Некоторые вопросы геометрии регулярно упорядоченных банаховых пространств тема автореферата и диссертации по математике, 01.01.01 ВАК РФ
Энеева, Лиана Магометовна
АВТОР
|
||||
кандидата физико-математических наук
УЧЕНАЯ СТЕПЕНЬ
|
||||
Нальчик
МЕСТО ЗАЩИТЫ
|
||||
2001
ГОД ЗАЩИТЫ
|
|
01.01.01
КОД ВАК РФ
|
||
|
Введение
Глава 0 Предварительные сведения
Глава 1 Геометрия гильбертовых пространств
§1 Круглый конус в гильбертовом пространстве
§2 Непрерывность оператора х ->■ в гильбертовом пространстве.
Глава 2 1 - ортогональность в нормированных пространствах с конусом
Глава 3 Геометрия упорядоченных банаховых пространств
§1 Строгая выпуклость и гладкость на конусе.
Равномерная гладкость и равномерная выпуклость на конусе. п.1 Строгая выпуклость и гладкость на конусе 51 п.2 Равномерная гладкость и равномерная выпуклость на конусе.
§2 Геометрия конусов в банаховых пространствах
§3 Достижимые пространства
Многочисленные исследования конусов в нормированных, а также в более общих линейных топологических пространствах привели к созданию большой теории - геометрии конусов. Эта теория является актуальным разделом функционального анализа и находит важное применение во многих областях математики.
Геометрией конусов, в первую очередь в банаховых пространствах, начали заниматься в тридцатых годах М.Г. Крейн и его ученики. Одновременно в этом направлении работали ленинградские математики во главе с Л.В. Канторовичем. Значительное внимание они уделили нормированным полуупорядоченным пространствам - условно полным нормированным векторным решеткам. Вулих Б.З. и Пинскер А.Г. разрабатывали теорию полуупорядоченных пространств (пространств с конусами специального вида), названных в честь Л.В. Канторовича К-пространствами. В пятидесятые годы большой вклад в теорию конусов в банаховых пространствах внесли представители воронежской математической школы во главе с М.А. Красносельским. Большим вкладом в теорию конусов в банаховых пространствах явились работы Бахтина И.А., Стеценко В.Я., Вейца Б.Е. и других. Начиная с середины пятидесятых годов, математики разных стран, следуя общей линии развития функционального анализа, приступили к изучению конусов в линейных топологических пространствах, обобщая многие понятия, введенные ранее в нормированных пространствах.
Вместе с тем, если к настоящему времени теория решеток достаточно хорошо разработана, то в теории конусов в банаховых пространствах остается много открытых вопросов.
Хорошо известно, что общая теория банаховых пространств с конусом и теория банаховых решеток требуют привлечения различных идей и разной техники. Существенной трудностью является невозможность использования теорем реализации, которые очень эффективны в случае, когда пространство с конусом - банахова решетка. Поэтому не лишено интереса специальное изучение конусов в нормированных пространствах, чему и посвящена данная работа.
Хорошо известными в теории полуупорядоченных пространств являются работы Крейна М.Г. и Рутмана М.А. [19], Вулиха Б.З. [10], [11], Красносельского М.А. [18], Крейна М.Г. [7], Канторовича Л.В. [15], Бахтина И.А. [4] - [6], Шефера Х.[39] и другие.
Диссертация посвящена изучению регулярного конуса в банаховом пространстве. Понятие регулярного конуса восходит к Вау1ез Е.В. [40] и нашло широкое применение в теории тензорных произведений банаховых пространств, теории банаховых решеток. Однако, регулярный конус оказался мало изученным в пространствах, не являющихся решеточными.
В диссертации рассмотрены банаховы пространства, в которых порядок задается строго регулярным конусом. В этом случае порядок и норма, согласованы наилучшим образом, что дает возможность, рассмотреть некоторые чисто порядковые понятия в терминах теории банаховых пространств. В гильбертовом пространстве понятие регулярного конуса равносильно понятию самосопряженного конуса (см. [29]).
Для доказательства основных результатов диссертации используются методы теории банаховых пространств и теории упорядоченных банаховых пространств. После доказательства основных теорем в диссертации следует обсуждение в виде примеров и утверждении, обосновывающих полноту и точность формулировки.
