Гидродинамика квантовых жидкостей в нанопористых средах тема автореферата и диссертации по физике, 01.04.02 ВАК РФ
Лысогорский, Юрий Вячеславович
АВТОР
|
||||
кандидата физико-математических наук
УЧЕНАЯ СТЕПЕНЬ
|
||||
Казань
МЕСТО ЗАЩИТЫ
|
||||
2013
ГОД ЗАЩИТЫ
|
|
01.04.02
КОД ВАК РФ
|
||
|
ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ "КАЗАНСКИЙ (ПРИВОЛЖСКИЙ) ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ"
На правах рукописи
п
ЛЫСОГОРСКИЙ Юрий Вячеславович
ГИДРОДИНАМИКА КВАНТОВЫХ ЖИДКОСТЕЙ В НАНОПОРИСТЫХ СРЕДАХ
01.04.02 - Теоретическая физика
АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата физико-математических наук
21 НОЯ 2013
Работа выполнена на кафедре общей физики ФГАОУ BITO "Казанский (Приволжский) федеральный университет"
Научный руководитель: доктор физико-математических наук, профессор,
Таюрский Дмитрий Альбертович Официальные оппоненты: доктор физико-математических наук, профессор,
профессор кафедры теоретической физики Института физики КФУ Нигматуллин Равиль Рашндович доктор физико-математических наук, старший научный сотрудник,
Институт теоретической и экспериментальной физики, научный сотрудник,
лаборатория математики и теоретической физики, Университет Франсуа Рабле, г. Тур, Франция Чернодуб Максим Николаевич
Ведущая организация: ФГБУН "Институт физики твердого тела" РАН (Черно-
головка)
Защита состоится 5 декабря 2013 г. в 14 часов 40 минут на заседании диссертационного совета Д 212.081.15 при Казанском (Приволжском) федеральном университете по адресу: 420008, г. Казань, ул. Кремлевская, 16а, Институт физики.
С диссертацией можно ознакомиться в научной библиотеке им. Н.И. Лобачевского при ФГАОУ ВПО "Казанский (Приволжский) федеральный университет" по адресу: 420008, г. Казань, ул. Кремлевская, 35.
Электронная версия автореферата размещена на официальном сайте Казанского (Приволжского) федерального университета http://www.kpfu.ru Автореферат разослан «_»-2013 г.
Отзывы и замечания по автореферату в двух экземплярах, заверенные печатью, просьба высылать по вышеуказанному адресу на имя ученого секретаря диссертационного совета.
Ученый секретарь
О
диссертационного совета ¿ь /
доктор физ.-мат. наук, профессор Еремин М.В.
Общая характеристика работы
Актуальность темы исследования. В природе существуют два изотопа гелия, обладающие самой низкой температурой кипения при атмосферном давлении, равной 3.19 К для 3Не и 4.21 К для 4Не . В жидком 4Не при температуре 2.17 К, называемой также Л-точкой, происходит фазовый переход второго рода. Фазовое состояние жидкого 4Не ниже Л-точки носит название Не-Н (в то время как жидкий 4Не выше Л-точки называется Не-1). Ниже Л-точки жидкий 4Не обладает рядом необыкновенных свойств, наиболее замечательным из которых является сверхтекучесть. Сверхтекучестью называется способность жидкости протекать без трения через узкие капилляры. Первое объяснение феномену сверхтекучести было дано в рамках двухжидкостной гидродинамической модели, предложенной Ландау(см., например, [1-3]), в которой предполагается, что в Не-Н одновременно существует два типа движения атомов, отождествляемых с двумя компонентами - нормальной и сверхтекучей. Причём нормальная компонента по своим свойствам сходна с обыкновенным жидким гелием, а сверхтекучая компонента не обладает вязкостью и её течение потенциально. Из двухжидкостной модели следует, что в Не-И могут распространяться несколько видов колебаний (звуков). Это колебания плотности -давления (первый звук, нормальная и сверхтекучая компоненты колеблются в фазе) и колебания температуры - энтропии (второй звук, нормальная и сверхтекучая компоненты колеблются в противофазе). Эти колебания независимы друг от друга в объёмных образцах гелия. Позднее были получены экспериментальные доказательства существования этих типов колебаний [4-7].
В течение длительного времени, единственные примеси, которые можно было внедрить в сверхтекучий Не-И для экспериментального изучения были растворенные атомы 3Не, ноны и электроны [8-10]. Однако с недавних пор появились способы внедрения различного рода примесей в сверхтекучую жидкость (Не-П в нанопористой среде - аэрогеле, Не-И с внедрением атомов
и молекул 02, N2, Ке, Кг, сверхтекучая жидкость в стекле Вайкор и т.д. [11]). Такие системы представляют собой уникальную возможность по изучению влияния беспорядка на квантовое макроскопическое явление сверхтекучести. В последнее время в ряде экспериментальных и теоретических исследований было показано, что квантовые жидкости на наноскопическом масштабе длин могут рассматриваться как особое состояние квантовых систем [12-18]. В частности, происходит значительное изменение фазовой диаграммы [15], и возникают необычные акустические эффекты [19], причиной которых может являться возникновение зависимых волн давления и температуры. Это связано с тем, что соответствующие характеристические длины для квантовых жидкостей лежат в диапазоне от нескольких до сотни нанометров, что по порядку совпадает с характерным масштабом ограничивающего нанопористого материала (конфайнмента). Кроме того, существенно возрастает влияние краевых эффектов, т.к. площадь поверхности конфайнмента велика и доля приповерхностных атомов увеличивается.
В работе [ 17] при помощи моделирования квантовыми методами Монте-Карло с использованием реалистичных потенциалов взаимодействия изучается поведение 4Не в нанопорах и каналах, и демонстрируется, что жидкость может быть рассмотрена как новое квазиупорядоченное состояние, описываемое теорией одномерной квантовой жидкости Латтинжера. При этом, в случае узких пор параметр Латтинжера становится большим, что свидетельствует о тенденции к затвердеванию, в то время как, для широких пор, гелий в центральной области обладает меньшим параметром Латтинжера, говорящим о жидком состояние.
Экспериментальные данные свидетельствуют об изменении критического индекса £ плотности сверхтекучей компоненты гелия, помещённого в аэрогель. Изучение критического поведения сверхтекучего гелия в присутствии беспорядка с дальнодействующими фрактальными корреляциями было проведено в работе [18]. Авторы используют модель аэрогеля, представленно-
го как зарождающийся перколяционный кластер, и проводят моделирование квантовым методом Монте-Карло. В результате было установлено, что индекс £ увеличивается от значения 0.67 ± 0.005 для простого случая до значения 0.722 ± 0.005 в присутствие фрактально упорядоченных примесей
В работе [20] приведены экспериментальные факты, связанные с затуханием звуков, распространяющихся в Не-П , помещённом в аэрогель и продемонстрирована необходимость учёта в гидродинамических моделях сверхтекучей жидкости не только плотности аэрогеля, но и его фрактальной структуры. В связи с этим возникает вопрос о влиянии геометрических факторов (размера конфайнмента, размерности пространства нанопор, размерности твердотельных адсорбированных слоев квантовых жидкостей и т.д.) и энергетических факторов (поверхностная энергия гелия, глубина потенциала адсорбции атомов гелия в конфайнменте, неаддитивность энергии и энтропии гелия) на физические свойства квантовых жидкостей.
Цели и задачи диссертационной работы: Целями диссертационной работы являются:
• установить степень влияния геометрических и энергетических факторов нанопористого пространства на физические свойства сверхтекучего гелия в нём
• показать неэкстенсивность поведения сверхтекучего гелия в нанопори-стом пространстве и предложить на основе этого адекватную физическую модель для описания ряда свойств
• установить возможность появления связанных колебаний давления и температуры за счёт только геометрии нанопористого пространства
• дать теоретическое объяснение экспериментально наблюдаемым закономерностям
Для достижения поставленных целей были решены следующие задачи:
• рассчитаны пространственное распределение и энергетические характеристики атомов сверхтекучего гелия в пространстве нанопор аэрогеля используя метод теории функционала плотности.
