Исследование бинарных комплексов РНК и рибосомного белка S7 эубактерий тема автореферата и диссертации по химии, 02.00.10 ВАК РФ
Головин, Андрей Викторович
АВТОР
|
||||
кандидата химических наук
УЧЕНАЯ СТЕПЕНЬ
|
||||
Москва
МЕСТО ЗАЩИТЫ
|
||||
2002
ГОД ЗАЩИТЫ
|
|
02.00.10
КОД ВАК РФ
|
||
|
2 ВВЕДЕНИЕ.
3 ОБЗОР ЛИТЕРАТУРЫ. РИБОСОМНЫЙ БЕЛОК S7 ЭУБАКТЕРИЙ,КТУРА И ФУНКЦИЯ.
3.1 Первичная структура рибосомного белка S7 эубактерий.
3.2 Высшие структуры белка S7 эубактерий.
3.3 Белок S7 - компонент малой субчастицы рибосомы.
3.4 Белок S7 - репрессор сопряженной трансляции str оперона.
4 РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ.
4.1 Компьютерное моделирование третичной структуры EcoS7 и его комплексов с 16S рРНК.
4.2 Конструирование супер-продуцента Е. coli для белка EcoS7 и выделение EcoS7 и TthS7.
4.3 Клонирование EcoStr мРНК и получение фрагментов РНК.
4.4 Взаимодействие фрагмента Eco16S рРНК с белками EcoS7 и
TthS7.
4.5 Идентификация мест контактов белков EcoS7 и TthS7 с фрагментом Eco16S рРНК методом УФ-индуцируемой «сшивки» с нулевой длиной.
4.6 Изучение влияния белков EcoS7 и TthS7 на структуру фрагмента Eco16S рРНК.
4.7 Взаимодействие фрагмента EcoStr мРНК с белками EcoS7 и
TthS7.
4.8 Идентификация мест контактов белков EcoS7 и TthS7 с фрагментом EcoStr мРНК методом УФ-индуцируемой «сшивки» с нулевой длиной.
4.9 Изучение влияния белков EcoS7 и TthS7 на структуру фрагмента EcoStr мРНК.
5 ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ.
5.1 Используемые штаммы микроорганизмов и реактивы.
5.2 Используемые методы.
6 ВЫВОДЫ:.
6 ВЫВОДЫ:
1. Методами компьютерного анализа и моделирования in silico показано, что два белка-аналога EcoS7 и TthS7 по первичной структуре идентичны на 52%, а в зоне РНК-белковых контактов в 30S субчастице - на 83%. Подобная высокая консервативность дает возможность экспериментально сравнить свойства гомологичных и гетерологичных РНК-белковых комплексов, причем TthS7 можно рассматривать как «природный мутант» EcoS7.
2. Получен супер-продуцент Е. coli для EcoS7. Показано, что для стабильной экспрессии регуляторного белка необходимы системы с самым жестким контролем регуляции экспрессии (pET28b/BL21 DE3 pLysE).
3. Установлено, что взаимодействие in vitro EcoS7 и TthS7 с фрагментом 16S рРНК, в целом однотипно, но отлично от таковых в 30S субчастице рибосом.
4. Установлено, что белок S7 взаимодействует с участком бифуркации межцистронного фрагмента S12-S7 str мРНК, что приводит к изменению конформации в основании шпильки, где расположены сигналы трансляции. На основании этого предложена гипотеза о механизме регуляции сопряженной трансляции.
1. Reinbolt, J., D. Tritsch, and В. Wittmann-Liebold, The primary structure of ribosomal protein S7 from E. coli strains К and B. Biochimie, 1979. 61(4): p. 501-22.
2. Johanson, U. and D. Hughes, Comparison of the complete sequence of the stroperon in Salmonella typhimurium and Escherichia coli. Gene, 1992. 120(1): p. 93-8.
3. Held, W. and M. Nomura, Functional homology between the 30S ribosomal protein S7 from E. coli K12 and S7 from E. coli MRE600. Mol Gen Genet, 1973. 122(1): p. 11-4.
4. Reinbolt, J. and D. Tritsch, The primary structure of ribosomal protein S7 from E. coli strains К and B. FEBS Lett, 1978. 91(2): p. 297-301.
5. Tritsch, D., J. Reinbolt, and B. Wittmann-Liebold, The primary structure of ribosomal protein S7 from Escherichia coli strains К and B. Sequence of the C-terminal region ofS7KandS7B. FEBS Lett, 1977. 77(1): p. 89-93.
