartz K., Blant E.R., Barrio R.J.R., Lui F.jD., Leonard N.J. Fluorescent photoaffinity labeling adenosine 3',5'-cyclic monophosphate receptor sites. -Proc. Natl. Acad. Sci. USA, 1978, v. 75, N 3, p. 1199-1203.
85. Wright, Takahashi. Fluorescence energy transfer between heterologues active sites of affinity-labeled aspartokina-se of Escherichia coli. Biochemistry, 1977, v. 16, N 8, p. 1548-1554.
86. Wu F.Y.-H., Wu C.-W. Fluorescent affinity labeling of initiation site of ribonucleic acid polymerase of Escherichia coli. Biochemistry, 1974, v. 13, N 12, p, 2562-2566.
87. Docter M.E., Koscki T. Covalent modification of hydrophobic and hydrophilic domains of yeast cytochrome с oxidase with fluorescent azides. Biochemistry, 1983, v. 22, N 16, p. 3954-3961,
88. Reines S.A., Cantor C.R. New fluorescent hydrozide reagents for the oxidized 3'-terminus of RNA. Nucleic Acids Res., 1974, v. 1, N 6, p. 767-786.
89. Beardsley K., Cantor C.R. Studies of transfer RNA tertiary structure by singlet-singlet energy transfer. Proc. Natl, Acad, Sci. USA, 1970, v. 65, N 1, p. 39-46.
90. Connellan J.M., Chung S.I., Whetzel N.K., Bradley L.M., Folk J.E. Structural properties of guinea pig liver transglutaminase. J. Biol. Chem., 1971, v. 246, N 4, p. 10931098.
91. Dutton A., Singer S.J. Crosslinking and labeling of membrane proteins by transglutaminase-catalyzed reactions. -Proc. Natl, Acad. Sci. USA, 1975, v. 72, N 7, p. 2568-2571.
92. Pober J.S., Stryer I». bight dissociates enzymatically-cleaved rhodopsin into two different fragments. J. Mol. Biol., 1975, v. 95, N 3, p. 477-481.
93. Shaper J.H., Stryer I». Accessibility of the carbohydrate moiety of membrane-bound rhodopsin to enzymatic and chemical modification. J. Supramol. Struct., 1977, v. 6, H 3, p. 291-299.
94. Sardet C., Tardeu A., Luzzati V. Shape and size of bovine rhodopsin» a small-angle X-ray scattering study of a rho-dopsin-detergent complex. J. Mol. Biol., 1976, v. 105, N 3, p. 383-407.
95. Мартынов В.И., Костина М.Б., Фейгина М.Ю., Мирошников А.И. Исследование молекулярной организации зрительного родопсина методом ограниченного протеолиза. Биоорган, химия, 1983, т. 9, $ 6, с. 734-747.
96. Pober J.S., IwaniQ У., Reich Е., Stryer Ь. Transglutami-nase-catalyzed insertion of a fluorescent probe into the proteinase-sensitive region of rhodopsin. Biochemistry, 1978, v. 17, H 11, p. 2163-2169.
97. Куделин А.Б., Шемякин В.В., Хорошилова Н.И., Овчинников Ю.А. Химическая модификация еульфгидрильных групп в родопсине. Локализация дисульфидных связей. Биоорган, химия, 1984,т. 10, № 3, с. 341-357.
98. Ovchinnikov Yu.A. Rhodopsin and bacteriorhodopsin: structure-function relationships. FBBS Lett., 1982, v. 148, N 2,p. 179-181.
99. Henderson R., Unwin P.W.T. Three-dimensional model of purple membrane obtained by electron microscopy. Nature, 1975»v. 257, HI, p. 28-32.
100. Ebrey T.G., Becher В., Мао В., Kilbride P., Honig B. Exiton interaction and chromophore orientation in the purple membrane. J. Mol. Biol., 1977, v. 112, N 3, p. 377-397.
101. Konyma Т., Kinosita K., Ikegami A. Fluorescence energy transfer studies of transmembrane location of retinal in purple membrane. J. Mol. Biol., 1983, v. 165, N 1, p. 91107.
102. Цетлин В,И., Закис В.И., Алдашев А.А., Курятов А.Б., Овечки-на Г.В., Шныров В.Л. Топография ретинилсвязывающего участка в восстановленных производных бактериородопсина. Биоорган. химия, 1983, т. 9, № 12, с. 1589-1605.