• построена расширенная двухжидкостная гидродинамическая модель, учитывающая фрактальность пространственного распределения и неэкстенсивность термодинамических величин сверхтекучего гелия в ограниченной геометрии, и показано следующее из этой модели связывание колебаний давления и температуры в Не-11
• основываясь на предположениях фрактальной квантовой механики [21 ], обобщены уравнения двухжидкостной гидродинамической модели, и показано следующее из этой модели связывание колебаний давления и температуры в Не-11
Научная новизна. Впервые было осуществлено компьютерное моделирование сверхтекучего 4Не в пространстве нанопор аэрогеля, представленного реалистичной моделью, методом теории функционала плотности для подтверждения с микроскопической точки зрения фрактальности пространственного распределения и неаддитивности термодинамических величин.
Была впервые построена двухжидкостная гидродинамическая модель жидкого 4Не , учитывающая одновременно фрактальность распределения гелия и неаддитивность его термодинамических характеристик.
Впервые, подход, сформулированный во фрактальной квантовой механике [21], был использован для описания квантовой системы в нанопористом пространстве, а также продемонстрирована галилеева неинвариантность получающихся уравнений и объяснён её физический смысл.
Теоретическая и практическая значимость. Результаты, изложенные в диссертации, могут быть использованы для теоретического объяснения новых экспериментальных результатов по гидродинамики сверхтекучего гелия
в нанопорнстых средах с фрактальной размерностью и сильноразупорядо-ченных пористых средах, для описания динамики бозе-эйнштейновского конденсата в разупорядоченном потенциале со сложной фрактальной геометрией. Также предложенные методы учёта неаддитивности термодинамических величин могут оказаться полезными при разработке моделей малых/сильно-кореллированных систем с неэкстенсивной статистикой. Продемонстрированная галилеева неинвариантность уравнений фрактальной квантовой механики, а также тот факт, что подобная теория может применяться к описанию динамики в нанопористых и фрактальных средах могут предложить идею создания экспериментов с нарушением галилеевой инвариантности.
Положения, выносимые на защиту:
1. На основе компьютерного моделирования методом теории функционала плотности было установлено, что сверхтекучий гелий 4Не , помещённый в ограничивающую среду, обладающую дробной массовой размерностью на определённых масштабах (например, аэрогель), также будет обладать фрактальной размерностью на этих масштабах. Показано, что неаддитивность энергии сверхтекучего гелия в ограничивающей геометрии, определяется в основном не только удельной площадью поверхности, но и величиной адсорбирующего потенциала этой поверхности.
2. Основываясь на обобщённой двухжидкостной гидродинамической модели, была показана возможность смешивания колебаний температуры и давления в Не-Н , помещённом в аэрогель только из-за фрактальности пространства пор и неэкстенсивности энергии и энтропии.
3. Впервые показана галилеева неинвариантность уравнений фрактальной квантовой механики [21] и дано физическое обоснование этому.
4. Предложено применить подход фрактальной квантовой механики [21] к описанию сверхтекучего гелия в нанопористой среде. В рамках этой
модели получены уравнения колебаний в сверхтекучем гелие 4Не , приводящие к зависимым колебаниям температуры и давления.
Апробация результатов. Основные результаты диссертации докладывались на следующих конференциях: VIII и IX Научная конференция молодых ученых, аспирантов и студентов научно-образовательного центра Казанского государственного университета (2008 и 2009 гг.); 25th International conference on Low Temperature Physics (LT25) (Amsterdam, The Netherlands, 2008); XXXV Совещание по физике низких температур (Черноголовка, 2009); QFS2009: International Symposium on Quantum Fluids and Solids (Evanston, USA, 2009); QFS2010: International Symposium on Quantum Fluids and Solids (Grenoble, France, 2010); 2nd International workshop "Statistical physics and mathematics for complex systems" (Wuhan, China, 2010); 26th International conference on Low Temperature Physics (LT26) (Beijing, China, 2011); Frontiers in Nanoscale Science & Technology (RIKEN, 2011); International Conference "Resonances in CONDENSED MATTER" devoted to the centenary of prof. S.A. Althsuler (Kazan, Russia, 2011); XXXVI Совещание по физике низких температур (Санкт-Петербург, 2012); 3d International workshop "Statistical physics and mathematics for complex systems" (Kazan, Russia, 2012); QFS2013: International Symposium on Quantum Fluids and Solids (Matsue, Japan ,2013)
Публикации. Материалы диссертации опубликованы в 20 печатных работах, из них 7 статей в рецензируемых журналах и 13 тезисов докладов.
Личный вклад автора. Содержание диссертации и основные положения, выносимые на защиту, отражают персональный вклад автора в опубликованные работы. Подготовка к публикации полученных результатов проводилась совместно с соавторами, причём вклад диссертанта был определяющим. Все представленные в диссертации результаты получены лично автором.
Содержание работы
Во "Введении" формулируется цель диссертационной работы, приводится список решенных задач, обосновывается новизна, теоретическая и практическая значимость, в форме аннотированного изложения глав диссертационной работы приводятся её основные результаты, обосновывается актуальность темы проведённых исследований.
Глава 1 является обзорной, в ней рассматриваются основные существующие методы описания динамики сверхтекучего гелия-4. В параграфе 1.2 приводится двухжидкостная гидродинамическая модель (ДГМ) Ландау [1, 2], основная идея которой состоит в рассмотрении сверхтекучего гелия как смеси двух компонент - нормальной, обладающей вязкостью, и сверхтекучей, обладающей свойством бездиссипативного и потенциального течения. Нормальная компонента описывается плотностью рп и полем скоростей V,,, в то время как сверхтекучая - р5 и у ( соответственно. В звуковой волне скорости V,, и ул предполагаются малыми по сравнению со скоростью звука, а термодинамические величины почти равными равновесным значениям. В связи с этим, уравнения ДГМ могут быть записаны как
$ + = 0, (1) 01
= 0, (2)
ог
§ + V^> = о, (3)
д\с
+ = 0, (4)
Здесьр = р>+р„,] = рЛуЛ+р„\'„, сг = 5/р - плотность энтропии, р - химический потенциал. В рамках данной модели могут быть получены уравнения колебаний давления и температуры, называемые соответственно первым и вторым звуком. Нужно отметить, что в объёмном Не-П , ввиду аномальной малости его коэффициента теплового расширения, эти два типа колебаний являются независимыми друг от друга.
Альтернативный подход к описанию динамики сверхтекучего гелия -нелинейное уравнение Шредингера, называемое также уравнением Гросса-Питаевского (ГП) [22-24], рассмотрен в параграфе 1.3. Нелинейное уравнение Шредингера - это модель слабо взаимодействующего Бозе-газа. В этой модели температура полагается равной нулю, а взаимодействие между частицами слабым, поэтому можно предположить, что почти все атомы гелия сконденсированы в состоянии с наименьшей энергией, и описываются макроскопической волновой функцией конденсата. Модель ГП справедлива лишь при нулевой температуре, и совпадает с ДГМ вплоть до слагаемых, содержащих производные от плотности сверхтекучей жидкости.
В последние годы появилась и выросла новая область знаний - фрактальная геометрия [25]. Причём почти во всех отраслях науки и техники эта наука находит себе применение. Фрактальная геометрия связана со свойствами фрактальных объектов, как правило, известных просто как фракталы. Характерной особенностью фрактальных объектов является их дробная размерность [25]. В параграфе 1.4 речь идет о понятии фрактальной массовой размерности. Определить её можно следующим образом [26]: обозначим за В\(Я) массу вещества, находящегося в сфере радиуса Я с центром в некоторой точке X. Для "идеального" фрактала (т.е. имеющего бесконечные размеры и единственный выделенный центр) с центром в точке X эта зависимость имеет вид
ВХ(Л) = А-(5)
где А - некоторая константа, О - массовая размерность. При О = 3 можно говорить об однородном заполнение пространства веществом. Если О < 3, то "количество вещества" убывает с удаление от центра. Для стохастического фрактала (напр., сильно неупорядоченный материал) невозможно указать выделенный центр фрактала, и, как следствие, вместо массовой функции (5) необходимо рассматривать её арифметическое усреднение по разным точкам пространства: С (г) = (ЙХ(Л)> - эта функция называется корреляционным ип-
10
тегралом [26]. На самом деле, для исчерпывающего описания внутренней структуры нанопористых материалов одного параметра недостаточно. Так, в работе [27] для характеристики фрактальной структуры осадочных пород используются три параметра: Ор - соответствующие фрактальной размерности пустот, внутренней поверхности и проводящих каналов. Однако в дальнейшем мы будем пользоваться только одним параметром, характеризующим фрактальность - массовой размерностью О, поскольку этого уже будет достаточно для целей, поставленных в диссертационной работе.
