Исследование бинарных комплексов РНК и рибосомного белка S7 эубактерий тема автореферата и диссертации по химии, 02.00.10 ВАК РФ

Головин, Андрей Викторович АВТОР
кандидата химических наук УЧЕНАЯ СТЕПЕНЬ
Москва МЕСТО ЗАЩИТЫ
2002 ГОД ЗАЩИТЫ
   
02.00.10 КОД ВАК РФ
Диссертация по химии на тему «Исследование бинарных комплексов РНК и рибосомного белка S7 эубактерий»
 
 
Содержание диссертации автор исследовательской работы: кандидата химических наук, Головин, Андрей Викторович

2 ВВЕДЕНИЕ.

3 ОБЗОР ЛИТЕРАТУРЫ. РИБОСОМНЫЙ БЕЛОК S7 ЭУБАКТЕРИЙ,КТУРА И ФУНКЦИЯ.

3.1 Первичная структура рибосомного белка S7 эубактерий.

3.2 Высшие структуры белка S7 эубактерий.

3.3 Белок S7 - компонент малой субчастицы рибосомы.

3.4 Белок S7 - репрессор сопряженной трансляции str оперона.

4 РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ.

4.1 Компьютерное моделирование третичной структуры EcoS7 и его комплексов с 16S рРНК.

4.2 Конструирование супер-продуцента Е. coli для белка EcoS7 и выделение EcoS7 и TthS7.

4.3 Клонирование EcoStr мРНК и получение фрагментов РНК.

4.4 Взаимодействие фрагмента Eco16S рРНК с белками EcoS7 и

TthS7.

4.5 Идентификация мест контактов белков EcoS7 и TthS7 с фрагментом Eco16S рРНК методом УФ-индуцируемой «сшивки» с нулевой длиной.

4.6 Изучение влияния белков EcoS7 и TthS7 на структуру фрагмента Eco16S рРНК.

4.7 Взаимодействие фрагмента EcoStr мРНК с белками EcoS7 и

TthS7.

4.8 Идентификация мест контактов белков EcoS7 и TthS7 с фрагментом EcoStr мРНК методом УФ-индуцируемой «сшивки» с нулевой длиной.

4.9 Изучение влияния белков EcoS7 и TthS7 на структуру фрагмента EcoStr мРНК.

5 ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ.

5.1 Используемые штаммы микроорганизмов и реактивы.

5.2 Используемые методы.

6 ВЫВОДЫ:.

 
Заключение диссертации по теме "Биоорганическая химия"

6 ВЫВОДЫ:

1. Методами компьютерного анализа и моделирования in silico показано, что два белка-аналога EcoS7 и TthS7 по первичной структуре идентичны на 52%, а в зоне РНК-белковых контактов в 30S субчастице - на 83%. Подобная высокая консервативность дает возможность экспериментально сравнить свойства гомологичных и гетерологичных РНК-белковых комплексов, причем TthS7 можно рассматривать как «природный мутант» EcoS7.

2. Получен супер-продуцент Е. coli для EcoS7. Показано, что для стабильной экспрессии регуляторного белка необходимы системы с самым жестким контролем регуляции экспрессии (pET28b/BL21 DE3 pLysE).

3. Установлено, что взаимодействие in vitro EcoS7 и TthS7 с фрагментом 16S рРНК, в целом однотипно, но отлично от таковых в 30S субчастице рибосом.

4. Установлено, что белок S7 взаимодействует с участком бифуркации межцистронного фрагмента S12-S7 str мРНК, что приводит к изменению конформации в основании шпильки, где расположены сигналы трансляции. На основании этого предложена гипотеза о механизме регуляции сопряженной трансляции.

 
Список источников диссертации и автореферата по химии, кандидата химических наук, Головин, Андрей Викторович, Москва

1. Reinbolt, J., D. Tritsch, and В. Wittmann-Liebold, The primary structure of ribosomal protein S7 from E. coli strains К and B. Biochimie, 1979. 61(4): p. 501-22.

2. Johanson, U. and D. Hughes, Comparison of the complete sequence of the stroperon in Salmonella typhimurium and Escherichia coli. Gene, 1992. 120(1): p. 93-8.

3. Held, W. and M. Nomura, Functional homology between the 30S ribosomal protein S7 from E. coli K12 and S7 from E. coli MRE600. Mol Gen Genet, 1973. 122(1): p. 11-4.

4. Reinbolt, J. and D. Tritsch, The primary structure of ribosomal protein S7 from E. coli strains К and B. FEBS Lett, 1978. 91(2): p. 297-301.

