Носители противоопухолевых препаратов на основе синтетических полипептидов тема автореферата и диссертации по химии, 02.00.06 ВАК РФ
Буров, Сергей Владимирович
АВТОР
|
||||
доктора химических наук
УЧЕНАЯ СТЕПЕНЬ
|
||||
Санкт-Петербург
МЕСТО ЗАЩИТЫ
|
||||
2009
ГОД ЗАЩИТЫ
|
|
02.00.06
КОД ВАК РФ
|
||
|
На правах рукописи
БУРОВ Сергей Владимирович
НОСИТЕЛИ ПРОТИВООПУХОЛЕВЫХ ПРЕПАРАТОВ НА ОСНОВЕ СИНТЕТИЧЕСКИХ ПОЛИПЕПТИДОВ
02.00.06 - Высокомолекулярные соединения 02.00.10 - Биоорганическая химия
АВТОРЕФЕРАТ
диссертации на соискание ученой степени доктора химических наук
Санкт-Петербург 2009
003460506
Работа выполнена в Учреждении Российской академии наук Институте высокомолекулярных соединений РАН.
Научный консультант: член-корр. РАН, доктор химических наук.
профессор Евгений Федорович Панарин
Официальные оппоненты:
доктор химических наук, профессор Лев Иванович Валуев доктор химических наук, профессор Николай Алексеевич Лавров доктор химических наук, профессор Александр Григорьевич Шавва
Ведущая организация:
ФГУП «Государственный научно-исследовательский институт особо чистых биопрепаратов» федерального медико-биологического агентства России.
Защита состоится февраля 2009 г. в 10 часов на заседании Диссертационного совета Д 002.229.01 при Учреждении Российской академии наук Институте высокомолекулярных соединений РАН по адресу: 199004, Санкт-Петербург, В.О., Большой пр. д. 31, конференц-зал.
С диссертацией можно ознакомиться в библиотеке Учреждения Российской академии наук Института высокомолекулярных соединений РАН.
Автореферат разослан января 2009 г. Ученый секретарь
Диссертационного совета ^У
кандидат физико-математических наук \ ' - Долотова H.A.
ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ
Актуальность темы. Присоединение низкомолекулярных лекарственных веществ к полимерному носителю широко используется для повышения их биологической активности, растворимости, длительности и избирательности действия. Одним из наиболее актуальных направлений исследований является создание новых полимерных носителей противоопухолевых препаратов. Благодаря особенностям строения и физико-химических свойств макромолекул происходит их постепенное накопление в опухолевой ткани, что позволяет многократно повысить локальную концентрацию присоединенного химиотерапевтического агента.
Тем не менее, общим недостатком используемых медико-биологических полимеров остается низкая избирательность действия, связанная с неоднородностью их состава и сложностью контроля процесса иммобилизации лекарственных веществ.
Одним из перспективных подходов является применение для адресной доставки химиотерапевтических препаратов полипептидных носителей, специфически связывающихся с рецепторами, расположенными на поверхности клеток злокачественных опухолей. При этом терапевтическое действие может быть усилено благодаря наличию у носителя собственной противоопухолевой активности.
Используемые в настоящее время методы позволяют получать аналоги природных пептидов, устойчивые к ферментативному расщеплению, которые обеспечивают эффективный перенос лекарственных соединений к пораженным органам и тканям. Тем не менее, в случае противоопухолевых препаратов, роль полипептидного носителя обычно ограничена специфическим взаимодействием с рецептором, в то время как вопросы его собственного влияния на злокачественные клетки и внутриклеточный транспорт цитотоксического агента изучены недостаточно.
Другим перспективным направлением является применение синтетических полипептидов при генной терапии опухолевых заболеваний. Несмотря на низкую эффективность переноса генов, такие носители не имеют выраженных побочных эффектов и могут использоваться при продолжительном лечении. Вместе с тем, основными причинами, ограничивающими их применение, являются недостаточная избирательность действия и неэффективность в экспериментах ¡n vivo.
Поэтому при разработке систем адресной доставки противоопухолевых препаратов особенную актуальность приобретает рациональный выбор структуры полипептидного носителя.
Благодаря наличию на поверхности многих опухолевых клеток специфических рецепторов, отсутствующих в большинстве нормальных тканей, в качестве таких носителей может быть использован ряд природных полипептидов. К числу наиболее перспективных соединений относятся аналоги регуляторного пептида гипоталамуса -люлиберина и фрагментов белков, обеспечивающих межклеточные контакты (ЯОО-пептидов).
Цель работы. Разработка принципов создания полимерных носителей противоопухолевых препаратов на основе синтетических полипептидов, обладающих собственной цитотоксической активностью.
Для достижения этой цели было необходимо решить следующие задачи:
1) Синтезировать ряд аналогов люлиберина и исследовать особенности их противоопухолевого действия, включая прямое влияние на злокачественные клетки.
2) Разработать методы модификации сгруюуры полипептидного носителя с целью повышения его цитотоксической активности.
3) Синтезировать аналоги люлиберина, обеспечивающие направленный транспорт цитотоксических агентов к опухолевым клеткам, их перенос через клеточную мембрану и доставку в ядро.
4) Исследовать возможности применения фрагментов а-цепи фибриногена и их аналогов в составе систем адресной доставки противоопухолевых препаратов.
5) Разработать системы доставки в опухолевые клетки «суицидных» генов, основанные на использовании полипептидных носителей, обладающих цитотоксическим действием.
Положения, выносимые на защиту. Применение синтетических полипептидов, обладающих цитотоксической активностью, в качестве носителей противоопухолевых соединений повышает эффективность воздействия на опухолевые клетки.
Модификация полипептидов остатком пальмитиновой кислоты является перспективным подходом при разработке систем адресной доставки цитотоксических агентов.
Преимуществом противоопухолевых соединений на основе аналогов люлиберина, по сравнению с другими природными полипептидами, является комплексное воздействие на клетки ряда аденокарцином в результате подавления секреции стероидных гормонов, направленной доставки цитотоксичсского агента и стимуляции иммунной системы.
Носители на основе фрагментов a-цепи фибриногена и их аналогов позволяют осуществлять направленный транспорт лекарственных препаратов непосредственно к пораженным органам и тканям.
Эффективность генной терапии опухолевых заболеваний может быть повышена с помощью систем доставки, основанных на использовании пептидов, обладающих противоопухолевой активностью.
Научиая новизна. Предложен новый подход к выбору структуры носителей для адресной доставки противоопухолевых препаратов, основанный на использовании синтетических полипептидов, обладающих собственной цитотоксической активностью.
Проведен синтез серии аналогов люлиберина, обладающих комплексным действием на клетки гормонозависимых опухолей в результате подавления секреции стероидных гормонов, направленного транспорта цитотоксического агента, собственной цитотоксической активности и стимуляции иммунной системы.
Показано, что включение остатка пальмитиновой кислоты в структуру полипептидного ¡гасителя приводит к повышению его противоопухолевой активности как in vitro, так и in vivo. Впервые установлено непосредственное взаимодействие аналогов люлиберина с регуляторными участками последовательности гена интерлейкина-2, приводящее к усилению синтеза соответствующей мРНК.
На примере 5-фторурацила разработаны новые методы синтеза гибридных соединений, представляющих собой копъюгаты полипептидных носителей с химиотерапевтическими препаратами.
Впервые разработаны методы химического синтеза, позволяющие получать аналоги люлиберина содержащие фрагменты природных белков, которые обеспечивают направленный транспорт в ядро клетки (сигналы ядерной локализации; NLS). Показано, что включение NLS в последовательность пальмитоилсодержащих
аналогов способствует значительному повышению их цитотоксической активности in vitro.
При использовании флуоресцентно меченых пептидов, содержащих остаток пальмитиновой кислоты, исследованы особенности их взаимодействия с клеточной мембраной и проникновения в клетки гепатомы человека, содержащие рецепторы люлиберина.
Показана возможность эффективного использования фрагментов а-цепи фибриногена и их аналогов в системах адресной доставки противоопухолевых и сосудорасширяющих препаратов.
Разработан новый подход к синтезу полипептидных носителей, обеспечивающих адресный перенос генов в опухолевые клетки. Впервые показано, что в качестве таких носителей могут быть использованы аналоги люлиберина, содержащих NLS или доксорубицин.
Практическая ценность и использование работы. Разработан простой и эффективный метод включения 5-фторурацила в структуру полимерного носителя. На основе аналогов люлиберина синтезированы новые носители цитотоксических агентов, обладающие высокой противоопухолевой активностью в экспериментах in vitro и in vivo. Разработаны методы синтеза полипептидов, способных осуществлять транспорт химиотерапевтических препаратов непосредственно в ядро клетки. В результате исследования взаимосвязи структура - активность получены коныогаты аналогов люлиберина с цитотоксическими агентами, перспективные для проведения доклинических испытаний. Разработаны системы направленной доставки генов в опухолевые клетки, основанные на применении в качестве носителей аналогов люлиберина, содержащих NLS, и конъюгатов полипептидов с доксорубицином.
Показана возможность применения фрагментов a-цепи фибриногена и их аналогов в качестве носителей для адресной доставки противоопухолевых и сосудорасширяющих препаратов.
Личный вклад автора заключается в постановке цели исследования, разработке теоретических и методологических подходов к решению поставленных задач, участии в их экспериментальном выполнении, а также в анализе, интерпретации и обобщении полученных результатов.