В параграфе 1.4 говорится также о таком материале как аэрогель на основе БЮг и о его структуре, демонстрирующей фрактальную массовую размерность в интервале характерных длин от 10 до 100 нм [28, 29]. Аэрогель выступает в качестве разупорядоченных примесей для сверхтекучего гелия [28, 30, 31], который обычно вытесняет все примеси из своего объёма.
В параграфе 1.5 рассматриваются недавние экспериментальные работы, изучающие сверхтекучий гелий, помещённый в аэрогель и другие нанопори-стые материалы. Обсуждаются эксперименты по распространению колебаний давления и температуры в Не-Н в аэрогеле. В работе [20] рассматривается затухание звука распространяющегося в сверхтекучем гелие-4, помещённом в аэрогель. Био в середине прошлого века предложил в ряде своих работ [32, 33] феноменологическую теорию распространения звука в пористой, заполненной жидкостью, макроскопически однородной и изотропной среде. Данная теория хорошо описывает эксперименты по распространению звука в 4Не в стекле вайкор [34] и в алюмооксидной керамике [35]. Однако, данная теория в общем применима к ситуации, когда распространение звука в основном определяется твёрдой средой, а жидкость вносит лишь небольшое возмущение. В случае, когда скорости звука в твёрдой среде и жидкости близки, как для системы аэрогеля и жидкого гелия 4Не, аналитическое решение уравнения результирующей скорости звука отсутствует. В работе [13] авторы заключают, что высокочастотный предел теории Био неприменим к подобным системам.
0.5 1 1.5 2 2.5
Temperature (К)
Рис. 1. Затухание звука в аэрогеле с пористостью 97.0 % при различных давлениях в зависимости от температуры. Узкие пики соответствуют переходу в сверхтекучее состояние. График взят из работы [20].
Эксперимент по распространению звуков в гелие, помещённом в аэрогель [20] показывает, что с ростом давления, затухание звука увеличивается, в то время как для плотных аэрогелей, и в соответствии с вязкоупругой теорией, затухание в низкочастотном пределе должно уменьшаться с ростом давления. Но наиболее интригующим результатом эксперимента, описанного в работе [20], является наличие широкого пика на кривой зависимости затухания (рисунок 1) от температуры. В случае плотных аэрогелей (с низкой пористостью), затухание уменьшается с уменьшением температуры и становится почти константой ниже 1 К. Для 97% - пористого аэрогеля наблюдается отчётливый максимум выше 0.5 МПа, который увеличивается с ростом давления, но выходит на почти постоянный уровень выше 1.5 МПа. Авторы аргументировано доказывают, что причина этого явления кроется в свойствах сверхтекучего гелия и во внутренней структуре высокопористого аэрогеля. Гипотетически, такое затухание возможно из-за превращения одной моды коле-
баний (например, первого звука, колебания давления), в другую (второй звук, колебания температуры). Такая возможность уже демонстрировалась в работах по распространению теплового импульса (второго звука) с низкой скоростью в Не-П в аэрогеле, приводящему к возбуждению колебаний плотности (первого звука) [36]. Авторы статьи [20] делают заключение, что поскольку аэрогели с одинаковой пористостью могут обладать различной фрактальной размерностью, зависящей от условий изготовления, то фрактальная структура аэрогелей должна играть существенную роль в затухание звука в сверхтекучем гелие.
Представляет значительный интерес исследование как статических, так и динамических свойств сверхтекучего гелия в условиях ограниченного пространства, т.е. помещённого в нанопористую среду. В таких условиях появляются новые факторы, требующие к себе пристального внимания при построении теоретических моделей - это геометрия пористого пространства и существенное влияние поверхностных эффектов, приводящих к возникновению неаддитивности термодинамических величин. В диссертации были предприняты попытки рассмотреть гидродинамику сверхтекучего гелия в нанопори-стом пространстве с учётом неэкстенсивности термодинамических величин, а также дробной размерности пространства нанопор и самого гелия.
Для обоснования этих гипотез с микроскопической точки зрения в главе 2 проводится численное моделирование пространственного распределения жидкого гелия и энергии его атомов в ограниченном пространстве, с использованием метода теории функционала плотности (ТФП). В параграфе 2.2 описывается основная идея этого метода [37], а также общая схема компьютерного алгоритма, применяемого для моделирования.
В параграфе 2.3 говорится о моделирование на атомарном уровне внутренней структуры аэрогеля. Проводится симуляция пористой ячейки аэрогеля методами молекулярной динамики [38] (используется метод разрыва при отрицательном давлении [39]) и рассчитывается её потенциал взаимодействия с
одиночным атомом гелия. Взаимодействие между атомами гелия и кислорода предполагается парным и аддитивным, и описывается потенциалом Леннард-Джонса (12,6), в то время как частично скрытые атомы кремния игнорируются [40]. Для того, чтобы убедиться в правильности данного подхода, из первых принципов был рассчитан потенциал взаимодействия одиночного атома гелия и слоя »-кварца толщиной 0.5 нм. Затем рассчитанный потенциал аппроксимировался как сумма парных взаимодействий Леннард-Джонса (12,6) исключительно между атомом гелия и атомами кислорода в структуре. Полученные в результате аппроксимации параметры Леннард-Джонса (е = 25.2 К, сг = 2.97 А) хорошо согласуются с аналогичными параметрами, указанными в работе [40] (е = 28.0 К, сг = 2.95 А). Таким образом, было продемонстрировано, что для решаемых задач достаточно учитывать только взаимодействие между атомами гелия и кислорода. Глубина рассчитанного потенциала взаимодействия гелий - аэрогель лежит в диапазоне от 100 К до 300 К, что хорошо согласуется с экспериментальными данными по адсорбции изотопа 3Не в аэрогеле, приведёнными в работе [41 ] (от 60 К до 250 К).
В параграфе 2.4 рассчитывается фрактальная массовая размерность гелия £>(г), помещённого в различные внешние потенциалы - аэрогель, неадсорбирующий аэрогель (присутствует только отталкивание на близких расстояниях) и одиночную адсорбирующую нить (моделируемую в виде цилиндра). Зависимость массовой размерности от расстояния изображена на рисунке 2. Видно, что будучи помещённым в среду с фрактальной массовой размерностью на определённых масштабах (напр. аэрогель), жидкий гелий также обладает фрактальной массовой размерностью на этих масштабах. Таким образом гипотеза о фрактальности Не-П в аэрогеле, сформулированная выше, подтверждается.
В параграфе 2.5 исследуется вопрос о неаддитивности энергии сверхтекучего гелия в ограниченной геометрии. Неэкстенсивность внутренней энергии системы £че|Г можно охарактеризовать с помощью параметра /I, определя-
<■•( Л)
(Ь)
«•_ ♦ -Л»9
11с: а!1 рце Не: Янс<^п ас горе I
г.(А)
(С)
lfc.ll«,, Пс .;
М А)
Рис. 2. Зависимость от расстояния массовой размерности гелия в пространстве нанопор (а) аэрогеля и (Ь) неадсорбирующего аэрогеля, а также вокруг (с) адсорбирующей нити. Расчёт представлен для всего гелия (•) и для жидкой части гелия (в), с плотностью ниже р„0ш = 0.026 А-3. Для сравнения представлена массовая размерность аэрогеля (♦).
емого, например, из соотношения [42]
Е(ЛГ, + Ы2) = Е(Ы{) + Е{Ы2) + ЛЕ(Ы] )Е{Ы2), (6)
где Е{Ы) обозначает внутреннюю энергию системы из N атомов.
На рисунок 3 представлена зависимость параметра неаддитивности энергии от относительного количества атомов ЛГ/ЛГеч (Л^4 соответствует равновесному количеству атомов в системе; система разбивалась на две равные части).
3. ^—--—.......
0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20
Ы/Л"'
Рис. 3. Рассчитанный параметр неаддитивности внутренней энергии сверхтекучего гелия в зависимости от Л'/Л'сч в потенциале: аэрогеля (сплошная линия), неадсорбирующего аэрогеля (точечная линия) и адсорбирующей нити (пунктир). Также приведена аналитическая зависимость для однородной свободной жидкости (тонкая линия).