103. Lemke H.-D., Bergmeyer J., Stroub J., Oesterhelt D. Reversible inhibition of the proton pump bacteriorhodop3in by modification of tyrosine 64. J. Biol. Chem., 1982, v. 257, N 16, p. 9384-9388.
104. Langlois R., Lee C.C., Cantor R.B. The distance between two functionally significant regions of the 50S Escherichia coli ribosomes: the erythromycin binding site and proteins L7/L12. J. Mol. Biol., 1976, v. 106, H2 , p. 297-313.
105. Stoeffler G., Bald R., Kastner В., Lurmann R., Stoeffler-Meilicke M., Tischendorf G. Ribosomes: structure, function and genetics /Chamblis G., Cravan G.R., Davis K., Davis J., Kahan L., Nomura M., eds. Univ. Park Press, Baltimore, 1980, p. 171-205.
106. London E., Feigenson G.W. Fluorescence quenching in model membranes. 1. Characterization of quenching caused by a spin-labeled phospholipid. Biochemistry, 1981, v, 20,1. H 7, p. 1932-1938.
107. Ивков В.Г., Берестовский Г.Н. Липидный бислой биологических мембран. М: Наука, 1982, с. 5-65.
108. Luisetti J., Mohwald Н., Galla H.J. Paramagnetic fluorescence quenching in chlorophyll a containing vesicles: evidence for the localization of chlorophyll. Biochem. Biophys. Res. Commun., 1977, v. 78, H 2, p. 754-760.
109. Schrieir-Mucillo S., Marsh D., Smith I.C.P. Monitoring the permeability profile of lipid membranes with spin probes, Arch. Biochem. Biophys., 1976,, v. 172, N 1, p. 1-11.
110. Luisetti J., Mohwald H,, Galla H.-J. Monitoring the location profile of fluorescence in phosphatidylcholine bilayers by the use of paramagnetic quenching. Biochim. Biophys. Acta, 1979, v. 552, К 3, p. 519-530.
111. WeppnerW^euhauseE Biosynthesis of peptidoglycan. Definition of the micro environment of undecaprenyl diphosphate-lf-ace-tyl-(5-dimethylaminonaphthalene-1-sulfonyl)pentapeptide by fluorescence spectroscopy. J. Biol. Chem., 1978, v. 253, N2, p. 472-478.
112. London E., Feigenson G.W. Fluorescence quenching in model membranes. 2. Determination of the local lipid environment of the calcium adenosinetriphosphate from sarcoplasmic reticulum. Biochemistry, 1981, v. 20, H 7, p. 1939-1948.
113. London E., Feigenson G.W. Fluorescence quenching of Ga -ATPase in bilayer vesicles by a spin-labeled phospholipids. FEBS Lett., 1978, v. 96, N 1, p. 51-54.
114. Ricci R.W., Nesta J.M. Inter- and intramolecular quenching of indole fluorescence by carbonyl compounds. J. Fhys. Chem., 1976, v. 80, N 9, p. 974-980.
115. Wiget P., Luisi P.L. Cooligopeptides containing aromathic residues spaced by glycyl residues. IX. Fluorescence properties tryptophan containing peptides. Biopolymers, 1978, v. 17, N 1, p. 167-180.
116. Shinitzky M., Goldman R. Fluorimetric detection of histidi-ne-tryptophan complexes in peptides and proteins. Eur. J. Biochem., 1967, v. 3, N 2, p. 139-144.
117. Shinitzky M., Fridkin M. Spectral studies with histidyl-tryptophan peptides. Eur. J. Biochem., 1969, v. 9, N 2, p. 176-181.
118. Shinitzky M., Katchalski E., Grisaro V., Sharon N. Inhibition of lysosyme by imidazole and indole derivatives. Arch. Biochem. Biophys., 1966, v. 116, N 2, p. 332-343.
119. Shopova М., Genov N. Protonated form of histidine 238 quenches the fluorescence of tryptophan 241 in subtilysine Novo. Int. J, Pept. Prot. Res., 1983, v. 21, N 5, p. 475478.
120. Tsernoglou D., Petsko G.A. The crystal structure of a postosynaptic neurotoxin from sea-snake at 2.2 A resolution. -FEBS Lett., 1976, v. 68, N 1, p. 1-4.