6. Yakhnin, A.V., D.P. Vorozheykina, and N.i. Matvienko, Nucleotide sequence of the Thermus thermophilus HB8 rps12 and rps7 genes coding for the ribosomal proteins S12andS7. Nucleic Acids Res, 1990. 18(12): p. 3659.
7. Morozov, P.S., Dynamics of evolutionary rates of proteins from small ribosomal subunits. Genetika, 1994. 30(1): p. 37-44.
8. Karginov, A.V., et al., In vivo assembly of plasmid-expressed ribosomal protein S7 of Thermus thermophilus into Escherichia coli ribosomes and conditions of its overexpression. FEBS Lett, 1995. 369(2-3): p. 158-60.
9. Hosaka, H., et al., Ribosomal protein S7: a new RNA-binding motif with structural similarities to a DNA architectural factor. Structure, 1997. 5(9): p. 1199-208.
10. Wimberly, B.T., S.W. White, and V. Ramakrishnan, The structure of ribosomal protein S7 at 1.9 A resolution reveals a beta-hairpin motif that binds double-stranded nucleic acids. Structure, 1997. 5(9): p. 1187-98.
11. Kimura, M., The nucleotide sequences of Bacillus stearothermophilus ribosomal protein S12 and S7 genes: comparison with the stroperon of Escherichia coli. Agric Biol Chem, 1991. 55(1): p. 207-13.
12. Kuwano, Y., J. Olvera, and I.G. Wool, The primary structure of rat ribosomal protein S5. A ribosomal protein present in the rat genome in a single copy. J Biol Chem, 1992. 267(35): p. 25304-8.
13. Murzin, A.G., et al., SCGP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol, 1995. 247(4): p. 536-40.
14. Shimizu, M., et al., Characterization of the binding ofHU and IHF, homologous histone-like proteins of Escherichia coli, to curved and uncurvedDNA. Biochim Biophys Acta, 1995.1264(3): p. 330-6.
15. Rice, P.A., et al., Crystal structure of an IHF-DNA complex: a protein-induced DNA U-turn. Cell, 1996. 87(7): p. 1295-306.
16. Vis, H., et al., Solution structure of the HU protein from Bacillus stearothermophilus. J Mol Biol, 1995. 254(4): p. 692-703.
17. Shestopalov, B.V., RNA-recognizing function of the DNA-recognizing structure helix-tum- helix in ribosomal proteins S4 and S7 of Escherichia coli and plant chloroplasts. Mol Biol (Mosk), 1988. 22(3): p. 624-7.
18. White, S.W., et al., A protein structural motif that bends DNA. Proteins, 1989. 5(4): p. 281-8.
19. Boelens, R., et al., Structure and dynamics of the DNA binding protein HU from Bacillus stearothermophilus by NMR spectroscopy. Biopolymers, 1996. 40(5): p. 553-9.
20. Cate, J.H., et al., X-ray crystal structures of 70S ribosome functional complexes. Science, 1999. 285(5436): p. 2095-104.
21. Wimberly, B.T., et al., Structure of the 30S ribosomal subunit. Nature, 2000. 407(6802): p. 327-39.
22. Tanaka, I., et al., Matching the crystallographic structure of ribosomal protein S7 to a three-dimensional model of the 16S ribosomal RNA. Rna, 1998. 4(5): p. 542-50.
23. Elson, D. and P. Spitnik-Elson, A three-dimensional model of domain III of the Escherichia coli small ribosomal subunit. Biochimie, 1987. 69(9): p. 9919.
24. Harada, N., et al., Crystallization and preliminary X-ray crystallographic study of the ribosomal protein S7 from Bacillus stearothermophilus. J Struct Biol, 1997. 120(1): p. 112-4.
25. Nowotny, V. and K.H. Nierhaus, Assembly of the 30S subunit from Escherichia coli ribosomes occurs via two assembly domains which are initiated by S4 and S7. Biochemistry, 1988. 27(18): p. 7051-5.
26. Culver, G.M. and H.F. Noiler, Efficient reconstitution of functional Escherichia coli 30S ribosomal subunits from a complete set of recombinant small subunit ribosomal proteins. Rna, 1999. 5(6): p. 832-43.
27. Vasiiiev, V.D., V.E. Koteliansky, and G.V. Rezapkin, The complex of 16 S RNA with proteins S4, S7, S8, S15 retains the main morphological features of the 30 S ribosomal subparticle. FEBS Lett, 1977. 79(1): p. 170-4.