5. Tritsch, D., J. Reinbolt, and B. Wittmann-Liebold, The primary structure of ribosomal protein S7 from Escherichia coli strains К and B. Sequence of the C-terminal region ofS7KandS7B. FEBS Lett, 1977. 77(1): p. 89-93.

6. Yakhnin, A.V., D.P. Vorozheykina, and N.i. Matvienko, Nucleotide sequence of the Thermus thermophilus HB8 rps12 and rps7 genes coding for the ribosomal proteins S12andS7. Nucleic Acids Res, 1990. 18(12): p. 3659.

7. Morozov, P.S., Dynamics of evolutionary rates of proteins from small ribosomal subunits. Genetika, 1994. 30(1): p. 37-44.

8. Karginov, A.V., et al., In vivo assembly of plasmid-expressed ribosomal protein S7 of Thermus thermophilus into Escherichia coli ribosomes and conditions of its overexpression. FEBS Lett, 1995. 369(2-3): p. 158-60.

9. Hosaka, H., et al., Ribosomal protein S7: a new RNA-binding motif with structural similarities to a DNA architectural factor. Structure, 1997. 5(9): p. 1199-208.

10. Wimberly, B.T., S.W. White, and V. Ramakrishnan, The structure of ribosomal protein S7 at 1.9 A resolution reveals a beta-hairpin motif that binds double-stranded nucleic acids. Structure, 1997. 5(9): p. 1187-98.

11. Kimura, M., The nucleotide sequences of Bacillus stearothermophilus ribosomal protein S12 and S7 genes: comparison with the stroperon of Escherichia coli. Agric Biol Chem, 1991. 55(1): p. 207-13.

12. Kuwano, Y., J. Olvera, and I.G. Wool, The primary structure of rat ribosomal protein S5. A ribosomal protein present in the rat genome in a single copy. J Biol Chem, 1992. 267(35): p. 25304-8.

13. Murzin, A.G., et al., SCGP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol, 1995. 247(4): p. 536-40.

14. Shimizu, M., et al., Characterization of the binding ofHU and IHF, homologous histone-like proteins of Escherichia coli, to curved and uncurvedDNA. Biochim Biophys Acta, 1995.1264(3): p. 330-6.

15. Rice, P.A., et al., Crystal structure of an IHF-DNA complex: a protein-induced DNA U-turn. Cell, 1996. 87(7): p. 1295-306.

16. Vis, H., et al., Solution structure of the HU protein from Bacillus stearothermophilus. J Mol Biol, 1995. 254(4): p. 692-703.

17. Shestopalov, B.V., RNA-recognizing function of the DNA-recognizing structure helix-tum- helix in ribosomal proteins S4 and S7 of Escherichia coli and plant chloroplasts. Mol Biol (Mosk), 1988. 22(3): p. 624-7.

18. White, S.W., et al., A protein structural motif that bends DNA. Proteins, 1989. 5(4): p. 281-8.

19. Boelens, R., et al., Structure and dynamics of the DNA binding protein HU from Bacillus stearothermophilus by NMR spectroscopy. Biopolymers, 1996. 40(5): p. 553-9.

20. Cate, J.H., et al., X-ray crystal structures of 70S ribosome functional complexes. Science, 1999. 285(5436): p. 2095-104.

21. Wimberly, B.T., et al., Structure of the 30S ribosomal subunit. Nature, 2000. 407(6802): p. 327-39.

22. Tanaka, I., et al., Matching the crystallographic structure of ribosomal protein S7 to a three-dimensional model of the 16S ribosomal RNA. Rna, 1998. 4(5): p. 542-50.

23. Elson, D. and P. Spitnik-Elson, A three-dimensional model of domain III of the Escherichia coli small ribosomal subunit. Biochimie, 1987. 69(9): p. 9919.

24. Harada, N., et al., Crystallization and preliminary X-ray crystallographic study of the ribosomal protein S7 from Bacillus stearothermophilus. J Struct Biol, 1997. 120(1): p. 112-4.

25. Nowotny, V. and K.H. Nierhaus, Assembly of the 30S subunit from Escherichia coli ribosomes occurs via two assembly domains which are initiated by S4 and S7. Biochemistry, 1988. 27(18): p. 7051-5.

26. Culver, G.M. and H.F. Noiler, Efficient reconstitution of functional Escherichia coli 30S ribosomal subunits from a complete set of recombinant small subunit ribosomal proteins. Rna, 1999. 5(6): p. 832-43.

27. Vasiiiev, V.D., V.E. Koteliansky, and G.V. Rezapkin, The complex of 16 S RNA with proteins S4, S7, S8, S15 retains the main morphological features of the 30 S ribosomal subparticle. FEBS Lett, 1977. 79(1): p. 170-4.