121. Low B.W., Preston H.S., Sato A., Rosen L.S., Searl J.F., Rudko A.D., Richardson J.S. Three dimensional structure oferabutoxin b neurotoxin protein: Inhibitor of acetylcholine receptor. Proc. Natl, Acad. Sci. USA, 1976, v. 73, N 9, p. 2991-2994.
122. Low B.W. The three dimensional structure of postsynaptic snake neurotoxins: consideration of structure and function. In: Snake veixoms /Lee С.-У., ed. Berlin, Springer-Verlag, Handbook of Experimental Pharmacology, v. 52, 1979, p. 213257.
123. Kimball M.R., Sato A,, Richardson J.S., Resen L.S., Low B.W. Molecular conformation of erabutoxin b: atomic coordinates at 2.5 A resolution. Biochem. Biophys. Res. Commun., 1979, v. 88, N 3, p. 950-959.
124. Walkinshaw M.D., Saenger W., Maelicke A. Three-dimensional structure of the "long" neurotoxin from cobra venom. Proc. Natl Acad. Sci. USA, 1980, v,77, N 5, p. 2400-2404.
125. Stroud R.M. Structure of an acetylcholine receptor, a hypothesis of an dynamic mechanism of its action. In: Bio-molecular Stereodynamics (Proc. Second SUNYA Conversation Discipline). /Sarma R.H., ed., Academic Press, New York, 1981, v. 2, p. 55-73.
126. Agard D.A., Stroud R.M. oc -Bungarotoxin structure revealed by a rapid method for everaging electra density of non-crystallographically translationally related molecules. -Acta Crystallogr., 1982, v. A38, p. 186-194.
127. Tsetlin V.I., Karlsson Б., Utkin Yu.N., Pluzhnikov К.A., Arseniev A.S., Surin A.M., Kondakov V.I., Bystrov V.P., Ivanov V.T., Ovchinnikov Yu.A. Interacting surfaces of neurotoxins and acetylcholine receptor. Toxicon, 1982, v. 120, N 1, p. 83-93.
128. Кондаков В.И., Арсеньев А.С., Уткин Ю.Н., Карлссон Е., Гуре-вич А.З., Цетлин В.И., Быстров В.Ф., Иванов В.Т. ЯМР-иссле-дование пространственной структуры токсина 3 Haja naja sia-mensis• Биоорган.химия, 1984, т.10, № 7, с. 869-889.
129. Hider R.C., Drake A.F., Inagaki P., Williams R.J.P., Bndo Т., Miyazawa T. Molecular conformation of oi-cobratoxin asstudied by nuclear magnetic resonance and circular dich-roism. J. Mol, Biol., 1982, v. 158, N 2, p. 275-291.
130. Tamiya N., Takasaki G., Sato A., Menez A., Anagaki P., Miyazawa T. Structure and function of erabutoxins and related neurotoxins from sea snakes and cobras. Biochem. Soc. Trans,, 1980, v. 8, N 6, p. 753-755.
131. Chen Y.-H., Tai J.-C., Huang W.-J., Lai M.-Z., Hung M.-D., Lai M.-D., Yang Y.-T. Role of aromatic residues in the structure-function relationships of <*-bungarotoxin. Biochemistry, 1982, v. 21, N 11, p. 2592-2600.
132. Paure G., Boulain J.-C., Bouet P., Montenay-Garistier Th., Fromageot P., Menez A. Role of indole and amino groups in the structure and function of Naja nigricollis toxin . -Biochemistry, 1983, v. 22, Ж 9, p. 2068-2076.
133. Seto A., Sato S., Taxniya N. The properties and modification of tryptophan in sea snake toxin, erabutoxin a. Biochim. Biophys. Acta, 1970, v. 214, N 3, p. 483-489.
134. Menez A., Bouet P., Fromageot P., Tamiya N. On the role of tyrosyl and tryptophanyl residues in the conformations of two snake neurotoxins. Bull. Inst. Pasteur, 1976,v. 74, N 1, p. 57-65.
135. Bukolova T.G., Burstein E.A., Yukelson L.Y. Fluorescence of neurotoxins from Middle-Asian cobra venoms. Biochim. Biophys. Acta, 1974, v. 342, N 2, p. 275-281.