28. Nolier, H.F., et a!., Translocation oft.RNA during protein synthesis. FEBS Lett, 2002. 514(1): p. 11-6.
29. Yusupov, M.M., et al., Crystal structure of the ribosome at 5.5 A resolution. Science, 2001. 292(5518): p. 883-96.
30. Rosen, K.V. and R.A. Zimmerman, Photoaffinity labeling of 30S-subunit proteins S7 and S11 by 4- thiouridine-substituted tRNA(Phe) situated at the P site of Escherichia coli ribosomes. Rna, 1997. 3(9): p. 1028-36.
31. Osswald, M., T. Doring, and R. Brimacombe, The ribosomal neighbourhood of the central fold of tRNA: cross-links from position 47 of tRNA located at the A, P or E site. Nucleic Acids Res, 1995. 23(22): p. 4635-41.
32. Miyamoto, A., et al., Role of the N-terminal region of ribosomal protein S7 in its interaction with 16S rRNA which binds to the concavity formed by the beta-ribbon arm and the alpha-helix. Eur J Biochem, 1999. 266(2): p. 591598.
33. Robert, F., et al., Mapping of the RNA recognition site of Escherichia coli ribosomal protein S7. Rna, 2000. 6(11): p. 1649-59.
34. Fredrick, K., G.M. Dunny, and H.F. Nolier, Tagging ribosomal protein S7 allows rapid identification of mutants defective in assembly and function of 30 S subunits. J Mol Biol, 2000. 298(3): p. 379-94.
35. Urlaub, H., et al., Contact sites of peptide-oligoribonucleotide cross-links identified by a combination of peptide and nucleotide sequencing with MALDI MS. J Protein Chem, 1997. 16(5): p. 375-83.
36. Chiaruttini, C., et al., Multiple crosslinks of proteins S7 and S9 to domains 3 and 4 of 16S ribosomal RNA in the Escherichia coli 30S particle. Eur J Biochem, 1986. 160(2): p. 363-70.
37. Chiaruttini, C., et al., Crosslinking of ribosomal proteins S4, S5, S7, S8, S11, S12 and S18 to domains 1 and 2 of 16S rRNA in the Escherichia coli 30S particle. Biochimie, 1989. 71(7): p. 839-52.
38. Ehresmann, В., et al., Effect of ultraviolet irradiation on 30-S ribosomal subunits. Identification of the RNA region crosslinked to protein S7. Eur J Biochem, 1980. 104(1): p. 255-62.
39. Hajnsdorf, E., A. Favre, and A. Expert-Bezancon, Multiple crosslinks of proteins S7, S9, S13 to domains 3 and 4 of 16S RNA in the 30S particle. Nucleic Acids Res, 1986. 14(10): p. 4009-23.
40. Skold, S.E., RNA-proiein complexes identified by crosslinking of polysomes. Biochimie, 1981. 63(1): p. 53-60.
41. Moller, K. and R. Brimacombe, Specific cross-linking of proteins S7 and L4 to ribosomal RNA, by UV irradiation of Escherichia coli ribosomal subunits. Mol Gen Genet, 1975. 141(4): p. 343-55.
42. Ehresmann, В., et a!., Studies of the binding sites of Escherichia coli ribosomal protein S7 with 16S RNA by ultraviolet irradiation. FEBS Lett, 1976. 67(3): p. 316-9.
43. Wower, I. and R. Brimacombe, The localization of multiple sites on 16S RNA which are cross-linked to proteins S7 and S8 in Escherichia coli 30S ribosomal subunits by treatment with 2-iminothiolane. Nucleic Acids Res, 1983. 11(5): p. 1419-37.
44. Kyriatsoulis, A., et al., RNA-protein cross-linking in Escherichia coli ribosomal subunits: localization of sites on 16S RNA which are cross-linked to proteins S17 and S21 by treatment with 2-iminothiolane. Nucleic Acids Res, 1986. 14(3): p. 1171-86.
45. Abdurashidova, G.G., E.A. Tsvetkova, and E.I. Budowsky, Nucleotide residues oftRNA, directly interacting with proteins within the complex of the 30 S subunit of E. coli ribosome with poly(U) and NAcPhe-tRNA(Phe). FEBS Lett, 1989. 243(2): p. 299-302.
46. Broude, N.E., et al., Proteins of the 30-S subunit of Escherichia coli ribosomes which interact directly with natural mRNA. Eur J Biochem, 1983. 132(1): p. 139-45.
47. Sylvers, L.A., et al., Photochemical cross-linking of the anticodon loop of yeast tRNA(Phe) to 30S-subunit protein S7 at the ribosomal A and P sites. Biochimie, 1992. 74(4): p. 381-9.