Апробация работы. Основные результаты работы докладывались на 4-м международном симпозиуме по применению аналогов люлиберина при терапии опухолевых заболеваний и нарушений репродуктивной функции (Женева, 1996 г.), 27-м Европейском пептидном симпозиуме (Сорренто 2002 г.), международной конференции «СПИД, рак и родственные проблемы» (С.-Петербург 2001 г.), Восточно-Азиатском симпозиуме по применению полимеров для передовых технологий (Самара 2005), 29-м Европейском пептидном симпозиуме (Гданьск 2006 г.), 1-м Индийском пептидном симпозиуме (Хайдарабад 2007 г.), III Российском симпозиуме «Белки и пептиды» (Пущино 2007 г.), 30-м Европейском пептидном симпозиуме (Хельсинки 2008 г.).
Публикации. По теме диссертации опубликовано 53 работы, из них 21 статья в отечественных и зарубежных журналах, 27 тезисов докладов, 2 авторских свидетельства, 2 патента РФ и 1 международный патент.
Структура и объем работы. Диссертация изложена на 217 стр., включает 7 таблиц, 48 рисунков и состоит из введения, пяти глав, заключения, выводов и списка цитируемой литературы, включающего 268 наименований.
СОДЕРЖАНИЕ РАБОТЫ
Направленный транспорт лекарственных соединений в клетки-мишени является одной из основных проблем при разработке новых противоопухолевых препаратов. Применение данного подхода при химиотерапии онкологических заболеваний позволяет повысить избирательность действия, уменьшить терапевтическую дозу и побочные эффекты.
В системах адресной доставки цитотоксических агентов в качестве носителей широко используются различные по структуре полимеры. Одним из перспективных вариантов таких носителей являются аналоги некоторых пептидных гормонов, рецепторы которых расположены на поверхности опухолевых клеток. Применение синтетических полипептидов для направленной доставки противоопухолевых соединений позволяет существенно уменьшить побочные эффекты, связанные с неспецифическим взаимодействием полимеров с клетками нормальных тканей. Кроме того, в этом случае существует возможность дополнительного избирательного
воздействия на опухолевые клетки при наличии у пептидного носителя собственной биологической активности.
При терапии ряда гормонозависимых опухолей, относящихся к числу наиболее распространенных онкологических заболеваний, широко используются аналоги регуляторного пептида гипоталамуса - люлиберина. В последние годы рецепторы люлиберина обнаружены в клетках большинства аденокарцином, включая опухоли легкого, кишечника, ночек и печени. При этом они отсутствуют или в существенно меньшем количестве присутствуют в нормальных тканях, за исключением гипофиза. Высокое содержание рецепторов на поверхности опухолевых клеток, наряду с особенностями внутриклеточного метаболизма и передачи сигналов обусловливает избирательность действия лекарственных препаратов на основе аналогов люлиберина. При этом воздействие на опухоль может быть комплексным и реализоваться за счет снижения уровня стероидных гормонов и направленного транспорта цитотоксического агента.
Вместе с тем, в традиционно используемом подходе возможности модификации структуры рилизинг-гормона для получения конъюгатов с химиотерапевтическими препаратами весьма ограничены, а вопросам влияния полипептидного носителя на опухолевые клетки и внутриклеточный транспорт цитотоксического агента не уделяется достаточного внимания.
В настоящем исследовании, в результате анализа взаимосвязи структура -активность и особенностей механизма действия, на основе аналогов люлиберина разработаны оригинальные носители противоопухолевых препаратов, обладающие собственной цитотоксической активностью. При этом значительно расширены возможности получения конъюгатов с цитотоксическими агентами, синтезированы соединения, обладающие комплексным влиянием на клетки гормонозависимых опухолей.
Большой интерес представляет также использование носителей на основе фрагментов а-цепи фибриногена (ЯОО-пептидов), обладающих сравнительной простотой структуры наряду с высокой биологической активностью. Такие соединения способны связываться со специфическими рецепторами, расположенными на поверхности опухолевых клеток и эндотелиальных клеток сосудов, питающих опухоль.
Нами исследована возможность применения фрагментов а-цепи фибриногена в качестве носителей для направленного транспорта лекарственных веществ при заболеваниях, сопровождающихся локальной активацией тромбоцитов (атеросклерозе, тромбообразовании, формировании метастазов).
В настоящее время большое внимание уделяется разработке методов генной терапии опухолевых заболеваний. Не смотря на то, что носители на основе синтетических полипептидов обеспечивают меньшую эффективность переноса гена, по сравнению с применением вирусных векторов, такие системы обладают определенными преимуществами в плане безопасности, возможности многократного использования и избирательности действия.
В настоящей работе исследованы возможности применения пептидов для доставки в злокачественные клетки так называемых «суицидных» генов. При этом в качестве носителей были использованы различные по структуре полипептиды, в том числе обладающие собственной циготоксической активностью.
ОСНОВНЫЕ МЕТОДИЧЕСКИЕ ПОДХОДЫ, ПРИМЕНЯЕМЫЕ В РАВОТЕ Синтез пептидов
При получении использованных в работе полипептидов применяли классический и твердофазный методы. В последнем случае синтез проводили как в ручном варианте, так и на полуавтоматическом пептидном синтезаторе КР8-4000 при использовании полимера Меррифильда, 4-(оксиметил)-фенилацетамидомстал-полимера (РАМ), 4-мегил-бензгидриламино-полимера (МВНА) и 4-(гидроксиметил)-феноксиметил-полимера (полимер Ванга). Реакцию конденсации проводили однократно, в основном ]ЖУН0В1 методом. В случае положительного теста на наличие непрореагировавших амино или имино групп (нингидриновый или изатиновый тест; реакция с бромфеноловым синим) конденсацию повторяли. Гидрофобную М-концевую группировку присоединяли карбодиимидным методом при использовании свободной пальмитиновой, лауриновой и триметилуксусной кислоты или соответствующих производных Ы-концевых аминокислотных остатков.
При получении конъюгатов полипептидов с цитотоксическими агентами применяли п-нитрофениловый эфир 1-карбоксиметил-5-фторурацила и
доксорубицин, модифицированный глутаровым ангидридом (N-Fmoc-DOX-14-O-гемиглутараг). В последнем случае синтез проводили по методике, предложенной в работах (Nagy, et.al. 1996).
Полученные пептиды отщепляли от полимера с одновременным деблокированием с помощью 1 М раствора трифтормеггансульфокисдоты в трифторуксусной кислоте в присутствии тиоанизола и этандитиола. При получении этиламидов пептидов отщепление от полимерного носителя проводили под действием безводного этиламина при 0°С, с последующим удалением защитных групп в условиях, приведенных выше. Деблокированные пептиды обессоливали путем эксклюзионной хроматографии на сефадексе G-15 и очищали с помощью высокоэффективной обращенно-фазовой хроматографии. Для аналогов, модифицированных пальмитиновой, лауриновой или триметилуксусной кислотой, проводили предварительную очистку методом твердофазной экстракции на колонке LiChroprep RP-18.
При получении производных RGD пептидов методом классического синтеза в растворе реакцию конъюгации с 5-фторурацилом проводили по методике, разработанной для аналогов люлиберина. В случае аналога, содержащего группировку N0, пептид со свободной сульфгидрилыгой группой обрабатывали нитритом натрия в 30%-ной уксусной кислоте.
Конечные продукты характеризовали данными аминокислотного анализа, высокоэффективной обращенно-фазовой хроматографии и масс-спектрометрии. При необходимости для подтверждения структуры полученных соединений использовали УФ и ЯМР спектроскопию.
Биологические испытания
Исследование противоопухолевой активности аналогов люлиберина проводилось в Институте экспериментальной диагностики и терапии опухолей при Российском онкологическом научном центре РАМН на крысах линии Aci и мышах линии СзН с перевиваемыми опухолями предстательной и молочной желез, соответственно. Цитотоксическую активность in vitro определяли в Медицинском центре Шеба (Тель-Хашомер, Израиль) на различных линиях клеток аденокарциномы человека (АТСС, США), включая карциному молочной железы (MCF7; MDA МВ-231), простаты (DU-
145; PC-3; 22RV-1; LNCaP), яичников (OVCAR3), кишечника (SW-48; НТ-29; Colo-205) и печени (HepG2) в тесте с окрашиванием жизнеспособных клеток (Hemacolor assay). В качестве контроля использовали нормальные фибробласты F-89. Дополнительные исследования in vitro проводили в Институте цитологии РАН.
Взаимодействие флуоресцентно меченого аналога люлиберина с клетками гепатоцеллюлярной карциномы человека (HepG2) и нормальными фибробластами изучали в Институте цитологии РАН методом лазерной конфокальной микроскопии.
Влияние аналогов на экспрессию гена интерлсйкина-2 и синтез матричной РНК исследовали в Институте экспериментальной медицины РАМН при использовании культуры Т-лимфоцитов селезенки мыши.
Биологическую активность фрагментов а-пегги фибриногена и их аналогов изучали в Институте кардиологии РАМН и Центре прикладной микроциркуляции (Луисвилль, США) в тестах ингибиции агрегации тромбоцитов и подавления тромбообразования. Исследование цитотоксической активности проводили в Институте цитологии РАН.
Сравнительное изучение эффективности переноса гена при использовании комплексов пептид/ДНК проводили в отделе биохимии Института экспериментальной медицины РАМН. Подбор соотношения компонентов комплекса проводили на основании данных гель-электрофореза. Эффективность пептидного носителя оценивали в опытах по доставке генов бактериальной Р-галактозидазы и люциферазы или «суицидного» гена тимидинкиназы вируса простого герпеса в клетки гепатомы человека in vitro.