28. Nolier, H.F., et a!., Translocation oft.RNA during protein synthesis. FEBS Lett, 2002. 514(1): p. 11-6.

29. Yusupov, M.M., et al., Crystal structure of the ribosome at 5.5 A resolution. Science, 2001. 292(5518): p. 883-96.

30. Rosen, K.V. and R.A. Zimmerman, Photoaffinity labeling of 30S-subunit proteins S7 and S11 by 4- thiouridine-substituted tRNA(Phe) situated at the P site of Escherichia coli ribosomes. Rna, 1997. 3(9): p. 1028-36.

31. Osswald, M., T. Doring, and R. Brimacombe, The ribosomal neighbourhood of the central fold of tRNA: cross-links from position 47 of tRNA located at the A, P or E site. Nucleic Acids Res, 1995. 23(22): p. 4635-41.

32. Miyamoto, A., et al., Role of the N-terminal region of ribosomal protein S7 in its interaction with 16S rRNA which binds to the concavity formed by the beta-ribbon arm and the alpha-helix. Eur J Biochem, 1999. 266(2): p. 591598.

33. Robert, F., et al., Mapping of the RNA recognition site of Escherichia coli ribosomal protein S7. Rna, 2000. 6(11): p. 1649-59.

34. Fredrick, K., G.M. Dunny, and H.F. Nolier, Tagging ribosomal protein S7 allows rapid identification of mutants defective in assembly and function of 30 S subunits. J Mol Biol, 2000. 298(3): p. 379-94.

35. Urlaub, H., et al., Contact sites of peptide-oligoribonucleotide cross-links identified by a combination of peptide and nucleotide sequencing with MALDI MS. J Protein Chem, 1997. 16(5): p. 375-83.

36. Chiaruttini, C., et al., Multiple crosslinks of proteins S7 and S9 to domains 3 and 4 of 16S ribosomal RNA in the Escherichia coli 30S particle. Eur J Biochem, 1986. 160(2): p. 363-70.

37. Chiaruttini, C., et al., Crosslinking of ribosomal proteins S4, S5, S7, S8, S11, S12 and S18 to domains 1 and 2 of 16S rRNA in the Escherichia coli 30S particle. Biochimie, 1989. 71(7): p. 839-52.

38. Ehresmann, В., et al., Effect of ultraviolet irradiation on 30-S ribosomal subunits. Identification of the RNA region crosslinked to protein S7. Eur J Biochem, 1980. 104(1): p. 255-62.

39. Hajnsdorf, E., A. Favre, and A. Expert-Bezancon, Multiple crosslinks of proteins S7, S9, S13 to domains 3 and 4 of 16S RNA in the 30S particle. Nucleic Acids Res, 1986. 14(10): p. 4009-23.

40. Skold, S.E., RNA-proiein complexes identified by crosslinking of polysomes. Biochimie, 1981. 63(1): p. 53-60.

41. Moller, K. and R. Brimacombe, Specific cross-linking of proteins S7 and L4 to ribosomal RNA, by UV irradiation of Escherichia coli ribosomal subunits. Mol Gen Genet, 1975. 141(4): p. 343-55.

42. Ehresmann, В., et a!., Studies of the binding sites of Escherichia coli ribosomal protein S7 with 16S RNA by ultraviolet irradiation. FEBS Lett, 1976. 67(3): p. 316-9.

43. Wower, I. and R. Brimacombe, The localization of multiple sites on 16S RNA which are cross-linked to proteins S7 and S8 in Escherichia coli 30S ribosomal subunits by treatment with 2-iminothiolane. Nucleic Acids Res, 1983. 11(5): p. 1419-37.

44. Kyriatsoulis, A., et al., RNA-protein cross-linking in Escherichia coli ribosomal subunits: localization of sites on 16S RNA which are cross-linked to proteins S17 and S21 by treatment with 2-iminothiolane. Nucleic Acids Res, 1986. 14(3): p. 1171-86.

45. Abdurashidova, G.G., E.A. Tsvetkova, and E.I. Budowsky, Nucleotide residues oftRNA, directly interacting with proteins within the complex of the 30 S subunit of E. coli ribosome with poly(U) and NAcPhe-tRNA(Phe). FEBS Lett, 1989. 243(2): p. 299-302.

46. Broude, N.E., et al., Proteins of the 30-S subunit of Escherichia coli ribosomes which interact directly with natural mRNA. Eur J Biochem, 1983. 132(1): p. 139-45.

47. Sylvers, L.A., et al., Photochemical cross-linking of the anticodon loop of yeast tRNA(Phe) to 30S-subunit protein S7 at the ribosomal A and P sites. Biochimie, 1992. 74(4): p. 381-9.