136. Menez A., Montenay-Garistier Т., Fromageot P., Helen G. Conformation of two gomologous neurotoxins. Fluorescence and circular dichroism studies. Biochemistry, 1980, v. 19, N 23, p. 5202-5208.
137. Cowgill R.W. Tyrosyl fluorescence in proteins and model peptides. Ins Biochemical Fluorescence: Concepts. /Chen R.F., Edelhoch H., eds., M.Dekker Inc., New York, 1976, v.2, p. 441-486.
138. Пашков B.C., Арсеньев А.С., Уткин Ю.Н., Цетлин В.И., Быстроз В.Ф. ЯМР-исследование пространственного строения центральнойпетли "коротких" нейротоксинов змей в растворе. Биоорган, химия, 1982, т. 8, 5, с. 588-615.
139. Уткин Ю.Н., Пашков B.C., Плужников К.А., Курятов А.В., Арсеньев А.С., Цетлин В.И., Быстрое В.Ф., Иванов В.Т. Получение и ЭПР-исследование спинмеченых производных нейротоксина П Haja паЗа oxiana. Биоорган, химия, 1983, т. 9, № 4, с. 437-449.
140. Bukolova-Orlova T.G., Permyakov E.A., Burstein E.A.,
141. Yukelson L.Ya. Reinterpretation of luminescence properties of neurotoxins from the venom of Middle-Asian cobra
142. Haja naja oxiana. Biochim. Biophys. Acta, 1976, v. 439,1. H 2, p. 426-431.
143. Weber G., Shinitzky M. Failure of energy transfer between identical aromatic molecules on exitation at the long wave edge of the absorbtion spectrum. Proc, Natl. Acad, Sci. USA, 1970, v. 65, N 4, p. 823-830.
144. Weber G. Fluorescence-polarization spectrum and electronic energy transfer in tyrosine, tryptophan and related compounds. Biochem.J., 1960, v. 75, N 2, p. 335-345.
145. Weber G. Fluorescence-polarization spectrum and electronic energy transfer in proteins. Biochem. J., 1960, v. 75,1. N 2, p. 345-352.
146. Kuntz I.D., Kauzmann W. Hydration of proteins and polypeptides. In: Advances Protein Chem. /Anfinsen C.B., Edsall J.T., Richardson P.M., eds. Academic Press, 1974, bv. 28, p. 239-345.
147. Tao T. Time-dependent fluorescence depolarization and Brownian rotational diffusion coefficients of macromole-cules. Biopolymers, 1969, v. 8, N 5, p. 609-632.
148. Weber G. Rotational Brownian motion and polarization of the fluorescence solutions. In: Advances Protein Chem., 1953, v. 8, p. 415-459.
149. Timofeev V.P., Tsetlin V.I. Analysis of mobility of protein side chains by spin label technique. Biophys. Struct. Meth., 1983, v. 10, H 1, p. 93-108.
150. Wahl P., Weber G., Fluorescence depolarization of rabbit gamma globulin conjugates. J. Mol. Biol., 1967, v. 30, N 2, p. 371-382.
151. Weltman J.K., Edelman G.M. Fluorescence polarization of human G immunoglobulins. Biochemistry, 1967, v. 6,1. H 5, p. 1437-1447.
152. Ануфриева E.B., Готлиб Ю.Я., Краковяк М.Г., Паутов В.Д., Шелехов Н.С. Изучение подвижности основной и боковой цепей макромолекул в растворе методом поляризованной люминесценции. Высокомол. соед., 1977, т. I9A, с. 2488-2493.
153. Кузнецова И.М., Туроверов К.К. Поляризация собственной флуоресценции белков. Ш. Внутримолекулярная подвижность трипто-фановых остатков. Мол. биол., 1983, т. 17, вып. 4,с. 741-753.
154. Endo Т., Inagaki P., Hayashi K., Miyasawa T. Local conformational transition of toxin В from Na^a naja as studied by nuclear magnetic resonance and circular dichroism. -Eur. J. Biochem., 1982, v. 122, N 3, p. 541-547.
155. Болотина И.А.,Чехов В.О., Лугаускас'В.ЮТ,Финкелыитейн А.В., Птицын О.В. Определение вторичной структуры белков из спектров кругового дихроизма. I. Белковые реперные спектры для<*-,^з- и нерегулярной структуры. Мол. биол 1980,т.14, вып. 4, с. 891-901.