1. Применение аналогов люлнбернна в качестве носителей цитотоксических агентов
Поскольку прямое действие аналогов люлиберина на опухолевые клетки, как правило, малоэффективно, в ряде работ они используются в качестве носителей для направленной доставки цитотоксического агента непосредственно к клеткам-мишеням, что позволяет уменьшить эффективную дозу и побочные эффекты (Schally, ctal. 1999). Преимуществом данного подхода является воздействие не только на гормонозависимые, но и на гормононезависимые опухолевые клетки, что
препятствует переходу опухоли в состояние не чувствительное к гормональной терапии.
К числу существенных недостатков носителей лекарственных препаратов на основе синтетических полипептидов относится нх быстрое расщепление под действием различного рода ферментов. Так, время полужизни люлиберина в организме составляет порядка 4 мин. При получении более стабильных аналогов, используется модификация К- и С- концевых функциональных групп или включение в структуру пептида неприродных аминокислот.
Введение в положение 6 природной последовательности О-аминокислотных остатков повышает устойчивость аналога к энзиматическому расщеплению и его сродство к соответствующему рецептору (рис. 1). Поэтому такие замены широко используются при синтезе высокоактивных агонистов люлиберина (МопаЬап, е!.а1. 1973). Дополнительная модификация положения 2 (удаление остатка гистидина или его замена на О-аминокислоты) приводит к получению эффективных антагонистов (УагсИеу, ег.а]. 1975).
В настоящее время наиболее широко применяемым методом получения высокоактивных аналогов люлиберина является проведение множественных модификаций с использованием различных неприродных аминокислот. При этом в структуре пептида содержится не более 3-5 аминокислотных остатков, входящих в природную последовательность (рис. 1).
р01и-Н13-Тгр-8ег-Туг-01у-Ьеи-А^-Рго-01у-]ЧН2
1 23456789 10
АЬагеНх Лс-0-Ыа]-0-Сра-0-Ра1-8ег^МеТуг-В-Л5п-1.си-1.у5(1Рг)-Рго-0-А1а-ЫН2 АШагеПх Ас-0-КаЮ-Сра-0-Ра1-8ег-"Гуг-0-Нс1М.еи-Ьу5(1Рг)-Рго-0-А1а-КН2
ШшгеНх Ас-П-Ма1-0-Сра-П-Ра1-8ег-Туг-0-С1Ы,си-Лгз-Рго-П-Л1а^Н2
ОашгеПх Ac-D-Nal-D-Cpa-D-Pal-Scr-Tyr-D-hArg(Et2)-Leu-hAгg(Et2)-Pгo-D-Ala■NlЬ 1ШгеПх Ас-0-На1-0-Сра43-1>а1-8ег^1сЬуз-0-Н|сЬу5^.еи-Ьу5(1Рг)-Гго-0-А1а-КН2 Ыа1-0!и Ас-1)-Ка1-0-Сра-[)-Ра1-8ег-Лге-[)-С1и(АЛ)-[.си-Лгу-Рго-0-А1а-ЫН2
Рис. 1. Структура люлиберина и его аналогов, используемых в качестве противоопухолевых препаратов. Жирным шрифтом выделены участки природной последовательности.
Применение такой стратегии, помимо значительного увеличения стоимости
препаратов, в ряде случаев, приводит к соединениям, обладающим токсичностью или вызывающим развитие аллергических реакций.
В настоящей работе предложен новый подход, основанный на модификации положения 6, в сочетании с отдельными заменами в М-концевой части молекулы. При этом используется минимальное количество простых но структуре неприродных аминокислот, а выбор положения и способа присоединения химиотерапевтического агента проводится таким образом, чтобы это не снижало эффективности действия пептидного носителя.
2. Носители цнтотоксическнх агентов на основе аналогов люлнберина с укороченной аминокислотной последовательностью
По литературным данным укороченные аналоги люлиберина могут сохранять высокое сродство к рецепторам и даже превосходить в этом отношении природный рилизинг-гормон (Нэу1у, е1.а1. 1989). Поэтому, такие соединения представляют наибольший интерес с точки зрения простоты получения коныогатов с химиотсрапевтическими агентами. С целью выбора структуры пептидного носителя нами был проведен синтез ряда укороченных аналогов люлиберина и исследовано влияние модификаций в К-кокцевой части последовательности на гормональную активность.
Учитывая требования стабильности гибридных препаратов в условиях пептидного синтеза и доставки к клеткам-мишеням, в качестве цитотоксического агента использовали 5-фторурацил (5-Р1]), широко применяемый при терапии опухолевых заболеваний. В ходе предварительных экспериментов с помощью карбамоилхлорида 5-Ри был получен трет-бутиловый эфир М'-(5-Р1'-I -нл)-карбонил-К'а-7-лизина и соответствующий и-нитрофениловый эфир. Однако такие соединения оказались недостаточно стабильными в условиях, применяемых при синтезе и очистке пептидных препаратов.
Ллкильные производные 5-ри обычно менее активны, по сравнению с исходным соединением, но значительно более устойчивы, чем карбамоильные. Поскольку по литературным данным 1-карбоксиметил-5-фторурацил (СМЩ) сохраняет значительную противоопухолевую активность, при получении цитотоксических
аналогов люлиберина было использовано именно это производное.
Синтез СМРи проводили путем кипячения 5-фторурацила в водном растворе КОН с избытком монохлоруксусной кислоты. При этом наряду с алкилированием положения 1, наблюдается частичная модификация положения 3 и для выделения целевого продукта из смеси образующихся производных используется метод ионообменной хроматографии. Структура полученного соединения, помимо данных масс-спектрометрии подтверждается наличием характерного гипохромного эффекта в области 270 нм, наблюдающегося при увеличении рН раствора.
Для активации карбоксильной группы СМРи был использован метод п-нитрофеииловых эфиров, имеющий определенные преимущества при проведении классического синтеза в растворе. Для упрощения очистки активированного эфира при его получении использовали реактив Сакакибары (трифторацетат «-нитрофенола, рис. 2).
1 II о о
"УЧ" acH.coM у%" сгдсоокр гу4н петИдГуЧн
ЧА>кон ^Ао — ^АГ^ к
он ^ 0\р к
н ^
О О
Рис. 2. Присоединение 5-фторурацила к полипептидному носителю.
Пептидиые носители на основе укороченных аналогов люлиберина и их конъюгаты с СМРи получали методом классического синтеза в растворе. Исходный гексапептид, синтезировали фрагментной конденсацией по схеме (2+1 )+3 с помощью комбинации азидного и дифенилфосфорилазидного методов (рис. 3). Применение такого подхода позволяет, наряду с модификацией М-концевой части молекулы, варьировать природу аминокислотных остатков, вводимых в положение 6, что может быть использовано в процессе оптимизации структуры пептидного носителя (рис. 4).
После удаления защитных групп гидрогенолизом и очистки продукта с помощью ионообменной хроматографии на сефадексе БЕ С-25 чистота гексапептида (II) составляла более 95%. Дальнейшее наращивание пептидной цепи проводили методом активированных эфиров. Полученные аналоги [0-А5р6]-Сп11Н ЕА очищали методом ионообменной хроматографии на сефадексе БЕ С-25 или гель-фильтрации на
сефадексе ЬН-20 с последующей обрашенно-фазовой ВЭЖХ.
Бег
Туг 1>Азр
1.сц
Агв
Рго
ВОС-
Ъ— -ОРср Н— -ОМе
г-ъ-гг-
В0С-4-О^ н-
ОМе
N. Н-
ВОС—ОКрН-
сш
-он Босова
-ОН Н-ОРРА
(ура
сг,соон
нвг/асон
N0, г-ОРср н-N0,
N0/
N0,
N0,
N0,
-N121
- КНЕ1 -ШЕ1 " КНЕ|
- М1Е[
-ШЕ1 -N111:1 -КНЕ1
Рис. 3. Схема синтеза укороченных аналогов люлиберина.
Н-8ег-Туг-В-А1а-Ьеи-Аг§-Рго-ГШЕ1 (I) Н-5сг-ТуМ)-А5р-1,еи-А^-Рго-МШ(П) СМРи-8ег-Туг-0-А8р-Ьеи-А^-Рго-ШЕ1(Ш) Н-Рго-8ег-Туг-0-А1а-Ьеи-А^-Рго-М1£1 (IV) Н-Рго-8ег-Туг-0-А«р-Ьеи-А^-Рго-]ЧНЕ1 (V) СМРи-Рго-5ег-Туг-0-А$р-Ьеи-А^-Рго-ГШЕиУ1) H-D-Pro-Ser-Tyr-D-Ala-Leu-Arg-Pro-NHEt (VII) Ns-Pro-Ser-Tyг-D-Asp-Leu-Arg-Pro-NHEt (VIII) рС1и-Зег-Туг-1)-А1а-Ьеи-Аг§-Рго-ШЕ( (IX) В0С-РЬе-8ег-Туг-В-А1а-Ьеи-А^-Рго-Мт(Х) Н-Рго-С1у-8ег-Туг-В-А1а-Ьеи-Аг8-Рго-ШЕиХ1) СМРЬ' - 1-карбоксиметил-5-фторурацил; N8 - Р-Нафталинсульфонил
Рис. 4. Аналоги люлиберина с укороченной аминокислотной последовательностью.