48. Greuer, В., В. Thiede, and R. Brimacombe, The cross-link from the upstream region of mRNA to ribosomal protein S7 is located in the C-' terminal peptide: experimental verification of a prediction from modeling studies. Rna, 1999. 5(12): p. 1521-5.

49. Brandt, R. and C.O. Gualerzi, Ribosomal localization of the mRNA in the 30S initiation complex as revealed by UV crosslinking. FEBS Lett, 1992. 311(3): p. 199-202.

50. Dontsova, O., et al., Three widely separated positions in the 16S RNA lie in or close to the ribosomal decoding region; a site-directed cross-linking study with mRNA analogues. Ernbo J, 1992. 11(8): p. 3105-16.

51. Dontsova, О.А., et al., Identification of the Escherichia coli 30S ribosomal subunit protein neighboring mRNA during initiation of translation. Biochimie, 1992. 74(4): p. 363-71.

52. Powers, Т., et al., Probing the assembly of the 3' major domain of 16 S ribosomal RNA. Quaternary interactions involving ribosomal proteins S7, S9 and S19. J Mol Biol, 1988. 200(2): p. 309-19.

53. Wiener, L. and R. Brimacombe, Protein binding sites on Escherichia coli 16S RNA; RNA regions that are protected by proteins S7, S14 and S19 in the presence or absence of protein S9. Nucleic Acids Res, 1987. 15(9): p. 3653-70.

54. Wiener, L., D. Schuler, and R. Brimacombe, Protein binding sites on Escherichia coli 16S ribosomal RNA; RNA regions that are protected by proteins S7, S9 and S19, and by proteins S8, S15 and S17. Nucleic Acids Res, 1988. 16(4): p. 1233-50.

55. Gimautdinova, O.I., et al., The proteins of the messenger RNA binding site of Escherichia coli ribosomes. Nucleic Acids Res, 1981. 9(14): p. 3465-81.

56. Gorelic, L., Photoinduced cross-linkage, in situ, of Escherichia coli 30S ribosomal proteins to 16S rRNA: identification of cross-linked proteins and relationships between reactivity and ribcsome structure. Biochemistry, 1976. 15(16): p. 3579-90.

57. Lemieux, G., Chemical modifications of Escherichia coli ribosomal proteins S4, S7, and S8 in regard to their capacity for binding 16 S RNA. Can J Biochem, 1974. 52(11): p. 1038-43.

58. Mandiyan, V., et al., Protein-induced conformational changes in 16 S ' ribosomal RNA during the initial assembly steps of the Escherichia coli 30 S ribosomal subunit. J Mol Biol, 1989. 210(2): p. 323-36.

59. Powers, Т., et al., Probing the assembly of the 3' major domain of 16 S rRNA. Interactions involving ribosomal proteins S2, S3, S10, S13 and S14. J Mol Biol, 1988. 201(4): p. 697-716.

60. Samaha, R.R., et al., Independent in vitro assembly of a ribonucleoprotein particle containing the 3' domain of 16S rRNA. Proc Natl Acad Sci U S A, 1994. 91(17): p. 7884-8.

61. Dragon, F. and L. Brakier-Gingras, Interaction of Escherichia coli ribosomal protein S7 with 16S rRNA. Nucleic Acids Res, 1993. 21(5): p. 1199-203.

62. Dragon, F., С. Payant, and L. Brakier-Gingras, Mutational and structural analysis of the RNA binding site for Escherichia coli ribosomal protein S7. J Mol Biol, 1994. 244(1): p. 74-85.

63. Schwarzbauer, J. and G.R. Craven, Apparent association constants forE. coli ribosomal proteins S4, S7, S8, S15, S17 and S20 binding to 16S RNA. Nucleic Acids Res, 1981. 9(9): p. 2223-37.

64. Robert, F. and L. Brakier-Gingras, Ribosomal protein S7 from Escherichia coli uses the same determinants to bind 16S ribosomal RNA and its messenger RNA. Nucleic Acids Res, 2001. 29(3): p. 677-82.

65. Barnsley, P.G. and B.H. Sells, Unbalanced ribosomal protein synthesis in a strain of Escherichia coli containing a cloned, truncated 16-S ribosomal RNA gene. Eur J Biochem, 1983.132(2): p. 389-94.

66. Nomura, M., et al., Feedback regulation of ribosomal protein gene expression in Escherichia coli: structural homology of ribosomal RNA and ribosomal protein MRNA. Proc Natl Acad Sci USA, 1980. 77(12): p. 70848.