Результаты диссертации носят теоретический характер и быть использованы для дальнейшего развития теории полуупорядоченных нормированных пространств. В диссертации впервые:
Описан регулярный конус в произвольном гильбертовом пространстве.
Доказана липшиц-непрерывность оператора х \—> |х| в гильбертовом пространстве со строго регулярным конусом.
На упорядоченном банаховом пространстве (УБП) Е со строго регулярным конусом Е+ рассмотрена ] -ортогональность, ортогог к нальность ш кпт-^ и доказано, что если Е+ - замкнутый строго регулярный конус в Е, то элементы х, у £ Е+ ] -ортогональны тогда к и только тогда, когда для элемента % — х — у справедлива хотя бы одна из формул:
1) = 2) <*(-*,£<.) = |М1
Доказано, что УБП Е строго выпукло на конусе Е+ тогда и только тогда, когда УБП Е* гладкое на конусе Е+, при условии рефлексивности пространства Е.
Приведены примеры, показывающие, что некоторые банаховы свойства не допускают локализации на конус.
Доказано, что если (Е, Е+) е (71) строго выпукло на конусе Е+, то Ух £ ±Е+, х+, Х- € дЕ+, где дЕ+ - граница конуса Е+.
Получен аналог теоремы Кларксона. Доказано, что в каждом непустом замкнутом выпуклом множестве ^ С Е+, где Е равномерно выпукло на конусе Е+, имеется ровно один элемент с минимальной для элементов этого множества нормой.
Доказано, что при условии строгой выпуклости УБП (Е, Е+) £ (71) на конусе Е+ или при условии строгой монотонности на конусе и выполнении и.св.Рисса, УБП Е будет метрической р
Введено в рассмотрение достижимое пространство, то есть, УБП из класса (71) в котором для каждого элемента х существует метрическая проекция на конус. Множество всех метрических проекций элемента х на конус Е+ обозначаем Л4(х). Вводится класс чебышевских пространств - класс достижимых пространств, в которых для каждого х множество М(х) одноточечно. Доказано, что если достижимое пространство Е строго выпукло на конусе Е+, тогда Е - чебышевское пространство.
Доказано, что если Е - банахова решетка, равномерно выпуклая на конусе Е+, то Е- правильная метрическая решетка.
Доказано, что всякое равномерно выпуклое на конусе Е+ упорядоченное банахово пространство (Е, Е+) из класса (71) является чебы-шевским.
Доказано, что точка хо £ Е+ - опорная точка конуса Е± тогда и только тогда, когда существует д £ Е+*, д ф 0, такой, что д(хо) ~ 0.
Доказано, что если Е+ - вполне достижимый конус в банаховом пространстве Е, то \/х £ Е, х £ ±£7+ имеем: и х~ яелягсгс-точками конуса Е+.
Диссертация состоит из введения, четырех глав, включая главу "Предварительные сведения" и списка литературы, содержащего 45 наименований.
Основные результаты полученные в работе:
1. Описан регулярный конус в произвольном гильбертовом пространстве.
2. Доказана липшиц-непрерывность оператора х i—> |я| в гильбертовом пространстве со строго регулярным конусом.
3. На упорядоченном банаховом пространстве Е со строго регулярным конусом Е+ рассмотрена L -ортогональность, - ортогональг к ность на конусе Е+) и доказано, что если Е+ - замкнутый строго регулярный конус в Е, то элементы х,у £ Е+ ± -ортогональны к тогда и только тогда, когда для элемента z = х — у справедлива хотя бы одна из формул:
1) d(z, Е+) = \\у\\;
2) d(-z,E+) = \\x\\.
4. Доказано, что УБП Е строго выпукло на конусе Е+ тогда и только тогда, когда УБП Е* гладкое на конусе Е*, при условии рефлексивности пространства Е.
5. Приведены примеры, показывающие, что некоторые банаховы свойства не допускают локализации на конус.
6. Если (Е, Е+) £ (TV) строго выпукло на конусе Е+, то \/х £ ±Е+1 х+, Х- £ дЕ+1 где дЕ+ - граница конуса Е+.
7. Получен аналог теоремы Кларксона. Доказано, что в каждом непустом замкнутом выпуклом множестве F С E+i где Е равномерно выпукло на конусе Е+у имеется ровно один элемент с минимальной для элементов этого множества нормой.