В ходе синтеза цитогоксических аналогов люлиберина было показано, что п-нитрофениловый эфир СМРи обладает аномально высокой реакционной способностью. Так, при получении пептида (III) реакция ацилирования проходила за 0.5 ч, по сравнению с 48 ч в случае использования пентахлорфенилового эфира пролина (аналог (V)).
Исследование стабильности синтезированных аналогов в плазме крови человека, проведенное методом ВЭЖХ, показало, что пептиды, содержащие 5-фторурацил, в отличие от немодифицированных соединений, устойчивы в течение 24 ч инкубации. В месте с тем, при проведении испытаний in vivo на моделях карциномы простаты и опухоли молочной железы, укороченные аналоги вызывали не более чем 40-50%-ное торможение роста опухоли, причем присоединение 5-фторурацила приводило к снижению активности.
Таким образом, применение аналогов люлиберина с укороченной аминокислотной последовательностью в системах направленной доставки противоопухолевых препаратов представляется нецелесообразным из-за существенного влияния цитотоксичсского агента на гормональную активность пептидного носителя и его взаимодействие с соответствующим рецептором.
3. Получение конъюгатов цитотоксических агентов и аналогов люлиберина с полной аминокислотной последовательностью
Одним из вариантов решения проблемы является применение аналогов люлиберина с полной аминокислотной последовательностью, что позволяет уменьшить влияние цитотоксической группировки на биологическую активность гибридных соединений и их способность к связыванию с рецепторами клеток-мишеней. При этом необходимо исследовать зависимость противоопухолевой активности от структуры пептидного носителя и способа присоединения химиотерапевтического агента.
С целью упрощения синтеза гибридных препаратов, в положение 2 природной последовательности вводили D-фенилаланин, что приводит к соединениям, обладающим высокой антагонистической активностью (Coy, et.al. 1976). Применение антагонистов люлиберина позволяет широко варьировать как структуру N-концевой части молекулы, так и способ присоединения цитотоксической группировки.
Синтез аналогов проводили твердофазным методом при использовании МВНА полимера и BOC/Bzl стратегии. Ацетилирование N-коицевого остатка пролина проводили на полимерном носителе под действием уксусного ангидрида. Для введения пальмитоильной группировки использовали пальмитоил-пролин, который
присоединяли методом симметричных ангидридов. Остаток CMFU присоединяли в растворе, методом активированных эфиров, после отщепления пептидов от полимерного носителя. Структура полученных аналогов представлена на рис. 5.
H-Pro-D-Phe-Pro-Ser-Tyr-D-Lys-Leu-Arg-Pro-Gly-NH2 (XII)
Ac-Pro-D-Phe-Pro-Ser-Tyr-D-Lys-Leu-Arg-Pro-Gly-NII2 (XIII)
Pam-Pro-D-Phe-Pro-Ser-Tyr-D-Lys-Leu-Arg-Pro-Gly-NH2 (XIV)
Ac-Pro-D-Phc-Pro-Ser-Tyr-D-Lys(CMFU)-Leu-Arg-Pro-Gly-NH2 (XV)
CMFU-Pro-D-Phe-Pro-Ser-Tyr-D-Lys(CMFU)-Leu-Arg-Pro-Gly-NH2 (XVI)
Pam-Pro-D-Phe-Pro-Ser-Tyr-D-Lys(CMFU)-Leu-Arg-Pro-Gly-NH2 (XVII)
Рис. 5. Структура аналогов люлиберина с полной аминокислотной последовательностью.
Данные биологических испытаний показывают, что присоединение 5-FU позволяет повысить эффективность действия in vivo (пептид (XVII), рис. 6), причем N-концевая группировка оказывает существенное влияние на противоопухолевую активность
XII XV XVI* XVII* в
Рис. 6. Противоопухолевая активность аналогов люлиберина на модели карциномы простаты in vivo. 29-й день после начала лечения, доза 100 мкг/кг. *- 10 мкг/кг. В - "Buserelin".
аналогов (соединения (XV), (XVI) и (XVII)). При этом пептиды (XVI) и (XVII) эффективны в дозе 10 мкг/кг веса, по сравнению со 100 мкг/кг для широко используемого препарата "Buserelin". Исследование цитотоксической активности in
vitro свидетельствует об отсутствии прямого влияния пептида (XII) на клетки карциномы яичников человека CaOv, в отличие от аналогов (XIV) и (XVII). Необычно высокая активность пептида (ХП) in vivo в дозе 100 мкг/кг, наряду с неэффективностью in vitro наводит на мысль о возможном дополнительном механизме подавления опухолевого роста. На основании литературных данных относительно наличия рецепторов люлиберина на поверхности Т-лимфоцитов (Jacobson, et.al. 1998) можно предположить, что некоторые аналоги обладают иммуностимулирующим действием.
Проведенное нами исследование влияния соединений (XII) и (VIH) на иммунную функцию Т-лимфоцитов селезенки мыши показало, что оба пептида обладают стимулирующим действием, усиливая синтез мРНК интерлейкина-2. При этом декапептид (XII) обладал большей эффективностью и продолжительностью действия, что согласуется с его высокой противоопухолевой активностью. Дальнейшие эксперименты с использованием гомологичной и гетерологичной ДНК показали наличие специфического связывания аналога (VIII) с регуляторными участками последовательности гена интерлейкина-2.
Полученные результаты свидетельствуют о том, что применение аналогов люлиберина с полной аминокислотной последовательностью является перспективным направлением при разработке пептидных носителей цитотоксических агентов. В результате проведенных исследований синтезированы пептиды, обладающие комплексным влиянием на рост опухолевых клеток in vivo за счет проявления гормонального, цитотоксического и иммуностимулирующего действия. При этом показано, что модификация N-концевой части последовательности и, в частности, введение пальмитоилыюй группировки, позволяет существенно повысить противоопухолевую активность гибридных препаратов.
4. Синтез полипептидных носителей, обладающих собственной цитотоксической активностью
Применение аналогов люлиберина при терапии опухолевых заболеваний основано либо на проявлении гормонального действия (снижение уровня стероидных гормонов), либо на возможности их использования для направленного транспорта
химиотерапевтических препаратов к клеткам-мишеням. Вместе с тем, имеются данные относительно прямого влияния аналогов люлиберина на опухолевые клетки, связанного с их способностью индуцировать апоптоз. Недостаточная эффективность такого действия делает актуальной разработку методов модификации аминокислотной последовательности для синтеза пептидных носителей, обладающих собственной цитотоксической активностью.
Р!у-Рго-В-РЬе-Рго-8ег-Туг-В-Еу8-Ьеи-Аг8-Рго-01у->Ш2 (XVIII)
Ьаи-Рго-В-РЬе-Рго-8ег-Туг-В-Еу8-Ьеи-Аг§-Рго-01у-Ш2 (XIX)
Н-Рго-В-№1-Рго-8ег-Туг-В-Ьу5-Ьеи-А^-Рго-С1у-№12(ХХ)
Рат-Рго-В-№1-Рго-8ег-Туг-В-Ьу8-Ьеи-А^-Рго-С1у-М12(ХХ1)
Н-Рго-В-РЬе-Рго-Вег-Туг-В-Ьув-Ьеи-А^-Рго-МШКХХН)
Рат-Рго-В-РЬс-Рго-Зег-Туг-В-Ьуз-Ьеи-А^-Рго-МШ (XXIII)
П-Рго-а1у-0-РЬе-Рго-8^т-Туг-0^у5-Геи-Лгё-Рго-С]у-КН2(ХХ1\')
Н-С1у-Рго-В-РЬс-Рго-5ег-Туг-В-Ьу8-Ьеи-Аг§-Рго-С1у-ЫН2 (XXV)
Pam-Pro-Gly-B-Phe-Pro-Ser-Tyг-D-Lys-Lcu-Лгg-Pro-Gly-NH2 (XXVI)
Lau-Pro-Gly-D-Phe-Pro-Ser-Гyт-I)-Lys-Leu-Лrg-Pro-Gly-NH2 (XXVII)
11сх-Рго-С1у-04Мк--11го-8сг-Туг-1)-Ьу.'<-Ьси-Лг^£;-Рго-(:}]у-КН2 (XXVIII)
Раш-01у-Рго-В-РЬе-Рго-8ег-Туг-В-Еу8-Ьеи-Лг£-Рго-01у-МН2(ХХ1Х)
Рат-Рго-С1у-Рго-В-РЬе-Рго-8ег-Туг-0-Еу8-Ьеи-А^-Рго-С1у-КН2 (XXX)
Рат-В-Рго-01у-Рго-В-РНе-Рго-5ег-Туг-В-Ьу8-Г.си-Лгв-Рго-С1у-КН2 (XXXI)
Рат-Ьу5-Рго-С1у-В-РЬе-Рго-8ег-Туг-В-Ьу$-1хи-А^-Рго-01у-ЫН2 (XXXII)
PaIn-Lys-Gly-D-Phe-Pro-Ser-Tyr-B-Lys-Leu-Arg-Pгo-Gly-NH2 (XXXIII)
Рат-В-Гу5-Рго-С1у-В-РЬс-Рго-8ег-Туг-В-Ьу$-Ьеи-А^-Рго-01у-ЫН2 (XXXIV)
Рат-0-Ьу8-а1у-В-РЬе-Рго-5ег-Туг-В-Ьу5-Ьеи-Агё-Рго-С1у-ЫН2(ХХХУ)
Раш-В-Рго-01у-В-Р1|е-Рго-8ег-Туг-В-Ьу«-Еси-Аг£-Рго-С1у^Н2 (XXXVI)
Paш-Pro-Pro-Pro-B-Phc-Pro-Ser-Tyr-B-Lys-Leu-Arg-Pгo-Gly-^1H2 (XXXVII)
Рат-В-Рго-Рго-Рго-В-РЬе-Рго-8ег-Т>т-В-Еу$-Ьси-А^-Рго-С1у-Ш2 (XXXVIII)
Pam-Pro-Gly-B-Leu-Pro-Ser-Tyr-B-Lys-Leu-Arg-Pro-Gly-NH2 (XXXIX)
Рат-Рго-01у-В-РЬе-А1а-8ег-Туг-В-Еу5-Ьеи-Л^-Рго-С1у-Ш;2(ХЬ)
Рат-Рго-Ак-О-РЬе-Рго-Зег-Туг-О-Еуз-Ьеи-А^-Рго-О^-КНг (ХЫ)
Рис. 7. Аналоги люлиберина, модифицированные в М-концевой часги последовательности.