156. Болотина И.А., Чехов В.О., Лугау.скас В.Ю.,Птицын О.Б. Определение вторичной структуры белков из спектров кругового дихроизма. П. Учет вкладар>-изгибов. Мол. биол., 1980, т. 14, вып. 4, с. 902-909.
157. Туроверов К.К., Кузнецова И.М. Поляризация собственной флуоресценции белков. П. Использование для равновесной динамики триптофановых остатков. Мол. биолу, 1983, т. 17, вып. 4, с. 468-474.
158. Бурштейн Э.А. Собственная люминесценция белка как метод изучения быстрой структурной динамики. Мол. биол., 1983, т. 17, вып. 3, с. 468-474.
159. Drake A.F., Dufton M.J., Hiden R.C. Circular dichroism of elapide protein toxins. Eur. J. Biochem., 1980, v. 105, N 3, p. 623-630.
160. Hobedrik-Viala E., Thiery C., Menez A., Maniya N., Thiery
161. J.M. Molecular dynamics of two gomologous neurotoxins 1 2revealed Ъу H- H exchange. An infrared spectrometry study. Biochim. Biophys. Acta, 1980, v. 626, N 2, p. 321-331.
162. Changeux J.P. The acetylcholine receptor an allosteric membrane protein. - In; Harvey Lectures. Academic Press, New York, 1981, v. 75, p. 85-253.
163. Hucho F. The nicotinic acetylcholine receptor. Trends Biochem. Sci., 1981, v. 6, N 9, p. 242-247.
164. Maelicke A. Biochemical aspects of cholinergic exitation.- Angewandte Chemie, 1984, v. 23, N 3, p. 195-221.
165. Conti-Tranconi B.M., Raftery M.A. The nicotinic acetylcholine receptor: correlation of molecular structure with functional properties. Ann. Rev. Biochem., 1982, v. 51, p. 491-530.
166. Conti-Tranconi B.M., Dunn S.M.J., Raftery M.A. Functional stability of Torpedo acetylcholine receptor. Effect of protease treatment. Biochemistry, 1982, v. 21, N 5, p. 843-899.
167. Hartzfeld J., Miskin R., Reich E. Acetylcholine receptor- effects of proteolysis on receptor metabolism. J. Cell Biol., 1982, v. 92, N 1, p. 176231. Sator V., Gonzalez-Ros J.M., Calvo-Fernandez P., Martinez
168. Carrion M. Pyrensulfonyl azide: a marker of acetylcholine receptor subunits in contact with membrane hydrophobic environment. Biochemistry, 1979, v. 18, H 7, p. 12001206.
169. Kloog Y., Flynn В., Hofmann A.R., Axelrod J. Enzymatic carboxymethylation of the nicotinic acetylcholine receptor.- Biochem. Biophys, Res. Commun., 1980, v. 97, N 4, p. 1474-1480.
170. Klymkowsky M.M., Stroud R.M. Immimospecific identification and three-dimensional structure of a membrane bound acetylcholine receptor from Torpedo californica. J. Mol. Biol., 1979, v. 128, N 3, p. 319-334.
171. Wise D.S., Karlin A., Schoenborn B.P. An analysis by low-angle neutron scettering of the structure of the acetylcholine receptor from Torpedo californica in detergent solution. Biophys. J., 1979, v. 28, N 3, p. 473-496.
172. Wise D.S., Schoenborn B.P., Karlin A. Structure of acetylcholine receptor dimer determined by neutron scattering and electron microscopy. J. Biol. Chem., 1981, v. 256,1. N 8, p. 4124-4126.
173. Ross M., Klymkowsky M.M., Agard D., Stroud R.M. Structural studies of a membrane bound acetylcholine receptor from Torpedo californica. J. Mol. Biol., 1977, v. 116, N 4, p. 635-659.
174. Kistler J., Stroud R.M. Crystalline arrays of membrane bound acetylcholine receptor. Proc. Natl. Acad. Sci. USA,1981, v. 78, N 6, p. 3678-3682.
175. Kistler J., Stroud R.M., Klymkowsky M.M., Lalancett R.A., Pairclough R.H,Structure and function of acetylcholine receptor. Biophys. J., 1982, v. 37, N 1, p. 371-383.