8. Доказано, что при условии строгой выпуклости УБП (Е,Е+) (Е (71) на конусе Е+ или при условии строгой монотонности на конусе и выполнении и.св.Рисса, УБП Е будет метрической решеткой.
9. Введено в рассмотрение достижимое пространство, то есть, УБП из класса (71) в котором для каждого элемента х существует метрическая проекция на конус. Множество всех метрических проекций элемента х на конус Е+ обозначаем М(х). Вводится класс чебышевских пространств - класс достижимых пространств, в которых для каждого х множество М(х) одноточечно. Доказано, что если достижимое пространство Е строго выпукло на конусе Е+, тогда Е - чебышевское пространство.
10. Доказано, что если Е - банахова решетка, равномерно выпуклая на конусе Е+, то Е - правильная метрическая решетка.
11. Всякое равномерно выпуклое на конусе Е+ упорядоченное банахово пространство (Е, Е+) из класса (71) является чебышевским.
12. Доказано, что точка хо € Е+ - опорная точка конуса Е+ тогда и только тогда, когда существует д е Е+*, д ф 0, такой, что д(х о) = 0.
13. Доказано, что если Е+ - вполне достижимый конус в банаховом пространстве Е, то V® (Е Е, х ±Е+ имеем: х+ и х- являются опорными точками конуса Е+.
Все результаты, полученные в диссертации, являются новыми.
Заключение
1. Акилов Г.П., Кутателадзе С. С. Упорядоченные векторные пространства. Новосибирск: Наука, 1978, 368 с.
2. Ахиезер Н.И. Лекции по теории аппроксимации. М.: Наука, 1965, 407 с.
3. Ашезер Н.И., Г лаз май И.М. Теория линейных операторов в гильбертовом пространстве. М.: Наука, 1966, 543 с.
4. Бахтин И. А. Конусы в пространствах Банаха. Воронеж: Воронежский государственный педагогический институт, 1975, 183 с.
5. Бахтин И.А., Бахтина А.А. Конусы в пространствах Банаха. Воронеж: Воронежский государственный педагогический институт, 1976, 135 с.
6. Бахтин И.А. Конусы линейных положительных операторов. Воронеж: Воронежский государственный педагогический институт, 1978, 88 с.
7. Бирман М.Ш. и др. Функциональный анализ. М.: Наука, 1972, 544 с.
8. Власов Л. П. Аппроксимативные свойства множеств в линейных нормированных пространствах // Успехи мат. наук. 1973, Т.28, вып. 6, с.3-66.
9. Вулих Б.З. Введение в функциональный анализ. М.: Наука, 1967, 415 с.
10. Вулих Б. 3. Введение в теорию конусов в нормированных пространствах. Калинин: Издательство КГУ, 1977, 84 с.
11. Вулих Б.З. Специальные вопросы геометрии конусов в нормированных пространствах. Калинин: Издательство КГУ, 1978, 84 с.
12. Гейлер В.А., Чучаев И.И. Общий принцип локальной рефлексивности и некоторые его применения в теории упорядоченных пространств // Доклады АН СССР, 1980, Т.254, № 1., с. 17-20.
13. Дей М.М. Нормированные линейные пространства. Москва: Издаг тельство иностранной литературы, 1961, 232 с.
14. Дистель Дж. Геометрия банаховых пространств. Киев: Вшца школа, 1980, 215 с.
15. Канторович Л.В., Акилов Г.П. Функциональный анализ. Москва: Наука, 1984, 752 с.
16. Канторович JI.B., Вулих Б.З., Пинскер А.Г. Функциональный анализ в полуупорядоченных пространствах. M.-JI.: Гостехиздат., 1950, 548 с.
17. Колмогоров А.Н., Фомин C.B. Элементы теории функций и функционального анализа. М.: Наука, 1972, 496 с.
18. Красносельский М.А. Положительные решения операторных уравнений. Москва: Физматгиз, 1962, 394 с.
19. Крейн М.Г., Рутман М.А. Линейные операторы, оставляющие инвариантным конус в пространстве Банаха // Успехи математических наук, 1948, Т. 3, № 1, с. 3-95
20. Кусраев А.Г., Тибилов К.Т. Бесконечномерные банаховы пространства. Учебное пособие / Северо-Осетинский университет им. K.J1. Хетагурова. Владикавказ: Издательство СОГУ, 1996, 114 с.