Из полученных данных можно заключить, что влияние геометрии внешнего потенциала на неаддитивность не является определяющим, т.к. у адсорбирующей нити параметр Л оказался больше, чем у неадсорбирующего аэрогеля. Существенным для параметра Л является именно средняя величина адсорбирующего потенциала.
Таким образом находят подтверждение обе гипотезы об основных эффектах ограниченной геометрии, влияющих на свойства жидкого гелия: 1) неэкстенсивность энергии, и следовательно, других термодинамических величин, существенным образом зависящая от величины адсорбирующего потенциала; 2) фрактальная размерность жидкого гелия на масштабах фрактальности конфайнмента, определяемая, в основном, именно геометрией. Учёт этих двух факторов будет произведен в феноменологических моделях сверхтекучей жидкости в ограниченном пространстве, представленных ниже.
Результаты второй главы опубликованы в работах [АЗ, А7].
Глава 3 начинается с описания малых неаддитивных систем - систем, в которых энергия взаимодействия между её составляющими частями сравнима
с внутренней энергией самих частей, а количество частиц невелико. Жидкий гелий в пространстве нанопор, ввиду относительно малых размеров пор и существенного влияния поверхностных эффектов, может быть рассмотрен как такая малая система.
На примере малой системы в термостате с гармоническим потенциалом показывается, что распределение вероятности по различным состояниям системы отличается от распределения Больцмана и напоминает неэкстенсивное распределение Тсаллиса [43], обладающее свойством неаддитивности
БЧт(А + В) = £„Г(А) + 8Чт(В) + 1-^5С1г{А)5Чт(В). (7)
кв
К настоящему времени, помимо классической экстенсивной энтропии Больцмана, известны более 40 выражений функционалов энтропии [44]. К наиболее известным относятся энтропия Тсаллиса [43] и энтропия Реньи [45]. Однако, в работе [46] демонстрируется, что на уровне макроскопической термодинамики неэкстенсивная теория Тсаллиса может трансформироваться в теория основанную на энтропии Реньи. Кроме того, в наших дальнейших рассуждениях важным будет являться соотношение неаддитивности энтропии (7), выполняющееся для широкого круга неаддитивных энтропий с квадратичной нелинейностью [44], и в том числе, для энтропии Тсаллиса. Поэтому, не ограничивая общности рассуждений, мы остановим свой выбор именно на ней. Стоит отметить, что подход, основанный на неэкстенсивной статистике (в т.ч. и квантовой), применялся в таких задачах, как, например, бозе-эйнштейнов-ская конденсация в разреженных бозе газах [47, 48] и для описания нанокла-стеров из переходных металлов [49]. Существенными во всех этих задачах являются эффекты связанные с малостью размеров системы и со значительным межчастичным взаимодействием.
В параграфе 3.3 идет речь о переопределении таких термодинамических величин, как температура, давление, свободная энергия, которое связано с учётом неаддитивности энтропии (7) и энергии (6) (аналогичные рассуждения, но
без учёта неаддитивности энергии, представлены в работе [50]). Вновь полу ченные выражения имеют вид
1 + ч (ди,,
^-ТТжАЖ,}' (8)
Т/ЗБ ц \
1 -цт
где 9 = ~ТГ-
Для учёта фрактальной геометрии системы в параграфе 3.4 вводится процедура фракционализации термодинамических величин. Под фракционализа-цией понимается нахождение пространственного распределения термодинамических величин, которое зависит от размерности пространства О. Выдвигается предположения, что пространственное распределение некоторой величины можно представить как
А(г, X, У, г,...) = АДГ, X, У, г,.. .),Хл(г). (10)
где ха(г) - фрактальный множитель, соответствующий величине А, который равен единице при О = 3. Из пористой модели фрактального кластера, предложенной в параграфе 3.4, следует, что фрактальные множители для таких
/ чО-З
величин как давление и плотность равны х(г) = Х/М = ХрО) -Аналогичный результат для плотности был ранее получен в работах Тарасова [51, 52], в которых фрактальность пространства рассматривается через переопределение объёмной меры интегрирования с1Ур ос гв_3^3г.
Общая идея процедуры фракционализации состоит в следующем: все термодинамические величины связаны через известные соотношения (это могут быть как соотношения классической термодинамики, так и модифицированные с учётом неаддитивности). Подставляя в эти соотношения выражения вида (10), получаются уравнения на их фрактальные множители. Используя представленную процедуру, можно найти фрактальные множители для энтропии, энергии, температуры и т.д.
Полученные фракционализованные термодинамические величины подставляются в уравнения ДГМ (1,2,3,4). Таким образом, получается неэкстенсивная фрактальная двухжидкостная гидродинамическая модель, учитывающая одновременно фрактальность и неаддитивность сверхтекучего гелия в нанопористой среде. Получаемые в рамках данной модели уравнения колебаний давления и температуры демонстрируют зависимость этих колебаний. Это означает, что наблюдаемое экспериментально смешивание колебаний температуры и давления Не-П в аэрогеле, может происходить за счёт фрактальности пространства пор и неэкстенсивности энергии и энтропии гелия.
Результаты третьей главы опубликованы в работах [А1, А2, А6].
В главе 4 предлагается использовать другой подход для описания динамики квантовой жидкости в пористом пространстве. В фейнмановской интерпретации квантовой механики [53], динамику частицы в обычном пространстве можно отождествить с движением по бесконечному множеству классических траекторий, связывающих начальную и конечную точки. Такие траектории аналогичны траекториям броуновской частицы, совершающей хаотические перемещения в свободном пространстве. Исторически сложилось, что броуновские траектории это первый пример фрактальных объектов в физике: они являются недифференцируемыми, самоподобными и обладают фрактальной размерностью, отличной от топологической (с/(гас1а| = 2). С другой стороны, известно, что при рассмотрении движения броуновской частицы в пористом пространстве (аномальная диффузия) используются уравнения диффузии с дробными производными [54], а движение частицы происходит по траекториям Леви (являющимися общим случаем броуновских траекторий), обладающими фрактальной размерность = а < 2 [21].
Вспоминая связь между феймановскими интегралами по траекториям и броуновским движением, а также тот факт, что броуновское движение является частным случаем движения по траекториям Леви, в работе [21 ] вводится интеграл по фрактальным траекториям Леви, из которого следует фрактальное
уравнение Шредингера [21, 55-57]:
Й^ = -й^Уф + У(х)ф, (11)
ог
где квантовая производная Ритца записывается как
аре^ЧрГуір, о,
<ШГФ{х,о = -¿г 2т
<Р(Р, і) =
(1хе-'рх/г'ф(х,0,
Допуская, что классические броуновские траектории атомов гелия в пористом пространстве (напр. в аэрогеле) превращаются в траектории Леви с некоторой размерностью о- (1 < а < 2), можно предположить, что фрактальное уравнение Шредингера применимо для описания динамики атома гелия в пористом пространстве. Поскольку все атомы гелия в сверхтекучей компоненте обладают общей макроскопической волновой функцией, то их динамика также может быть описана с использованием фрактального гамильтониана, и получаемыми на его основе уравнениями для скорости и ускорения.
Стоит отметить, что включение дробных производных в кинетическую энергию обычного гамильтониана, для учёта влияния нелокальных эффектов было проведено, например, для расчёта тепловых свойств некристаллических твёрдых тел при низких температурах и получено согласие с экспериментальными данными [58].
В параграфе 4.3 впервые рассматривается вопрос о нарушение галиле-евой инвариантности фрактального уравнения Шредингера - при переходе в другую систему отсчёта канонический вид уравнения (11) изменяется. Это свидетельствует о том, что существует выделенная инерциальная система отсчёта, в которой фрактальные уравнения динамики справедливы. В качестве такой системы отсчёта следует выбрать систему отсчёта, в которой объект, ограничивающий геометрию гелия (например, аэрогель) покоится.
В параграфе 4.4 речь идет о фрактальном уравнении Гейзенберга - уравнении динамики для операторов наблюдаемых с учётом фрактальности гамильтониана. Выводятся выражения для операторов скорости (впервые получено в [57]) и ускорения.
Ча-2
-г = —oD„
: aD„ |pj° (а- 1)
Р-
_|vpVV(r).