176. Zingsheim H.-P., Neugebauer D.-C., Frank J., Hanicke W., Berrantes F.J. Dimeric arrangement and structure of the membrane bound acetylcholine receptor studied by electron microscopy. EMBO J., 1982, v. 1, N 5, p. 541547.
177. Suszkiw J.B., Ichiki M. Fluorescein conjugated л-bungaro-toxin: its properties and interaction with acetylcholine receptor. Anal. Biochem., 1976, v. 73, N 1, p. 109-114.
178. Ellena J.F., McNamee M.G. Interaction of spin-labeled Naja naj siamensis oC-neurotoxin with acetylcholine receptor from Torpedo califomica. FEBS Lett., 1980, v. 110, N 2, p. 301-304.
179. Ьо M.M.S., Garland P.B., Lampreeht J., Barnard E.A. Rotational mobility of the membrane bound acetylcholine receptor of Torpedo electric organ measured by phosphorescence depolarization. FEBS Lett., 1980, v. 111, N 2, p. 407-412,
180. Kang S., Maelicke A. Fluorescein isothiocyanate labeled ot-cobitetoxin. Biochemical characterization and interaction with acetylcholine receptor from Electrophorus elect-ricus. J. Biol. Chem., 1980, v. 255, N 15, p. 73267332.
181. Brian M.M., Ohibbers B.A., Maelicke A, The sites of neurotoxicity in oC-cobratoxin. J. Biol. Chem., 1983, v. 258, N14, p. 8714-8722,
182. Lukas R.J., Morlmoto H., Hanley M.R., Bennett E.L. Radiolabeled o(.-bungarotoxin derivatives: kinetic interaction with nicotinic acetylcholine receptor. Biochemistry, 1981, v. 20, N 26, p. 7373-7378.
183. Johnson D.A., Taylor P. Site-specific fluorescence labeled cobra ot-toxin. Biochemical and spectroscopic characterization. J. Biol. Chenw, 1982, v. 257, N 10, p. 56325636.
184. Johnson D.A., Voet J.G., Taylor P. Depolar energy transfer between fluorescently-labeled ol-toxins bound to membrane associated acetylcholine receptors disappeared upon solubilization. Biophys. J., 1983, v. 41, H2 (part 2), p. 64a.
185. Плужников K.A., Карелин А.А., Уткин Ю.Н., Цетлин В.И., Иванов В.Т. Получение фотоактивируемых монопроизводных нейротоксина П Naja na;ja oxianaи их взаимодействие с аце-тилхолиновым рецептором. Биоорган, химия, 1982, т. 8,$ 7, с. 905-913.
186. Barrantes P.J. Agonist-mediated changes of the acetylcholine receptor in its membrane environment. J. Mol. Biol., 1978, v. 124, HI, p, 1-26.
187. Moore W.M., Holladay L.A., Puett D., Brady R.N. On the conformation of the acetylcholine receptor protein from Torpedo nobeliana. PEBS Lett., 1974, v. 45, N 1, p. 145149.
188. Chang E.L., Yager P. The secondary structure of reconstituted acetylcholine receptor as determined by Raman spectroscopy. Biophys. J., 1983, v. 41, N 1 (part 2), p. 65a.
189. Туракулов Я.Х., Сорокин В.Т., Нишанходжаев С.А. Токсины яда среднеазиатской кобры. Биохимия, 1971, т. 36, № 6, с. 1282-1287.
190. Karlsson Е., Eaker D., Ponterius G. Modification of amino groups in Naja naja neurotoxins and the preparation of radioactive derivatives. Biochim. Biophys. Acta, 1972, v. 257, N 2, p. 235-248.
191. Reynolds J.A., Karlin A. Molecular weight in detergent solution of acetylcholine receptor from Torpedo califor-nica. Biochemistry, 1978, v. 17, N 11, p. 2035-2038,
192. Борисов А.Ю., Тумерман JI.А. Новый тип фазового флуоро-метра. Изв. №1 СССР, Сер. физ., 1959, т. 23, № I,с. 97-101.
193. Grinvald A., Steinberg 1.2. On the analysis of fluorescence decay kinetics by the method of least-squares. Anal. Biochem., 1974, v. 59, N 2, p. 583-598.
194. Cogan U., Kopelman M., Mokady S., Shinitzky M. Binding affinities of retinol and related compounds to retinol binding proteins, Eur. J. Biochem., 1976, v. 65, N 1, p. 71-78,