Полученные на первом этапе исследования данные о высокой противоопухолевой активности пептида (XII) на модели карциномы простаты in vivo в сочетании с неэффективностью in vitro свидетельствуют об отсутствии прямого цитотоксического действия. В то же время пептид (XIV), модифицированный остатком пальмитиновой кислоты, оказался эффективным при подавлении роста клеток карциномы яичников in vitro и на ранней стадии карциномы простаты in vivo. Поэтому на следующем этапе работы основное внимание уделялось изучению влияния структуры N-концевой части молекулы на цитотоксическую активность пептидного носителя. С этой целью была получена серия аналогов (XVIII) - (XLI) (рис. 7).
Синтез пептидов проводили твердофазным методом на полуавтоматическом синтезаторе NPS-4000 с использованием Boc/Bzl-стратегии. Аналоги (XVIIIHXXI) и (XXIV)-{XLI) синтезировали на 4-метилбензгидриламино-полимере, соединения (XXII) и (XXIII) на полимере Меррифильда. Гидрофобную N-концевую фуппировку присоединяли карбодиимидным методом при использовании свободной пальмитиновой, лауриновой, капроновой и триметилуксусной кислоты или соответствующих производных N-концевых аминокислотных остатков.
При определении цитотоксической активности пептидов использовали различные линии клеток аденокарциномы человека, которые по литературным данным содержат рецепторы люлиберина (Nechushtan, et.al. 1997). При этом исследовалось влияние структуры N-концевой группировки и длины пептидной цепи на эффективность действия аналогов. Результаты, полученные в экспериментах на клетках линии Colo-205, оказавшихся наиболее чувствительными к действию пептидов, представлены в табл. 1.
В литературе имеются данные, свидетельствующие об избирательном цитотоксическом действии пальмитиновой кислоты на опухолевые клетки (Harada, et.al. 2002). Поэтому представлялось целесообразным использовать N-концевую пальмитоильную группировку для повышения противоопухолевой акгивности пептидных носителей и их способности проникать через гемато-энцефаяический барьер, что особенно важно при терапии опухолей мозга.
Сопоставление данных биологических испытаний пептидов (XVIII), (XIX), (XXVII) и (XXVIII), а также аналогов (XII), (XIV), (XX), (XXI), (XXII), (XXIII) и (XXIV)-(XXVI) свидетельствует о важности остатка пальмитиновой кислоты для
проявления цитотоксичеекого действия. Так, использование в качестве Я-концевой
Таблица 1. Цитотоксическая активность аналогов люлиберина на клетках карциномы кишечника человека Со1о-205.
Пептид Доза Цитотоксическое действие*
ОпБШ > ш^м -
(XVIII) > 10ЦМ -
(XIX) > 10"4 м -
(XX) > ю4 м -
(XXI) 5х10"5М +
(XXII) >10^ м -
(XXIII) 5x10"5 М +-H-f
(XXIV) > ю^м -
(XXV) > ю^м -
(XXVI) 2x10 5 М ++++
(XXVII) > 10'4 м -
(XXVIII) > 10'4М -
(XXIX) 10"4М -Н-+
(XXX) 5x10"' М ++
(XXXI) 5х10~5 М ++
(XXXII) 5х10"5 М ++
(XXXIII) 5х10"5 М +++
(XXXIV) 3.5x10'5 М ++++
(XXXV) 5x10'5 М ++++
(XXXVI) 5x10"5 М ++
(XXXVII) 5x10"5 М ++
(XXXVIII) 5х10"5 М ++
(XXXIX) 5x10"5 М ++
(ХЬ) 3.5х10"5 М ++++
(Х1Л) 5х10"5 М ++
Число знаков «+» пропорционально уменьшению количества жизнеспособных опухолевых клеток (оценивалось по изменению оптического поглощения элюата при 650 нм).
группировки лауриновой, капроновой (пептиды (XIX), (XXVII), (XXVIII)) или пивалиновой кислоты (пептид (XVIII)) приводит к резкому снижению активности. При этом ни один из исследованных аналогов, за исключением пальмитоильных производных, не обладал выраженным цитотоксическим действием.
Замена D-фенилаланина на D-лейцин (пептид (XXXIX)) приводит к заметному снижению активности, что согласуется с литературными данными о высокой эффективности антагонистов люлиберина, содержащих ароматические D-аминокислоты в положении 2. Увеличение длины пептидной цепи до 11 аминокислотных остатков (аналоги (XXVI) и (XXIX)) или ее укорочение (аналог (XXII)) приводит к высокоактивным соединениям. При этом следует отметить, что в литературе описано лишь несколько активных аналогов люлиберина, содержащих более 10 аминокислотных остатков (Wasiak, et.al. 1979).
Существенное различие в активности пептидов (XXIX) и (XXVI) указывает на важную роль аминокислотной последовательности в N-концевой части молекулы. Данные биологических экспериментов свидетельствуют о существенном влиянии природы и количества аминокислотных остатков, расположенных между пальмитоилыюй группировкой и положением 1 в структуре рилизинг-гормона, на эффективность цитотоксического действия аналогов (XXX)-{XXXVIII) in vitro. Так, включение фрагментов Pro-GIy или D-Pro-Gly (пептиды (XXX) и (XXXI)) в последовательность аналога (XIV) приводит к снижению активности. Аналогичный эффект наблюдается и в случае присоединения остатка лизина к N-концевому пролину пептида (XXVI). В то же время укорочение аминокислотной последовательности на один остаток и/или использование D-лизина (аналоги (XXXIII)-(XXXV)) позволяет получить высокоактивные соединения.
Включение в структуру аналогов второго остатка лизина увеличивает возможности присоединения цитотоксической группировки. При этом наличие в боковой цепи дополнительной е-аминогруппы позволяет проводить синтез конъюгатов с противоопухолевыми агентами, не затрагивая «активного центра» рилизинг-гормона.
Значительное влияние точечных модификаций не изменяющих существенным образом физико-химические свойства аналогов, на их циготоксическую активность (замена остатков пролина и глицина на аланин в пептидах (XL) и (XLI)
соответственно), свидетельствует в пользу специфичности действия и возможного участия в этом процессе рецепторов люлиберина. Дополнительным подтверждением такой гипотезы является отсутствие цитотоксического действия аналогов в дозах, гибельных для опухолевых клеток, на используемые в качестве контроля нормальные фибробласты человека, не содержащие соответствующих рецепторов.
Таким образом, в результате проведенных исследований получены аналоги люлиберина, обладающие высокой цитотоксической активностью по отношению к различным клеточным линиям аденокарциномы человека. Эти данные свидетельствуют о перспективности введения остатка пальмитиновой кислоты с целью создания противоопухолевых препаратов с повышенной эффективностью действия. При этом представляет интерес как дальнейшее изучение противоопухолевой активности синтезированных аншюгов in vivo, так и их применение в качестве носителей цитотоксических агентов.
5. Синтез полипептидных носителей, содержащих сигнал ядерной локализации
Изучение особенностей проникновения в злокачественные клетки пептидного носителя и присоединенного к нему цитотоксического агента является необходимым этапом разработки гибридных противоопухолевых препаратов. Для анализа взаимодействия пептидов с рецепторами, расположенными на поверхности опухолевых клеток и последующего внутриклеточного распределения гибридных препаратов нами был использован флуоресцентно меченый аналог (XXVI)-F.
Флуоресцентную метку вводили в положение 6 природной последовательности с помощью изотиоцианата флуоресцеина, в водном растворе пептида (XXVI) по стандартной методике. Такой способ конъюгации не влияет на способность аналога связываться с рецептором и позволяет получить достаточно стабильное производное.
Исследование влияние пептида (XXVI) и суперактивного агониста люлиберина «апарелина» на взаимодействие аналога (XXVI)-F с клетками HepG2 которые по литературным данным содержат рецепторы люлиберина, показывает наличие дозо-зависимого подавления связывания (рис. 8). При этом действие «апарелина» проявляется в большей степени, что согласуется с его высокой агонистической
активностью и свидетельствует в пользу проникновения аналога (ХХУ1)-Р внутрь клетки в результате взаимодействия со специфическими рецепторами. Дополнительным подтверждением этого служит отсутствие меченого пептида в цитоплазме нормальных фибробластов человека, использованных в качестве контроля.
о
•е-
§ 2000-
х
л
Н
5 1ооо-
0
1
0-]-,-,-г--,-,-,-,-,—
О 5 10 15 20
Избыток конкурирующего пептида
Рис. 8. Влияние аналога (XXVI) и "аларелина" на связывание меченого пептида (ХХУ1)-Р с клетками гепатоцеллюлярной карциномы НерС2.