(12) (13)
Если рассматривать классическую интерпретацию операторов в данном уравнении, то мы получим прямой аналог второго закона Ньютона для фрактального пространства. Очевидно, что данное уравнение так же является галиле-ево неинвариантным, поскольку в нём присутствует нелинейный множитель |г|(о-2)/(о~1)_ здесь нужно отметить, что в недавней работе Ласкина [59], рассматривался классический предел фрактальной квантовой механики. Полученное в указанной работе уравнение динамики в формализме Лагранжа (см. уравнение (9) из [59]) совпадает с уравнением (13), а автор также отмечает возникающую галилееву неинвариантность.
В параграфе 4.5 рассматривается процедура обобщения гидродинамических уравнений на основе фрактального уравнения динамики (13) и предлагается фрактальная двухжидкостная гидродинамическая модель сверхтекучей жидкости. В рамках этой модели получаются следующие уравнения колебаний давления и температуры:
dt2 д2Т dt2
- (»- iM-v
per
Vp
vr
Yi ifrt V
1'0 I'o
(14)
(15)
(16)
где U\ И г<2 - скорости первого И второго звуков В объёмном гелие, 1'0 - некоторый параметр размерности скорости, вводимый из соотношения aDn -
m
\ Показывается, что из полученных уравнений следует связь колеба-
ний давления и температуры. При низких температурах коэффициент пропорциональности между амплитудами колебаний давления и температуры пропорционален первой степени температуры.
Таким образом, учёт влияния конфаймента на динамику Не-П через параметр а (размерность траекторий атомов гелия в пористом пространстве) приводит к возникновению связных колебаний давления-температуры, регистрируемых экспериментально [20].
Результаты четвертой главы опубликованы в работах [А4, А5].
В заключении сформулированы основные результаты диссертационной работы:
1. Впервые для изучения свойств сверхтекучего гелия в аэрогеле с микроскопической точки зрения был использован метод теории функционала плотности [37]. Было продемонстрировано, что сверхтекучий гелий, помещённый в ограничивающую среду, обладающую дробной массовой размерностью на определённых масштабах (аэрогель), также будет обладать фрактальной размерностью на этих масштабах. Показано, что неаддитивность термодинамических величин сверхтекучего гелия в ограничивающей геометрии, определяется не удельной площадью поверхности, а величиной адсорбирующего потенциала этой поверхности.
2. Была построена неэкстенсивная двухжидкостная гидродинамическая модель сверхтекучего гелия в пространстве с фрактальной размерностью, учитывающая фрактальность и неэкстенсивность Не-П в такой системе. Из полученных в рамках этой модели уравнений колебаний следует связь между колебаниями давления и температуры. Таким образом, была показана возможность смешивания колебаний температуры и давления в Не-Н в аэрогеле только из-за фрактальности пространства пор и неэкстенсивности энергии и энтропии.
3. Аргументирована применимость фрактальной квантовой механики [21]
к описанию сверхтекучего гелия в нанопористой среде. Продемонстрировано, что фрактальный гамильтониан (11) приводит к галилеево неинвариантным уравнениям динамики. Были получены фрактальные уравнения динамики в представление Гейзенберга. Произведено обобщение полученных уравнений на классический случай. На основе классических фрактальных уравнений динамики была построена фрактальная двухжидкостная гидродинамическая модель сверхтекучей жидкости. В рамках этой модели получены уравнения колебаний давления и температуры, приводящие к связи этих колебаний.
Публикации по теме диссертации в ведущих рецензируемых научных журналах, рекомендованных ВАК РФ
Al. Tayurskii, D. A. Two-fluid hydrodynamic model for superfluids in fractal dimensions / D. A. Tayurskii, Y. V. Lysogorskii, D. Y. Zvezdov // J. of Phys.: Conf. Ser. - 2009. - V. 150. - P. 032110.
A2. Tayurskii, D. A. Nonextensive entropy of quantum liquid in fractal dimension space / D. A. Tayurskii, Y. V. Lysogorskiy // J. of Low Temp. Phys. - 2010. -V. 158, no. 1-2.-P. 237.
A3. Debras, C. Ab initio simulation of effects of structural singularities in aerogel absorption potential / C. Debras, D.A. Tayurskii, B. Minisini, Y. V. Lysogorskiy // J. of Phys.: Conf. Ser. - 2011. - V. 324, no. 1. - P. 012029.
A4. Tayurskii, D. A. Quantum fluids in nanoporous media — Effects of the confinement and fractal geometry / D. A. Tayurskii, Y. V. Lysogorskiy // Chinese Science Bulletin. - 2011. - V. 56, no. 34. - P. 3617.
A5. Tayurskii, D. A. Superfluid hydrodynamic in fractal dimension space / D. A. Tayurskii, Y. V. Lysogorskiy // J. of Phys.: Conf. Ser. - 2012. - V. 394, no. 1. -P. 012004.
A6. An equilibrium thermostatistics of a nonextensive finite system: Canonical distribution and entropy/ J. Jiang, R. Wang, Yu. V. Lysogorskii et al. // Physica A - 2012. - V. 391, no. 11.-P. 3140.
Al. Лысогорский, Ю. В. Моделирование жидкого гелия-4 в аэрогеле методом теории функционала плотности / Ю. В. Лысогорский, Д. А. Таюрский // Письма в ЖЭТФ. - 2013. - Т. 98, №. 4. - С.236
Цитированная литература
1. Ландау, JI. Д. Теоретическая физика: Том 6. Гидродинамика / JI. Д. Ландау, Е. М. Лифшиц. — М.: Физматлит, 2003. — 736 с.
2. Лифшиц, Е. М. Статистическая физика. Часть 2. Теория конденсированного состояния / Е. М. Лифшиц, Л. П. Питаевский. — М.: Физматлит, 2004. — 496 с.
3. Халатников, И. М. Теория сверхтекучести / И. М. Халатников. — М.: Наука, 1971.-320 с.
4. Chase, С. Е. Ultrasonic measurements in liquid helium / С. E. Chase // Proc. Roy. Soc. A. - 1953. - V. 220. - P. 116.
5. Van Itterbeek, A. Measurements on the velocity of ultrasonic waves in liquid helium / A. Van Itterbeek, G. Forrez, M. Teirlinck // Physica. — 1957. — V. 23, no. 6. - P. 905.
6. Wilks, J. The properties of liquid and solid helium / J. Wilks. — Clarendon Press Oxford, 1967. - 703 pp.
7. Пешков, В. П. О втором звуке в гелии II / В. П. Пешков // ЖЭТФ. — 1960. — Т. 38.-С. 799.
8. Freezing and lambda curves of 3He-4He mixtures / С. Le Pair, K. W. Taconis, R. De Bruyn Ouboter, P. Das // Physica. - 1962. - V. 28, no. 3. - P. 305.
9. Atkins, K. R. Ions in liquid helium / K. R. Atkins // Phys. Rev. - 1959,- V. 116, no. 6.-P. 1339.
10. Baym, G. Mobility of the electron bubble in superfluid helium / G. Baym, R. G. Barrera, C. J. Pethick // Phys. Rev. Lett. - 1969. - V. 22, no. 1. - P. 20.
11. Novel sound phenomena in superfluid helium in aerogel and other impure superfluids / P. Brusov, P. Brusov, G. Lawes et al. // Phys. Lett. A. — 2003.— V. 310, no. 4,-P. 311.
12. Superfluid critical behavior in 4He filled porous media / G. K. S. Wong, P. A. Crowell, H. A. Cho, J. D. Reppy // Phys. Rev. Lett.- 1990,- V. 65, no. 19.-P. 2410.
13. Porosity dependence of sound propagation in liquid-4He-filled aerogel / K. Matsumoto, Y. Matsuyama, D. A. Tayurskii, K. Tajiri // JETP Lett. — 2004. - V. 80, no. 2. - P. 109.
14. Bose-Einstein condensation in liquid 4He in Vycor / R. T. Azuah, H. R. Glyde, R. Scherm et al. // J. Low. Temp. Phys. - 2003. - V. 130. - P. 557.
15. Shirahama, K. Localized Bose-Einstein condensation of 4He confined in nanoporous media / K. Shirahama, K. Yamamoto, Y. Shibayama // Journal of the Physical Society of Japan. - 2008. - V. 77, no. 11,- P. 1011.
16. Shirahama, K. Superfluidity of He confined in nanoporous media / K. Shirahama, K. Yamamoto, Y. Shibayama // Low Temperature Physics. — 2008. — V. 34.-P. 273.
17. Del Maestro, A. 4He Luttinger liquid in nanopores / A. Del Maestro, M. Bonin-segni, I. Affleck//Phys. Rev. Lett.-2011.-V. 106, no. 10.-P. 105303.