21. Лпппн 77---Ж-. Afmi?MWf».m/rafH«r w птттеттети-чяттопт: M::Mwn? 197ft? 496 г:
22. Морен К. Методы гильбертова пространства. М.:Мир, 1965, 570 с.
23. Рисс Ф., Секефалъви-Надь Б. Лекции по функциональному анализу. Москва: Мир, 1979, 581 с.
24. Рокафеллар Р. Выпуклый анализ. М.: Мир, 1975, 470 с.
25. Рудин У. Функциональный анализ. М., Мир, 1975, 443 с.
26. Худалов В. Т. Регулярные конусы в гильбертовом пространстве // Сибирский математический журнал, 1996, Т.37, №1, с. 193-196
27. Худалов В. Т. Аппроксимативные свойства положительной и отрицательной частей элемента в упорядоченных банаховых пространствах // Математические заметки. 1996. Вып. 5, с. 793 798.
28. Худалов В. Т. О геометрии банаховых пространств // Вестник Кабардино-Балкарского гос. университета, Издательство КБГУ, Нальчик, 1997, с. 72
29. Худалов В. Т. В гильбертовом пространстве регулярность конуса равносильна самосопряженности // Матем.заметки. 1998. Т. 64, Вып. 4, с. 616- 621.
30. Худалов В. Т. Упорядоченные банаховы пространства и их приложения. Владикавказ: Иристон, 1999, 200 с.
31. Худалов В.Т., Энеева Л.М. О геометрии конусов в упорядоченных банаховых пространствах // Проблемы математического анализа. Владикавказ: Издательство СОГУ, 1997, с. 31-32
32. Энеева Л.М. Описание всех регулярных конусов в и // Тезисы докладов ХХХУИ(П) региональной конференции молодых ученых и студентов. Нальчик: Издательство КБГУ, 1997, с. 8
33. Худалов В. Т., Энеева Л.М. Геометрия конусов в банаховых пространствах // Доклады Адыгской Международной Академии Наук, Т.З, № 2, 1998, с. 27-30
34. Худалов В. Т., Энеева Л.М. Непрерывность оператора взятия метрического модуля // Доклады Адыгской Международной Академии Наук, Т.4, №1, 1999, с. 50-54
35. Энеева Л.М. Строгая выпуклость и гладкость на конусе // Третий Всероссийский Симпозиум, посвященный 80-лет то академика А.А.Самарского. Тезисы докладов. Кисловодск: Издательство КИЭП, 1999, с. 22
36. Энеева Л.М. Двойственность строгой выпуклости и гладкости на строго регулярном конусе // Доклады Адыгской Международной Академии Наук, Т.4, №2, 2000, с. 51-54
37. Энеева Л.М. Строгая выпуклость и гладкость на конусе // Четвертый Всероссийский Симпозиум "Математическое моделирование и компьютерные технологии". Тезисы докладов. Кисловодск: Издательство КИЭП, 2000, с. 86-87
38. Энеева Л.М. Регулярный конус в банаховом пространстве // Воронежская весенняя математическая школа "Понтрягинские чтения XII". Тезисы докладов. 2001, с. 171
39. Шефер X. Топологические векторные пространства. М.: Мир. 1971, 359 с.
40. DAVIES E.B. The structure and ideal theory of the predual of a Banach lattice // TVans. Amer. Math. Soc. 1968. V. 131. P. 544-555.
41. CLARCSON J.A. Uniformly Convex Spaces // Trans.Amer. Math. Soc. 1936, V. 40, P.396-414
42. DIMINNIE C.R. A New Orthogonality Relation for Normed Linear Spaces // Math.Nachr. 1983, V. 114, P. 197-203
43. JAMES R.C. Orthogonality in Normed Linear Spaces // California Institute of Technology, 1945, P. 292-302
44. LORCH E.R. On Certain Implications which Characterize Hilbert Space // Annals of Mathematics. V. 49, No 3, July, 1948, P. 523 -532
45. WILSON W.A. On Certain Types of Continuons Transformations of metric spaces // Amer.J.Math. 1935, V. 57, P.62-68