Применение метода лазерной конфокальной микроскопии указывает на наличие первоначального связывания аналога (ХХУ1)-Р с клеточной мембраной. При этом проникновение меченого пептида в клетки наблюдаются уже через 10 минут инкубации, а через 2 часа он обнаруживается в ядре. Существенным моментом является отсутствие признаков повреждения мембраны, что дополнительно подтверждает предположение о том, что цитотоксическая активность пептидных носителей связана со способностью входящей в их состав пальмитиновой кислоты индуцировать апоптоз.
В настоящее время аналоги люлиберина широко используются при получении гибридных соединений на основе доксорубицина и его производных, цитотоксическое действие которых, в первую очередь, связано с нарушением функций ДИК. Поэтому одним из возможных вариантов повышения эффективности
таких химиотерапевтических агентов является их направленный транспорт к внутриклеточным мишеням. В данном случае при выборе структуры носителя могут быть использованы те же принципы, которые используются при разработке пептидных систем доставки генов. При этом проникновение гибридного препарата внутрь опухолевой клетки происходит наиболее эффективным путем - в результате взаимодействия со специфическим рецептором. Далее пептидный носитель можег способствовать выходу препарата из образующихся эндосом, доставке цитотоксического агента в ядро и последующему взаимодействию с ДНК.
Следует отмстить, что получение носителей, обладающих всеми вышеперечисленными свойствами, является достаточно сложной задачей, особенно в случае аналогов люлиберина, где возможности необходимого изменения исходной структуры весьма ограничены. Поэтому было необходимо разработать новые методы модификации аминокислотной последовательности рилизинг-гормона путем включения в ее состав сигнала ядерной локализации (МЬБ).
Анализ литературных данных, проведенный с целью выбора достаточно короткой и эффективной структуры, показывает, что в наиболее полной мере этим требованиям отвечает последовательность Рго-Ьуэ-Ьуз-Ьуз-А^-Ьуз-Уа!, входящая в состав ядерного Т антигена вируса 8У40. Поскольку принципиальные возможности включения сигнала ядерной локализации в структуру аналогов люлиберина сводятся к модификации положений 1 и 6, в качестве исходного соединения при проведении дальнейших исследований был выбран пептид (XXXIV). Наличие в аминокислотной последовательности аналога второго остатка О-лизина позволяет расширить возможности синтеза за счет использования дополнительной е-аминогруппы. При этом для сохранения функциональной активности сигнала ядерной локализации М-концевую иминогруппу пролина оставляли незащищенной. Структура полученных аналогов представлена на рис. 9.
Синтез пептидов проводили с использованием комбинации В0С/В21 и Ртос/Ви' стратегии, остаток пальмитиновой кислоты присоединяли карбодиимидным методом. В случае аналога (XI, IV) применяли ди-пальмигоил-лизин при проведении реакции конденсации в смеси фенол-хлороформ 1:3. Следует отметить, что получение пептида (ХЫУ) представляет наибольшую сложность, как вследствие высокой гидрофобности конечного продукта, так и его склонности к образованию комплекса с
ди-пальмитоил-лизином, стабильного в условиях деблокирования и очистки с помощью ВЭЖХ. Для разрушения комплекса и получения конечного продукта перед отщеплением пептида от полимерного носителя проводили дополнительную обработку трифторуксусной кислотой.
Н-Рго-Ьу$-Ьу5-Ьу5-Аг§-Ьуз-Уа!
Рат-0-Ьуз-Рго-С11у-04'Ье-Рго-5ег-Тут-0-Ьу5-Ьеи-Аг°-Рго-01у-ЫН2 (Х1Л1)
Н-Рго-Ьуэ-Ьуз-Ьуз-А^-Ьуз-Уа! Рат-Рго-01у-0-РЬе-Рго-8ег-Туг-П-Ьу5-Ьеи-Ат«-Рго-С11у-ЫН2 ШЛИ) Н-Рго-ЬуБ-ЬуБ-Ьуз-А^-ЬуБ-уа! Рат-0-Ьу5(Рат)-Рго-01у-0-РНе-Рго-8ег-Туг-0-Ьу5-Ьеи-Аг§-Рго-0!у-ЫН2(ХИУ)
Рис. 9. Структура аналогов люлиберина, содержащих сигнал ядерной локализации. Результаты биологических испытаний на клетках линии Со1о-205 (рис. 10) показывают, что включение в структуру пептидного носителя сигнала ядерной
S5-
XI.I1I XXXIV Х1Л1
XXVI
Рис. 10. Влияние сигнала ядерной локализации на цитотоксическую активность аналогов в экспериментах на клетках Colo-205.
локализации приводит к существенному увеличению цитотоксической активности in vitro (пептиды (XXVI) и (XLIII); (XXXIV) и (XLII)). В тоже время, вопреки ожиданиям, присоединение дополнительного остатка пальмитиновой кислоты (аналог
(XLIV)) не позволяет повысить эффективность противоопухолевого действия.
Необходимо учитывать, что возможности применения in vivo носителей на основе аналогов люлиберина зависят не только от их прямого влияния на опухолевые клетки, но и от гормональной и иммуностимулирующей активности, определяемой способностью связываться с соответствующими рецепторами. Поскольку, по литературным данным, получение конъюгатов при использовании положения 6 природной молекулы не сопровождается потерей гормонального действия более перспективным соединением следует считать пептид (XLIII).
Таким образом, полученные данные свидетельствуют о возможности успешного применения in vitro носителей цитотоксических агентов, на основе аналогов люлиберина, содержащих последовательность ядерной локализации. При этом повышение цитотоксической активности пептидов, содержащих пальмитоильную группировку может объясняться наличием мишеней действия, расположенных внутри клеточного ядра. Результаты экспериментов хорошо согласуются с литературными данными о наличии в ядре ряда злокачественных клеток рецепторов люлиберина и их возможной роли в усилении противоопухолевого действия аналогов (Szende, et.al. 1991).
6. Носители лекарственных препаратов на основе RGD-нсптндов
Вторым типом носителей цитотоксических агентов, исследованных в ходе выполнения настоящей работы являются RGD-пептиды, избирательно связывающиеся с рецепторами, расположенными на поверхности тромбоцитов. Благодаря наличию такого взаимодействия становится возможной направленная доставка фармакологических агентов в области скопления тромбоцитов, к числу которых относятся участки тромбообразования, атеросклеротического поражения сосудов и метастатические зоны опухолевого роста. В качестве фармакологически активных соединений нами был использован 1-карбоксиметнл-5-фторурацил, обладающий противоопухолевой активностью и группировка N0, являющаяся активной частью сосудорасширяющих соединений.
В последнее время показано, что окись азота токсична для большинства линий опухолевых клеток, вследствие повреждения ДНК. При этом нормальные клетки в
основном устойчивы к такому воздействию, что указывает на возможность применения доноров N0 при терапии опухолевых заболеваний (1апсгик, е1.а1. 2002). Таким образом, нитрозопроизводные ИХГО-пептидов могут представлять интерес в качестве соединений, обладающих как противоопухолевым, так и сосудорасширяющим действием.
С целью проверки полученных нами данных относительно роли пальмитиновой кислоты при получении пептидных носителей, обладающих собственной цитотоксической активностью, был проведен синтез фрагмента природной последовательности (Х1ЛХ) и его аналога (Ь), содержащего пальмитоил-лизин. При этом остаток лизина использовали для повышения растворимости.
Выбор структуры носителя и положения для модификации проводили на основании способности исходных пептидов подавлять агрегацию тромбоцитов и литературных данных о том, что блокирование М-концевой аминогруппы не уменьшает активности аналогов, в то время как получение производных по С-концевой карбоксильной группе, как правило, приводит к ее значительному снижению (рис. 11).
Аналоги (XI, V), (XI,VI), (Х1ЛХ) и (Ь) синтезировали твердофазным методом на полимере Меррифильда с помощью Вос/Вг)-стратегии. Отщепление полученных продуктов от полимера с одновременным деблокированием проводили действием 1 М раствора ТРМБА в трифторуксусной кислоте в присутствии тиоанизола и этандитиола. Присоединение фармакологически активных группировок проводили в растворе, при этом пептид (ХЬУП) синтезировали с помощью п-нитрофенилового эфира 1-карбоксиметил-5-фторурацила, а соединение (Х1Л'Ш) получали в результате обработки соответствующего тиола нитритом натрия. В последнем случае индивидуальность полученного продукта контролировали с помощью аналитической ВЭЖХ, а для подтверждения структуры использовали данные ЕЭ1 МЭ и УФ спектроскопии (максимумы поглощения Ху Ху( Хуц
последовательность полученных аналогов приведена на рис. 11.
Следует отметить, что получение нитрозотиолов на основе низкомолекулярных полипептидов существенно осложняется тем, что такие соединения имеют высокую склонность к разложению с образованием димеров, содержащих дисульфидную связь. Тем не менее, в настоящее время в клинической медицине используется Б-
нитрозоглутатион, являющийся эффективным донором N0 и ингибитором агрегации тромбоцитов.
Н-Су8(Аст)-А^-01у-А5р-Су8(Аст)-ОН(Х1Л') Ас-Аг£-01у-Азр-Суз-0Н (ХЬУ1) СМГи-Су8(Аст)-Агв-01у-А5р-Су8(Асш)-0Н (ХЬУП) Ас-Аг§-О!у-Азр-Су$(8-]ЧО)-Он (ХЬУШ) Н-Агё-С1у-А8Р-РЬе-0Н (Х1ЛХ) Рат-Ьуз-А^-ау-Авр-ОН (Ь)
Рис. 11. Структура синтезированных аналогов 1ШП-пептидов.