18. Moon, K. Critical behavior of superfluid 4He in aerogel / K. Moon, S. M. Girvin // Phys. Rev. Lett. - 1995. - V. 75, no. 7. - P. 1328.
19. McKenna, M. J. Observation of a second-sound-like mode in superfluid-fllled aerogel / M. J. McKenna, T. Slawecki, J. D. Maynard // Phys. Rev. Lett. — 1991,-V. 66, no. 14.-P. 1878.
20. Possible sound mode conversion in "superfluid 4He-97% open aerogel" system / K. Matsumoto, H. Tsuboya, K. Yoshino et al. // J. of Low Temp. Phys. — 2007,- V. 148, no. 5-6,-P. 615.
21. Laskin, N. Fractional quantum mechanics / N. Laskin // Phys. Rev. E.— 2000,-V. 62, no. 3.-P. 3135.
22. Gross, E. P. Structure of a quantized vortex in boson systems / E. P. Gross // Nuovo Cimento Series 10,- 1961,- V. 20, no. 3.- P. 454.
23. Gross, E. P. Hydrodynamics of a superfluid condensate / E. P. Gross // Journal of Mathematical Physics. - 1963. - V. 4. - P. 195.
24. Pitaevskii, L. P. Vortex lines in an imperfect Bose gas / L. P. Pitaevskii // Sov. Phys. JETP. - 1961. - V. 13, no. 2. - P. 451.
25. Mandelbrot, B. B. The fractal geometry of nature / B. B. Mandelbrot. — Henry Holt and Company, 1983.-468 pp.
26. Theiler, J. Estimating fractal dimension / J. Theiler // J. Optical Society America A. - 1990,- V. 7, no. 6,- P. 1055.
27. Nigmatullin, R. R. A fractal pore model for Archie's law in sedimentary rocks / R. R. Nigmatullin, L. A. Dissado, N. N. Soutougin // J. of Phys. D: Appl. Phys. - 1992. - V. 25, no. 1. - P. 32.
28. Porto, J. V. Correlated disorder in a p-wave superfluid / J. V. Porto, J. M. Parpia//Phys. Rev. B.- 1999. - Jun. - V. 59, no. 22.- P. 14583.
29. Schaefer, D. W. Structure of random porous materials: silica aerogel / D. W. Schaefer, K. D. Keefer // Phys. Rev. Lett. - 1986. - V. 56. - P. 2199.
30. Disorder and the superfluid transition in liquid 4He / M. H. W. Chan, K. I. Blum, S. Q. Murphy et al. // Phys. Rev. Lett. - 1988,- V. 61, no. 17,-P. 1950.
31. Superfluid transition of 4He in ultralight aerogel / J. Yoon, D. Sergatskov, J. Ma et al. // Phys. Rev. Lett. - 1998. - V. 80, no. 7. - P. 1461.
32. Biot, M. A. Generalized theory of acoustic propagation in porous dissipative media / M. A. Biot // The Journal of the Acoustical Society of America. — 1962,- V. 34,- P. 1254.
33. Biot, M. A. Mechanics of deformation and acoustic propagation in porous media / M. A. Biot // J. of Appl. Phys. - 1962. - V. 33, no. 4. - P. 1482.
34. Beamish, J. R. Sound velocity in helium-filled porous Vycor glass / J. R. Beamish, A. Hikata, C. Elbaum // Phys. Rev. B.- 1983,- V. 21.-P. 5848.
35. Warner, K. Frequency dependence of sound propagation in superfluid-filled porous media / K. Warner, J. R. Beamish // Phys. Rev. B.- 1994,- V. 50, no. 21.-P. 15896.
36. Superfluid density from heat-pulse propagation near the A line in 4He-aerogel systems / N. Mulders, R. Mehrotra, L. S. Goldner, G. Ahlers // Phys. Rev. Lett. - 1991. - V. 67. - P. 695.
37. Structural and dynamical properties of superfluid helium: A density-functional approach / F. Dalfovo, A. Lastri, L. Pricaupenko et al. // Phys. Rev. B.— 1995,-V. 52, no. 2.-P. 1193.
38. Plimpton, S. Fast parallel algorithms for short-range molecular dynamics / S. Plimpton // Journal of Computational Physics.— 1995.— V. 117, no. 1,— P. 1.
39. Ng, T. Y. A molecular dynamics study of the thermal conductivity of nanoporous silica aerogel, obtained through negative pressure rupturing / T. Y. Ng, J. J. Yeo, Z. S. Liu // Journal of Non-Crystalline Solids. - 2012. - V. 358, no. 11,- P. 1350.
40. Talu, О. Reference potentials for adsorption of helium, argon, methane, and krypton in high-silica zeolites / O. Talu, A. L. Myers // Colloids and Surfaces A: Physicochemical and Engineering Aspects. — 2001. — V. 187. — P. 83.
41. Heterogeneous adsorption potential of 3He in silica aerogel and its influence on magnetic relaxation of 3He / E. M. Alakshin, R. R. Gazizulin, A. V. Klochkov et al. // arXiv preprint arXiv: 1012.2461. - 2010.
42. Possible canonical distributions for finite systems with nonadditive energy / C. Ou, W. Li, J. Du et al. // Physica A. - 2008. - V. 387, no. 23. - P. 5761.
43. Tsallis, C. Possible generalization of Boltzman-Gibbs statistics / C. Tsallis // J. of Stat. Phys. - 1988. - V. 52. - P. 479.
44. Зарипов, P. Принципы неэкстенсивной статистической механики и геометрии мер беспорядка и порядка / Р. Зарипов. — Казань: Изд-во Казан, гос. техн. ун-та, 2010. — 404 с.
45. Renyi, A. On measures of information and entropy / A. Renyi // Proceedings of the fourth Berkeley Symposium on Mathematics, Statistics and Probability. — 1960.-P. 547.
46. Abe, S. Heat and entropy in nonextensive thermodynamics: transmutation from Tsallis theory to Renyi-entropy-based theory / S. Abe // Physica A. — 2001. — V. 300, no. 3.-P. 417.
47. Hasegawa, H. Bose-Einstein and Fermi-Dirac distributions in nonextensive quantum statistics: Exact and interpolation approaches / H. Hasegawa // Phys. Rev. E. — 2009. — V. 80, no. 1.-P. 011126.
48. Hasegawa, H. The interpolation approach to nonextensive quantum statistics / H. Hasegawa // Physica A. - 2010. - V. 389, no. 12. - P. 2358.
49. Hasegawa, H. Non-extensive thermodynamics of transition-metal nanoclus-ters / H. Hasegawa // Progress in materials science. — 2007.— V. 52, no. 2,— P. 333.
50. Nonextensive thermodynamic relations / S. Abe, S. Martinez, F. Pennini, A. Plastino // Phys. Lett. A. - 2001. - V. 281, no. 2-3. - P. 126.
51. Tarasov, V. E. Continuous medium model for fractal media / V. E. Tarasov // Phys. Lett. A. - 2005,- V. 336, no. 2,- P. 167.
52. Tarasov, V. E. Fractional hydrodynamic equations for fractal media / V. E. Tarasov // Annals of Physics. - 2005. - V. 318, no. 2. - P. 286.
53. Feynman, R. P. Quantum mechanics and path integrals / R. R Feynman, A. R. Hibbs. - McGraw-Hill New York, 1965. - V. 13. - 365 pp.
54. West, B. Physics of Fractal Operators / B. West, M. Bologna, P. Grigolini. — Springer, 2003. - 354 pp.
55. Laskin, N. Fractional Schrödinger equation / N. Laskin // Phys. Rev. E. — 2002. - V. 66, no. 5. - P. 56108.
56. Laskin, N. Levy Flights over Quantum Paths / N. Laskin // Comm. in Nonlin. Sei. and Num. Sim. - 2007. - V. 12, no. 1. - P. 2.
57. Laskin, N. Principles of Fractional Quantum Mechanics / N. Laskin // Arxiv preprint arXiv: 1009.5533. - 2010. - no. 2. - P. 31.
58. Fractional approach, quantum statistics, and non-crystalline solids at very low temperatures / E. K. Lenzi, B. F. de Oliveira, N. G. C. Astrath et al. // The European Physical Journal B. — 2008. - V. 62, no. 2. - P. 155.