48. Greuer, В., В. Thiede, and R. Brimacombe, The cross-link from the upstream region of mRNA to ribosomal protein S7 is located in the C-' terminal peptide: experimental verification of a prediction from modeling studies. Rna, 1999. 5(12): p. 1521-5.
49. Brandt, R. and C.O. Gualerzi, Ribosomal localization of the mRNA in the 30S initiation complex as revealed by UV crosslinking. FEBS Lett, 1992. 311(3): p. 199-202.
50. Dontsova, O., et al., Three widely separated positions in the 16S RNA lie in or close to the ribosomal decoding region; a site-directed cross-linking study with mRNA analogues. Ernbo J, 1992. 11(8): p. 3105-16.
51. Dontsova, О.А., et al., Identification of the Escherichia coli 30S ribosomal subunit protein neighboring mRNA during initiation of translation. Biochimie, 1992. 74(4): p. 363-71.
52. Powers, Т., et al., Probing the assembly of the 3' major domain of 16 S ribosomal RNA. Quaternary interactions involving ribosomal proteins S7, S9 and S19. J Mol Biol, 1988. 200(2): p. 309-19.
53. Wiener, L. and R. Brimacombe, Protein binding sites on Escherichia coli 16S RNA; RNA regions that are protected by proteins S7, S14 and S19 in the presence or absence of protein S9. Nucleic Acids Res, 1987. 15(9): p. 3653-70.
54. Wiener, L., D. Schuler, and R. Brimacombe, Protein binding sites on Escherichia coli 16S ribosomal RNA; RNA regions that are protected by proteins S7, S9 and S19, and by proteins S8, S15 and S17. Nucleic Acids Res, 1988. 16(4): p. 1233-50.
55. Gimautdinova, O.I., et al., The proteins of the messenger RNA binding site of Escherichia coli ribosomes. Nucleic Acids Res, 1981. 9(14): p. 3465-81.
56. Gorelic, L., Photoinduced cross-linkage, in situ, of Escherichia coli 30S ribosomal proteins to 16S rRNA: identification of cross-linked proteins and relationships between reactivity and ribcsome structure. Biochemistry, 1976. 15(16): p. 3579-90.
57. Lemieux, G., Chemical modifications of Escherichia coli ribosomal proteins S4, S7, and S8 in regard to their capacity for binding 16 S RNA. Can J Biochem, 1974. 52(11): p. 1038-43.
58. Mandiyan, V., et al., Protein-induced conformational changes in 16 S ' ribosomal RNA during the initial assembly steps of the Escherichia coli 30 S ribosomal subunit. J Mol Biol, 1989. 210(2): p. 323-36.
59. Powers, Т., et al., Probing the assembly of the 3' major domain of 16 S rRNA. Interactions involving ribosomal proteins S2, S3, S10, S13 and S14. J Mol Biol, 1988. 201(4): p. 697-716.
60. Samaha, R.R., et al., Independent in vitro assembly of a ribonucleoprotein particle containing the 3' domain of 16S rRNA. Proc Natl Acad Sci U S A, 1994. 91(17): p. 7884-8.
61. Dragon, F. and L. Brakier-Gingras, Interaction of Escherichia coli ribosomal protein S7 with 16S rRNA. Nucleic Acids Res, 1993. 21(5): p. 1199-203.
62. Dragon, F., С. Payant, and L. Brakier-Gingras, Mutational and structural analysis of the RNA binding site for Escherichia coli ribosomal protein S7. J Mol Biol, 1994. 244(1): p. 74-85.
63. Schwarzbauer, J. and G.R. Craven, Apparent association constants forE. coli ribosomal proteins S4, S7, S8, S15, S17 and S20 binding to 16S RNA. Nucleic Acids Res, 1981. 9(9): p. 2223-37.
64. Robert, F. and L. Brakier-Gingras, Ribosomal protein S7 from Escherichia coli uses the same determinants to bind 16S ribosomal RNA and its messenger RNA. Nucleic Acids Res, 2001. 29(3): p. 677-82.
65. Barnsley, P.G. and B.H. Sells, Unbalanced ribosomal protein synthesis in a strain of Escherichia coli containing a cloned, truncated 16-S ribosomal RNA gene. Eur J Biochem, 1983.132(2): p. 389-94.
66. Nomura, M., et al., Feedback regulation of ribosomal protein gene expression in Escherichia coli: structural homology of ribosomal RNA and ribosomal protein MRNA. Proc Natl Acad Sci USA, 1980. 77(12): p. 70848.