Изучение влияния пептидов на АДФ-индуцированную агрегацию тромбоцитов человека проведенное в Институте кардиологии МЗ РФ показало наличие достаточно высокой ингибирующей активности немодифицированных соединений (1С50 = 9-11 рМ), что свидетельствует о их способности к связыванию с соответствующими рецепторами.
Ш Контроль 0(XLVI) D(XLVÍII)
Первоначальный тромбоз Окклюзия сосудов
Рис. 12. Влияние внутривенного введения аналогов (XLVI) и (XLVIII) на скорость тромбообразования у крыс линии Sprague-Dawley.
Исследование вазодияаторной активности аналога (XLVIII) и его способности препятствовать громбообразованию in vivo, проводили в Центре прикладной
микроциркуляции (Луисвилль, США). Для индукции образования тромба, использовали фотоактивацию изотиоцианата флуоресцеина, присоединенного к бычьему сывороточному альбумину. Результаты биологических испытаний свидетельствуют о существенно более позднем развитии, как первоначального тромбоза, так и полной окклюзии сосудов в присутствии пептида (XLVIII) по сравнению с контролем и не модифицированным соединением (рис. 12).
Изучение противоопухолевой активности пептида (XLVII) проведенное в Институте кардиологии МЗ РФ на клеточной культуре рака толстого кишечника линии Colo показало, что инкубация опухолевых клеток с исследуемым соединением приводит к достоверному снижению скорости синтеза ДНК, свидетельствующему о наличии антипролиферативной активности. Результаты исследования противоопухолевой активности аналогов (XLIX) и (L) на клетках карциномы молочной железы человека (MCF-7; Институт экспериментальной медицины РАМН) подтверждают полученные нами данные относительно влияния пальмитоильной группировки на свойства пеггтидного носителя. При этом только пептид (L) обладает выраженным цитотоксическим действием.
Следует отметить, что в последующих работах была показана эффективность применения RGD-пептидов для направленного транспорта доксорубицина к опухолевым клеткам (Ruoslahti, et.al. 1998). Эти данные дополнительно подтверждают полученные нами результаты и свидетельствуют о возможности использования рассматриваемых соединений в системах адресной доставки лекарственных препаратов.
Таким образом, пептидные носители, содержащие последовательность RGD являются перспективными для направленного транспорта лекарственных соединений при патологических состояниях, сопровождающихся локальной активацией тромбоцитов (атеросклерозе, тромбообразовании, формировании метастазов). Кроме того, в случае онкологических заболеваний такие соединения могут быть использованы как непосредственно, так и в сочетании с цитотоксическими аналогами люлиберина, воздействующими на клетки первичной опухоли.
7. Использование полипептидных носителей для доставки «суицидного» гена в опухолевые клетки.
Одним из перспективных и быстро развивающихся направлений является генная терапия опухолевых заболеваний, основанная на применении носителей, обеспечивающих избирательное воздействие на опухолевые клетки. В частности, большой интерес представляет разработка методов переноса так называемых «суицидных» генов, к числу которых относится ген тимидинкиназы вируса простого герпеса. При этом злокачественные клетки приобретают способность фосфорилировать противовирусный препарат ганцикловир, что приводит к прекращению синтеза ДНК. Наличие эффекта гибели соседних опухолевых клеток позволяет многократно усилить терапевтическое действие.
В данном исследовании нами была поставлена задача разработать систему адресной доставки «суицидных» генов, основанную на применении аналогов люлиберипа и провести сравнительное изучение эффективности новых пептидных носителей и известных из литературы аналогов. В ходе экспериментов использовали нековалентные комплексы пептидов с репортерными генами (З-галактозидазы и люциферазы или «суицидным» геном тимидинкиназы. При этом оценивалось влияние структуры носителя, соотношения пептид - ДНК и ряда других факторов на способность комплекса к проникновению в клетки гепатокарциномы человека HepG2, содержащие рецепторы люлиберипа. В качестве пептидов сравнения были использованы соединения (LII)-(L1V), представленные на рис. 13.
Хорошо известная из литературы двухкомпонентная система состоит из катионного пептида (LI) и аналога гемагглютинина вируса гриппа (LU), (Gottschalk, et.al. 1996). В этом случае проникновение комплекса в клетку происходит путем эндоцитоза, а основная роль гидрофобного пептида (LII) связана со способностью вызывать разрушение образующихся эндосом за счет литической активности, проявляющейся при кислых значениях рН.
Пептид (LUI) и флуоресцентно меченый аналог (LVI), содержат участок последователыюсги (47-57) белка Tat вируса иммунодефицита человека относящийся к так называемым «доменам транедукции» белков. В данном случае в литературе нет единого мнения по поводу механизма действия такого рода носителей. Кроме того, на
момент проведения работы отсутствовали систематические данные относительно возможности применения их комплексов с ДНК.
Для оценки избирательности действия пептидных носителей на основе аналогов люлиберина, был проведен синтез конъюгата катиошюго пептида (LI) с фрагментом (95-98) а-цепи фибриногена, последовательности RGDF (пептид (LV)). В этом случае проникновение комплекса через мембрану происходит при участии рецепторов, расположенных на поверхности как нормальных, так и опухолевых клеток.
H-Tyr-Lys-Ala-Lys-Lys-Lys-Lys-Lys-Lys-Lys-Lys-Trp-Lys-OH (LI) H-GIy-Leu-Phe-Glu-AIa-(Leu-Leu-Glu)2-Ser-Leu-Trp-Glu-Leu-Leu-Leu-Glu-Ala-OH (LU) H-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-GIn-Arg-Arg-Arg-OH (LUI) Fluo-G!y-Gly-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-OH (LIV) Arg-Gly-Asp-Phe-OH
CO-(CH2)3-CO-Tyr-Lys-AIa-Lys-Lys-Lys-Lys-Lys-Lys-Lys-Lys-Trp-Lys-OH (LV) H-Pro-Lys-Lys-Lys-Arg-Lys-Val
Pam-D-Lys-Pro-Gly-D-Phe-Pro-Ser-Tyr-D-Lys-Leu-Arg-Pro-Gly-NHî (XLII) H-Pro-Lys-Lys-Lys-Arg-Lys-Vjil Pam-Pro-Gly-D-Phe-Pro-Ser-Tyr-D-Lys-Leu-Arg-Pro-Gly-NH2 (XLIII) H-Pro-Lys-Lys-Lys-Arg-Lys-Val Pam-D-Lys(Pam)-Pro-Gly-D-Phe-Pro-Ser-Tyr-D-Lys-Leu-Arg-Pro-Gly-NH2 (XLIV) H-Pro-Lys-Lys-Lys-Arg-Lys-Val
H-D-Lys-Pro-Gly-D-Phe-Pro-Ser-Tyr-D-Lys-Leu-Arg-Pro-Gly-NH2 (I.VI) H-Pro-I.ys-Lys-i.ys-Arg-I.ys-Vjil
pGlu-His-Trp-Ser-Tyr-D-Lys-Leu-Arg-Pro-Gly-NH2 (LVII) Pam-Pro-Gly-D-Phe-Pro-Ser-Tyr-D-Lys(Dox)-Lcu-Arg-Pro-Gly-NH2 (LV1II) H-Pro-Lys-Lys-Lys-Arg-Lys-VaI-NH2 (LIX) H-Arg-Arg-Asn-Arg-Arg-Arg-Arg-NH2 (LX)
Рис. 13. Структура пептидных носителей, использованных в системах доставки гена.
Поскольку непосредственное применение аналогов люлиберина для доставки «суицидных» генов невозможно из-за неспособное™ к электростатическому взаимодействию с ДНК, нами были выбраны пептиды (Х1Л ) (Х1Л\'): (LVI) и (LVII), содержащие сигнал ядерной локализации. При этом для оценки влияния структуры пептидного носителя на эффективность переноса гена в экспериментах использовали
аналоги, обладающие как агонистической ((1Л'П)), так и антагонистической активностью.
Известно, что доксорубицин и его аналоги образуют стабильные комплексы с ДНК. Поэтому, теоретически, существует возможность создания систем доставки гена на основе конъюгатов полипептидов и антрациклиновых антибиотиков. Применение таких носителей для доставки «суицидных» генов может привести к уменьшению побочных эффектов и повышению эффективности противоопухолевого действия. Для проверки обоснованности этих соображений нами был получен цитотоксический аналог пептида (XXVI), содержащий доксорубицин (соединение (ЬУШ)).
Туг А^ С!у Аэр РЬе
ОВг! Н--ОВг!
-оргр н-Ьов-л
ОВг!
В?.Ю-
Вг!0-нгл>а НО-
НО-
-ОН ВОС--ОРсрВОС-
-ОРср Н
ВОС-
вос-
М15
-(Жр н-
с^соон
вос-вос--ОМрН-
сг,соон
ОВг! стзсоон
ОВг!
^ОВг!
,ОВг1
ОВг!
,ОВг!
-ОВг! -ОВг1 "ОВг1 -ОВг1 -ОВг! -ОВг1 -ОВг!
МЬ5 ОВг! СЬВг.1 С\Ъ С12 Рог СЕ
HOCЮ-(CHз)2-CO-Ag-Gly-Лp-Phe-OBzlB(X-Tyr-Lys-Ala-(Llys)8-Trp-Lys-C
С!:Вл1 СК I
I 01С/Н0В1 С!7, Рог С17.