59. Laskin, N. Generalized classical mechanics / N. Laskin // The European Physical Journal Special Topics. - 2013. - V. 222, no. 8. - P. 1929.
Отпечатано в полном соответствии с предоставленным оригинал-макетом.
Формат 60*84 1/16. Бумага офсетная. Печать офсетная. Печ.л.1,0. Усл.печл 0,93. Уч.-изд.л. 1,0. Тираж ЮОэкз.
Типография ЗАО «Компания Интайп», 420111, Казань, ул.Профсоюзная,д.26
ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ "КАЗАНСКИЙ (ПРИВОЛЖСКИЙ) ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ"
На правах рукописи
04201452482 ЛЫСОГОРСКИЙ Юрий Вячеславович
ГИДРОДИНАМИКА КВАНТОВЫХ ЖИДКОСТЕЙ В НАНОПОРИСТЫХ СРЕДАХ
01.04.02 - Теоретическая физика
ДИССЕРТАЦИЯ на соискание ученой степени кандидата физико-математических наук
Научный руководитель
д. ф.-м. н., проф.
Таюрский Дмитрий Альбертович
Казань - 2013
г
Содержание
Введение............................................................................4
Глава 1. Обзор литературы....................................................11
1.1. Введение..................................................................11
1.2. Двухжидкостная гидродинамическая модель сверхтекучего гелия . 12
1.3. Нелинейное уравнение Шредингера и гидродинамика сверхтекучей жидкости..............................20
1.4. Нанопористые среды и фрактальная размерность..........23
1.5. Квантовые системы в пространстве с ограниченной геометрией . 28
1.6. Заключение................................32
Глава 2. Моделирование системы гелий-аэрогель методом теории функционала плотности..............................34
2.1. Введение.................................34
2.2. Теория функционала плотности....................36
2.3. Моделирование структуры аэрогеля .................41
2.4. Фрактальное распределение гелия в аэрогеле............45
2.5. Неаддитивность энергии гелия....................47
2.6. Заключение...............................51
Глава 3. Неэкстенсивная фрактальная двухжидкостная гидродинамическая модель Не-П.............................53
3.1. Введение.................................53
3.2. Малые неаддитивные системы ....................53
3.3. Неэкстенсивные термодинамические величины...........61
3.4. Фракционализация термодинамических величин..........65
3.5. Неэкстенсивная фрактальная двухжидкостная гидродинамическая модель..................................71
3.6. Заключение...............................75
Глава 4. Фрактальное уравнение Шредннгера и фрактальная гидродинамика .....................................77
4.1. Введение.................................77
4.2. Фрактальное уравнение Шредингера.................78
4.3. Галилеева неинвариантность .....................92
4.4. Фрактальное уравнение Гейзенберга.................95
4.5. Фрактальная гидродинамическая модель...............97
4.6. Заключение...............................109
Заключение....................................110
Публикации по теме диссертации
Литература
113
114
Введение
Актуальность темы исследования. В природе существуют два изотопа гелия, обладающие самой низкой температурой кипения при атмосферном давлении, равной 3.19 К для 3Не и 4.21 К для 4Не . В жидком 4Не при температуре 2.17 К, называемой также Л-точкой, происходит фазовый переход второго рода. Фазовое состояние жидкого 4Не ниже Л-точки носит название Не-11 (в то время как жидкий 4Не выше Л-точки называется Не-I). Ниже Л-точки жидкий 4Не обладает рядом необыкновенных свойств, наиболее замечательным из которых является сверхтекучесть. Сверхтекучестью называется способность жидкости протекать без трения через узкие капилляры. Первое объяснение феномену сверхтекучести было дано в рамках двухжидкостной гидродинамической модели, предложенной Ландау(см., например, [1-3]), в которой предполагается, что в Не-И одновременно существует два типа движения атомов, отождествляемых с двумя компонентами - нормальной и сверхтекучей. Причём нормальная компонента по своим свойствам сходна с обыкновенным жидким гелием, а сверхтекучая компонента не обладает вязкостью и её течение потенциально. Из двухжидкостной модели следует, что в Не-11 могут распространяться несколько видов колебаний (звуков). Это колебания плотности - давления (первый звук, нормальная и сверхтекучая компоненты колеблются в фазе) и колебания температуры - энтропии (второй звук, нормальная и сверхтекучая компоненты колеблются в противофазе). Эти колебания независимы друг от друга в объёмных образцах гелия. Позднее были получены экспериментальные доказательства существования этих типов колебаний [4-7].
В течение длительного времени, единственные примеси, которые можно было внедрить в сверхтекучий Не-11 для экспериментального изучения были растворенные атомы 3Не, ионы и электроны [8-10]. Однако с недавних пор появились способы внедрения различного рода примесей в сверхтекучую жидкость (Не-11 в нанопористой среде - аэрогеле, Не-И с внедрением атомов и молекул D2,
N2, N6, Кг, сверхтекучая жидкость в стекле Вайкор и т.д. [11]). Такие системы представляют собой уникальную возможность по изучению влияния беспорядка на квантовое макроскопическое явление сверхтекучести. В последнее время в ряде экспериментальных и теоретических исследований было показано, что квантовые жидкости на наноскопическом масштабе длин могут рассматриваться как особое состояние квантовых систем [12-18]. В частности, происходит значительное изменение фазовой диаграммы [15], и возникают необычные акустические эффекты [19], причиной которых может являться возникновение зависимых волн давления и температуры. Это связано с тем, что соответствующие характеристические длины для квантовых жидкостей лежат в диапазоне от нескольких до сотни нанометров, что по порядку совпадает с характерным масштабом ограничивающего нанопористого материала (конфайнмента). Кроме того, существенно возрастает влияние краевых эффектов, т.к. площадь поверхности конфайнмента велика и доля приповерхностных атомов увеличивается.
В работе [17] при помощи моделирования квантовыми методами Монте-Карло с использованием реалистичных потенциалов взаимодействия изучается поведение 4Не в нанопорах и каналах, и демонстрируется, что жидкость может быть рассмотрена как новое квазиупорядоченное состояние, описываемое теорией одномерной квантовой жидкости Люттингера. При этом, в случае узких пор параметр Люттингера становится большим, что свидетельствует о тенденции к затвердеванию, в то время как, для широких пор, гелий в центральной области обладает меньшим параметром Люттингера, говорящим о жидком состояние.
Экспериментальные данные свидетельствуют об изменении критического индекса £ плотности сверхтекучей компоненты гелия, помещённого в аэрогель. Изучение критического поведения сверхтекучего гелия в присутствии беспорядка с дальнодействующими фрактальными корреляциями было проведено в работе [18]. Авторы используют модель аэрогеля, представленного как зарождающийся перколяционный кластер, и проводят моделирование квантовым методом Монте-Карло. В результате было установлено, что индекс £ увеличивается от
значения 0.67 ± 0.005 для простого случая до значения 0.722 ± 0.005 в присутствие фрактально упорядоченных примесей
В работе [20] приведены экспериментальные факты, связанные с затуханием звуков, распространяющихся в Не-П , помещённом в аэрогель и продемонстрирована необходимость учёта в гидродинамических моделях сверхтекучей жидкости не только плотности аэрогеля, но и его фрактальной структуры. В связи с этим возникает вопрос о влиянии геометрических факторов (размера конфайнмента, размерности пространства нанопор, размерности твердотельных адсорбированных слоев квантовых жидкостей и т.д.) и энергетических факторов (поверхностная энергия гелия, глубина потенциала адсорбции атомов гелия в конфайнменте, неаддитивность энергии и энтропии гелия) на физические свойства квантовых жидкостей.
Цели и задачи диссертационной работы: Целями диссертационной работы являются:
• установить степень влияния геометрических и энергетических факторов нанопористого пространства на физические свойства сверхтекучего гелия в нём
• показать неэкстенсивность поведения сверхтекучего гелия в нанопористом пространстве и предложить на основе этого адекватную физическую модель для описания ряда свойств
• установить возможность появления связанных колебаний давления и температуры за счёт только геометрии нанопористого пространства
• дать теоретическое объяснение экспериментально наблюдаемым закономерностям
Для достижения поставленных целей были решены следующие задачи:
• рассчитаны пространственное распределение и энергетические характери-
стики атомов сверхтекучего гелия в пространстве нанопор аэрогеля используя метод теории функционала плотности.