67. Yates, J.L., A.E. Arfsten, and M. Nomura, In vitro expression of Escherichia coli ribosomal protein genes: autogenous inhibition of translation. Proc Natl Acad Sci USA, 1980. 77(4): p. 1837-41.
68. Saito, K., L.C. Mattheakis, and M. Nomura, Post-transcriptional regulation of the str operon in Escherichia coli. Ribosomal protein S7 inhibits coupled translation of S7 but not its independent translation. J Mol Biol, 1994. 235(1): p. 111-24.
69. Dean, D., J.L. Yates, and M. Nomura, Identification of ribosomal protein S7 as a repressor of translation within the str operon of E. coli. Cell, 1981. 24(2): p. 413-9.
70. Krasny, L., et al., Cloning and characterization of the str operon and elongation factor Tu expression in Bacillus stearothermophilus. J Bacterid, 2000. 182(21): p. 6114-22.
71. Pedersen, S. and S. Reeh, Functional mRNA half lives in E. coli. Mo! Gen Genet, 1978. 166(3): p. 329-36.
72. Adhin, M.R. and J. van Duin, Scanning model for translational reinitiation in eubacteria. J Moi Biol, 1990. 213(4): p. 811-8.
73. Post, L.E. ana M. Nomura, DNA sequences from the str operon of Escherichia coli. J Biol Chem, 1980. 255(10): p. 4660-6.
74. Saito, К. and М. Nomura, Post-transcriptional regulation of the str operon in Escherichia coli. Structural and mutational analysis of the target site for translational repressor S7. J Mol Biol, 1994. 235(1): p. 125-39.
75. Guex, N. and M.C. Peitsch, SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis, 1997. 18(15): p. 2714-23.
76. Bairoch, A. and R. Apweiler, The SWISS-PROTprotein sequence data bank and its suppl&ment TrEMBL in 1999. Nucleic Acids Res, 1999. 27(1): p. 49-54.
77. Bairoch, A. and R. Apweiler, The SWISS-PROT protein sequence data bank and its supplement TrEMBL in 1998. Nucleic Acids Res, 1998. 26(1): p. 38-42.
78. Peitsch, M.C., ProMod and Swiss-Model: Internet-based tools for automated comparative protein modelling. Biochem Soc Trans, 1996. 24(1): p. 274-9.
79. Pichert, G. and R.A. Stahel, Organizing cancer genetics programs: the Swiss model. J Clin Oncol, 2000.18(21 Suppl): p. 65S-9S.
80. Schappach, A. and H.D. Holtje, Molecular modelling of 17 alpha-hydroxylase-17,20-lyase. Pharmazie, 2001. 56(6): p. 435-42.
81. Tapia, O. and J. Aqvist, Molecular dynamics as a tool for structural and functional predictions: the retinol binding protein and chloroplast C-terminal fragment of the L12 ribosomal protein cases. Prog Clin Biol Res, 1989. 289: p. 55-64.
82. Aqvist, J., M. Leijonmarck, and O. Tapia, A molecular dynamics study of the C-terminal fragment of the L7/L12 ribosomal protein. II. Effects of intermodular interactions on structure and dynamics. Eur Biophys J, 1989. 16(6): p. 327-39.
83. Kim, J.H. and A.G. Marshall, Structural investigation of helices II, III, and IV of B. megaterium 5S ribosomal RNA by molecular dynamics calculations. Biopolymers, 1992. 32(9): p. 1263-70.
84. Nierhaus, K.H. and F. Dohme, Total reconstitution of functionally active 50S ribosomal subunits from Escherichia coli. Proc Natl Acad Sci USA, 1974. 71(12): p. 4713-7.
85. SO. Boliag, D.M., M.D. Rozycki, and S.J. Edelstein, Protein Metods. second ed. 1996, New-York: A John Willev & SONS, INC.
86. Маниатис. Т., 3. Фрич , and Д. Сэмбрук, Молеккулярное клонирование, ed. А.А. Баев. 1984, Москва: "Мир".
87. Handbook, Q. 1995: QIAGEN.93. "Sequenase 2.0". United States Biochemicals, 1990.
88. Henco, K., The QIAexpressionist: The High-Level Expression & Protein Purification SystemQIAGEN. 1992, Hamburg.
89. Spiridonova, V.A., et al., An extremely high conservation of RNA-protein S7 interactions during prokaryotic ribosomal biogenesis. Biochem Mol Biol Int, 1998. 44(6): p. 1141-6.
90. Budker, V.G., et al., Specific chemical modification of ribosomes near the mRNA-binding center. Dokl Akad Nauk SSSR, 1973. 211(3): p. 725-8.