67. Yates, J.L., A.E. Arfsten, and M. Nomura, In vitro expression of Escherichia coli ribosomal protein genes: autogenous inhibition of translation. Proc Natl Acad Sci USA, 1980. 77(4): p. 1837-41.

68. Saito, K., L.C. Mattheakis, and M. Nomura, Post-transcriptional regulation of the str operon in Escherichia coli. Ribosomal protein S7 inhibits coupled translation of S7 but not its independent translation. J Mol Biol, 1994. 235(1): p. 111-24.

69. Dean, D., J.L. Yates, and M. Nomura, Identification of ribosomal protein S7 as a repressor of translation within the str operon of E. coli. Cell, 1981. 24(2): p. 413-9.

70. Krasny, L., et al., Cloning and characterization of the str operon and elongation factor Tu expression in Bacillus stearothermophilus. J Bacterid, 2000. 182(21): p. 6114-22.

71. Pedersen, S. and S. Reeh, Functional mRNA half lives in E. coli. Mo! Gen Genet, 1978. 166(3): p. 329-36.

72. Adhin, M.R. and J. van Duin, Scanning model for translational reinitiation in eubacteria. J Moi Biol, 1990. 213(4): p. 811-8.

73. Post, L.E. ana M. Nomura, DNA sequences from the str operon of Escherichia coli. J Biol Chem, 1980. 255(10): p. 4660-6.

74. Saito, К. and М. Nomura, Post-transcriptional regulation of the str operon in Escherichia coli. Structural and mutational analysis of the target site for translational repressor S7. J Mol Biol, 1994. 235(1): p. 125-39.

75. Guex, N. and M.C. Peitsch, SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis, 1997. 18(15): p. 2714-23.

76. Bairoch, A. and R. Apweiler, The SWISS-PROTprotein sequence data bank and its suppl&ment TrEMBL in 1999. Nucleic Acids Res, 1999. 27(1): p. 49-54.

77. Bairoch, A. and R. Apweiler, The SWISS-PROT protein sequence data bank and its supplement TrEMBL in 1998. Nucleic Acids Res, 1998. 26(1): p. 38-42.

78. Peitsch, M.C., ProMod and Swiss-Model: Internet-based tools for automated comparative protein modelling. Biochem Soc Trans, 1996. 24(1): p. 274-9.

79. Pichert, G. and R.A. Stahel, Organizing cancer genetics programs: the Swiss model. J Clin Oncol, 2000.18(21 Suppl): p. 65S-9S.

80. Schappach, A. and H.D. Holtje, Molecular modelling of 17 alpha-hydroxylase-17,20-lyase. Pharmazie, 2001. 56(6): p. 435-42.

81. Tapia, O. and J. Aqvist, Molecular dynamics as a tool for structural and functional predictions: the retinol binding protein and chloroplast C-terminal fragment of the L12 ribosomal protein cases. Prog Clin Biol Res, 1989. 289: p. 55-64.

82. Aqvist, J., M. Leijonmarck, and O. Tapia, A molecular dynamics study of the C-terminal fragment of the L7/L12 ribosomal protein. II. Effects of intermodular interactions on structure and dynamics. Eur Biophys J, 1989. 16(6): p. 327-39.

83. Kim, J.H. and A.G. Marshall, Structural investigation of helices II, III, and IV of B. megaterium 5S ribosomal RNA by molecular dynamics calculations. Biopolymers, 1992. 32(9): p. 1263-70.

84. Nierhaus, K.H. and F. Dohme, Total reconstitution of functionally active 50S ribosomal subunits from Escherichia coli. Proc Natl Acad Sci USA, 1974. 71(12): p. 4713-7.

85. SO. Boliag, D.M., M.D. Rozycki, and S.J. Edelstein, Protein Metods. second ed. 1996, New-York: A John Willev & SONS, INC.

86. Маниатис. Т., 3. Фрич , and Д. Сэмбрук, Молеккулярное клонирование, ed. А.А. Баев. 1984, Москва: "Мир".

87. Handbook, Q. 1995: QIAGEN.93. "Sequenase 2.0". United States Biochemicals, 1990.

88. Henco, K., The QIAexpressionist: The High-Level Expression & Protein Purification SystemQIAGEN. 1992, Hamburg.

89. Spiridonova, V.A., et al., An extremely high conservation of RNA-protein S7 interactions during prokaryotic ribosomal biogenesis. Biochem Mol Biol Int, 1998. 44(6): p. 1141-6.

90. Budker, V.G., et al., Specific chemical modification of ribosomes near the mRNA-binding center. Dokl Akad Nauk SSSR, 1973. 211(3): p. 725-8.