• построена расширенная двухжидкостная гидродинамическая модель, учитывающая фрактальность пространственного распределения и неэкстенсивность термодинамических величин сверхтекучего гелия в ограниченной геометрии, и показано следующее из этой модели связывание колебаний давления и температуры в Не-П
• основываясь на предположениях фрактальной квантовой механики [21], обобщены уравнения двухжидкостной гидродинамической модели, и показано следующее из этой модели связывание колебаний давления и температуры в Не-П
Научная новизна. Впервые было осуществлено компьютерное моделирование сверхтекучего 4Не в пространстве нанопор аэрогеля, представленного реалистичной моделью, методом теории функционала плотности для подтверждения с микроскопической точки зрения фрактальности пространственного распределения и неаддитивности термодинамических величин.
Была впервые построена двухжидкостная гидродинамическая модель жидкого 4Не , учитывающая одновременно фрактальность распределения гелия и неаддитивность его термодинамических характеристик.
Впервые, подход, сформулированный во фрактальной квантовой механике [21], был использован для описания квантовой системы в нанопористом пространстве, а также продемонстрирована галилеева неинвариантность получающихся уравнений и объяснён её физический смысл.
Теоретическая и практическая значимость. Результаты, изложенные в диссертации, могут быть использованы для теоретического объяснения новых экспериментальных результатов по гидродинамики сверхтекучего гелия в нано-пористых средах с фрактальной размерностью и сильноразупорядоченных пористых средах, для описания динамики бозе-эйнштейновского конденсата в разу-
порядоченном потенциале со сложной фрактальной геометрией. Также предложенные методы учёта неаддитивности термодинамических величин могут оказаться полезными при разработке моделей малых/сильнокореллированных систем с неэкстенсивной статистикой. Продемонстрированная галилеева неинвариантность уравнений фрактальной квантовой механики, а также тот факт, что подобная теория может применяться к описанию динамики в нанопористых и фрактальных средах могут предложить идею создания экспериментов с нарушением галилеевой инвариантности.
Положения, выносимые на защиту:
1. На основе компьютерного моделирования методом теории функционала плотности было установлено, что сверхтекучий гелий 4Не , помещённый в ограничивающую среду, обладающую дробной массовой размерностью на определённых масштабах (например, аэрогель), также будет обладать фрактальной размерностью на этих масштабах. Показано, что неаддитивность энергии сверхтекучего гелия в ограничивающей геометрии, определяется в основном не только удельной площадью поверхности, но и величиной адсорбирующего потенциала этой поверхности.
2. Основываясь на обобщённой двухжидкостной гидродинамической модели, была показана возможность смешивания колебаний температуры и давления в Не-П , помещённом в аэрогель только из-за фрактальности пространства пор и неэкстенсивности энергии и энтропии.
3. Впервые показана галилеева неинвариантность уравнений фрактальной квантовой механики [21] и дано физическое обоснование этому.
4. Предложено применить подход фрактальной квантовой механики [21] к описанию сверхтекучего гелия в нанопористой среде. В рамках этой модели получены уравнения колебаний в сверхтекучем гелие 4Не , приводящие к зависимым колебаниям температуры и давления.
Апробация результатов. Основные результаты диссертации докладывались на следующих конференциях: VIII и IX Научная конференция молодых ученых, аспирантов и студентов научно-образовательного центра Казанского государственного университета (2008 и 2009 гг.); 25th International conference on Low Temperature Physics (LT25) (Amsterdam, The Netherlands, 2008); XXXV Совещание по физике низких температур (Черноголовка, 2009); QFS2009: International Symposium on Quantum Fluids and Solids (Evanston, USA, 2009); QFS2010: International Symposium on Quantum Fluids and Solids (Grenoble, France, 2010); 2nd International workshop "Statistical physics and mathematics for complex systems" (Wuhan, China, 2010); 26th International conference on Low Temperature Physics (LT26) (Beijing, China, 2011); Frontiers in Nanoscale Science & Technology (RIKEN, 2011); International Conference "Resonances in CONDENSED MATTER" devoted to the centenary of prof. S.A. Althsuler (Kazan, Russia, 2011); XXXVI Совещание по физике низких температур (Санкт-Петербург, 2012); 3d International workshop "Statistical physics and mathematics for complex systems" (Kazan, Russia, 2012); QFS2013: International Symposium on Quantum Fluids and Solids (Matsue, Japan , 2013)
Публикации. Материалы диссертации опубликованы в 20 печатных работах, из них 7 статей в рецензируемых журналах и 13 тезисов докладов.
Личный вклад автора. Содержание диссертации и основные положения, выносимые на защиту, отражают персональный вклад автора в опубликованные работы. Подготовка к публикации полученных результатов проводилась совместно с соавторами, причём вклад диссертанта был определяющим. Все представленные в диссертации результаты получены лично автором.
Структура и объём диссертации. Диссертация состоит из введения, 4 глав, заключения, списка публикаций по теме диссертации и библиографии. Общий объём диссертации 124 страницы, из них 108 страницы текста, включая 11 рисунков. Библиография включает 142 наименования на 11 страницах.
В главе 1 проводится обзор основных существующих методов описания
динамики сверхтекучего гелия-4. Описывается фрактальные свойства нанопо-ристого материала аэрогеля. Рассматриваются недавние экспериментальные работы, изучающие распространение звуков в сверхтекучем гелие, помещённом в аэрогель и другие нанопористые материалы.
В главе 2 проводится моделирование сверхтекучего гелия в ограниченной геометрии с использованием метода теории функционала плотности (ТФП) [22]. На атомарном уровне проводится симуляция пористой ячейки аэрогеля методом молекулярной динамики и рассчитывается её потенциал взаимодействия с одиночным атомом гелия. Осуществляется моделирование распределения гелия методом ТФП в ряде потенциалов, имитирующих ограниченную геометрию. Демонстрируется фрактальность распределения гелия в аэрогеле, а также неаддитивность его энергии.
В главе 3 сверхтекучий гелий в нанопорах рассматривается как малая неаддитивная система. Описывается модель, основанная на двухжидкостной гидродинамической модели (ДГМ) Ландау [2] и учитывающая одновременно фрактальность и неаддитивность сверхтекучего гелия в нанопористой среде. Демонстрируется возникновение смешанности колебаний давления и температуры в сверхтекучем гелие.
В главе 4 для учёта влияния сложной структуры нанопор на сверхтекучий гелий используется подход фрактальной квантовой механики, впервые предложенной в работе Ласкина [21]. Впервые демонстрируется галилеева неинвариантность фрактальных уравнений динамики. Предлагается модифицированная фрактальная ДГМ, демонстрирующая зависимость колебаний давления и температуры.
В заключении сформулированы основные результаты работы.
Глава 1
Обзор литературы
1.1. Введение
С момента открытия сверхтекучести Не-Н было разработано несколько моделей для описания поведения гелия в нормальной и сверхтекучей фазах. Самой первой была двухжидкостная гидродинамическая модель [1,3, 23] сверхтекучей жидкости (ДГМ), предложенная в свое время Л.Д. Ландау, в которой Не-П условно разделялся на две компоненты - нормальную (обладающую вязкостью) и сверхтекучую (способную беспрепятственно протекать даже через очень узкие щели и отверстия). Данная модель была, по сути, феноменологической, но давала прекрасные результаты. В частности, она предсказывала существование двух типов колебаний в объёмном образце гелия (первый и второй звуки) и двух типов колебаний в ограниченном образце: третий звук в гелиевых пленках и четвертый звук в узких капиллярах. Ландау предсказал, что необходимым условием существования сверхтекучести является особенность спектра возбуждений [2], при которой кривая е = е(р) не касалась абсцисс в самом начале координат, но чтобы на кривой существовал локальный минимум. Таким свойством обладает спектр в котором возбуждениями вблизи точки р = О являются фононы, а при больших значениях импульса присутствует локальный минимум.
Позднее в подтверждение этому Боголюбов предложил микроскопическую модель 4Не , показывающую, что при низких температурах вблизи р = 0, спектр возбуждения имеет линейный закон дисперсии [24].
Уравнения гидродинамики Не-Н частично можно получить с точки зрения микроскопической теории, основанной на уравнение Гросса - Питаевско-го [25-27], известного также как нелинейное уравнение Шредингера [28]. В гидродинамических уравнениях, получаемых из уравнения Гросса-Питаевского, ав-
томатически появляются слагаемые, зависящие от градиента плотности, введённые ещ