ОС-(СНз)2-СО-'1уг-Ьу5-А1а-(Ьу5)8-Тгр-Ьу5-|
А^(М15)-01у-А5р(0Вг!)-Р11е-0Вг! | ТРМБА
ОС-(СНз)2-СО-Т)т-Ьу8-А1а-(Ьу5)8-Тгр-Ьу5-ОН I
Аг$-С1у-А5р-РЬс-ОН Рис. 14. Схема синтеза аналога (ЬУ).
Синтез пептидных носителей проводили твердофазным методом на полимере Меррифильда и 4-метилбензгидриламино-полимере с помощью Boc/Bzl-стратегии или комбинации Boc/Bzl и Fmoc/Bu'-стратегии. В случае аналога (LV) использовали метод фрагментной конденсации на твердой фазе. При этом защищенный пептид RGDF получали классическим синтезом в растворе с последующей модификацией монопентахлорфениловым эфиром глутаровой кислоты (рис. 14). Фрагментную конденсацию проводили DIC/HOBt методом при использовании 1.5 кратного избытка ацилирующего агента, в объеме набухания полимерного носителя, что позволяет существенно повысить полноту прохождения реакции (Rinnovà, et.al. 1999).
При получении аналога (LIV), содержащего флуоресцентную метку использовали 4(5)-карбоксифлуоресцеин. Реакцию конденсации проводили на твердой фазе, DIC/HOBt методом. При этом для уменьшения возможного влияния флуоресцентной метки на свойства аналога в качестве спейсерной группировки использовали диглицин. Присоединение доксорубицина к пептиду (XXVI) осуществляли в растворе по методике, аналогичной использованной в работах Шелли (Nagy, et.al. 1996).
Сравнительное изучение эффективности полученных пептидных носителей проводили в Институте экспериментальной медицины РАМН. Подбор оптимального соотношения компонентов при образовании комплекса пептид/ДНК осуществляли с помощью метода гель-ретардации.
В ходе предварительных экспериментов было показано, что применение пептида (LI) обеспечивает перенос репортерных генов в клетки HepG2 в результате эндоцитоза. При этом добавление аналога (LII) приводит к 2-х - 3-х кратному увеличению эффективности системы.
Аналогичные результаты получены в случае пептида (LIII), для которого была показана возможность образования стабильного комплекса с ДНК и определено оптимальное соотношение компонентов. Сравнительное изучение скорости и условий проникновения через клеточную мембрану флуоресцентно меченого пептида (LIV) и его комплекса с ДНК показывает, что перенос гена происходит в результате эндоцитоза. В тоже время свободный пептид проникает в клетку более эффективно.
Результаты экспериментов по доставке плазмидной ДНК в клетки млекопитающих показывают достаточно высокую и сопоставимую эффективность действия соединений (LI) и (LIII) in vitro. Вместе с тем опыты in vivo, проведенные на мышах
линии С57В1/6 не привели к положительным результатам (Акифьев Б.Н., 2004 г.).
При разработке системы направленной доставки «суицидных» генов в опухолевые клетки нами были использованы пептидные носители на основе аналогов люлиберина, содержащих сигнал ядерной локализации или доксорубицин. Если в первом случае образование комплексов с ДНК происходит в результате электростатического взаимодействия, то доксорубицин, по литературным данным, образует прочные водородные связи с остатками аденина и гуанина. При этом наличие такого связывания для соединения (ЪУШ) подтверждается как методом гель-ретардации, так и данными УФ спектроскопии.
КЬи/мин
(ЬХ) (1:1) (ЬУГ!) (1:5) (1ЛТН)(1:1) (ЬУН)(1:1)*
Рис. 15. Влияние соотношения пептид/ДНК на эффективность переноса гена люциферазы в клетки Нер02. * - В присутствии «аларелина». ЯШ - относительные световые единицы.
В предварительных экспериментах возможность применения аналогов люлиберина в качестве носителей ДНК была исследована на примере доставки гена люциферазы в клетки НерС2 (рис. 15). При этом последовательность ядерной локализации (пептид (ЬХ)) образует стабильные комплексы, которые могут быть использованы для доставки гена в ядро, но не способны самостоятельно проникать через клеточную мембрану. В тоже время в случае аналога (ЬХ) (ЫЬБ белка ЛеУ ВИЧ) комплексы пептид/ДНК эффективно переносятся через мембрану в результате эндоцитоза, что
делает его непригодным для адресной доставки «суицидных генов». При использовании аналога (ЬУП) эффективность системы зависит от состава комплекса, достигая максимальной величины при соотношении пептид/ДНК 1:1.
Для доказательства механизма действия пептидного носителя был использован суперактивный аналог «аларелин», обладающий высоким сродством к рецептору люлиберина, но не способный связываться с ДНК. Добавление «аларелина» приводит к достоверному снижения уровня переноса гена, что свидетельствует в пользу избирательного проникновения комплексов в исследуемые клетки, происходящего при участии специфических рецепторов.
На рис. 16 представлено влияние структуры пептидного носителя на эффективность доставки в опухолевые клетки гена люциферазы. При этом одним из наиболее существенных факторов является способ присоединения сигнала ядерной локализации. Вопреки ожиданиям, в случае аналога (ХЫИ), где для этого используется положение 6 природной последовательности, уровень люциферазной
Я1.и/мин
1боооо-|-Т
140000120000-И | 100000 80000 6000040000 20000 о
ШЖ
1
(Х1ЛГ)
=п
(Х1ЛУ)
(ХИН)
ше
(1,УШ)
Рис. 16. Влияние структуры пептидного носителя на эффективность доставки люциферазного гена в клетки НерС2. Соотношение пептид'ДНК 1:1.
акгивности оказался значительно ниже по сравнению с пептидом (Х1Л1), содержащим N1.8 в М-концевой части молекулы. Низкие величины активности, полученные при использовании аналогов (ХНУ) и (ЬУШ) могут объясняться наличием выраженного
цитотоксического действия у комплексов пептид/ДНК.
Полученные результаты и данные экспериментов in vitro, в которых варьировалось соотношение ДНК и пептида (LVIII) свидетельствуют о возможности практического применения пептидных носителей, содержащих доксорубицин. При этом особенный интерес представляет их использование в системах адресной доставки «суицидных» генов в опухолевые клетки.
Сравнительное изучение действия различных по структуре пептидных носителей проводили на примере доставки «суицидного» гена тимидинкиназы в клетки HepG2 (рис. 17). При этом критерием эффективности служил процент опухолевых клеток, погибших в результате последующей обработки ацикловиром. Применение известной из литературы двухкомпоненткой системы, состоящей из катионного пептида (LI), и аналога гемагглютинина вируса гриппа (LII), приводило к гибели приблизительно половины клеток по сравнению с 6-12% в контроле.
Рис. 17. Влияние структуры носителя «суицидного» гена на количество клеток НерС2, погибших в результате обработки ацикловиром.
Значительно лучшие результаты были получены для гибридного аналога (ЬУ), способного, благодаря наличию последовательности {*,ООР, связываться с рецепторами (интегринами), расположенными на поверхности клеточной мембраны.
В этом случае проникновение комплексов пептид/ДНК происходит более эффективно, что приводит к полному уничтожению злокачественных клеток. Вместе с тем, для повышения избирательности действия пептидного носителя необходимо использовать аналоги последовательности RGDF, селективно взаимодействующие с рецепторами опухолевых клеток. При этом анализ литературных данных показывает, что такая модификация будет приводить к существенному усложнению структуры препарата.
Использование аналогов люлиберина (соединения (LVI) и (LVII)) для доставки «суицидного» гена показывает, что определяющее влияние на эффективность пептидного носителя оказывает природа последовательности, участвующей в процессе взаимодействия с рецептором. При этом повышенное содержание рецепторов люлиберина, отсутствующих в большинстве нормальных тканей делает возможным не только полное уничтожение злокачественных клеток, но и обеспечение высокой избирательности действия.
Полученные предварительные данные показывают, что пептидные носители на основе аналогов люлиберина эффективны не только в экспериментах in vitro, tro и in vivo, что свидетельствует о перспективности их применения в системах адресной доставки «суицидных» генов в опухолевые клетки.
Заключение
Проведенные в ходе работы исследования показывают, что применение носителей на основе синтетических полипептидов позволяет значительно повысить эффективность и избирательность действия противоопухолевых препаратов. При этом выбор структуры носителя и способа присоединения цитотоксического агента проводиться с учетом особенностей их биологического действия, включая связывание с рецепторами, расположенными на поверхности опухолевых клеток, проникновение через мембрану и последующее взаимодействие с внутриклеточными мишенями.
Одним из перспективных направлений является использование пальмитоильной группировки для повышения цитотоксической активности синтетических полипептидов. Такие соединения не оказывают влияния на клетки нормальных тканей, что позволяет синтезировать полипептидные носители, обладающие
собственным, избирательным цитотоксическим действием.
Включение в состав полипентидного носителя сигналов ядерной локализации делает возможной доставку ряда химиотерапевтических агентов непосредственно к внутриклеточным мишеням действия, к числу которых относится ДНК и ферменты, принимающие участие в сиитезе нуклеиновых кислот. В ходе работы показано, что такая модификация структуры носителя позволяет не только добиться повышения эффективности действия цитотоксических агентов in vitro, но и приводит к образованию стабильных комплексов пептид/ДНК, которые могут быть использованы в системах адресной доставки генов в опухолевые клетки.
Интересные возможности открываются в результате исследования конъюгатов полипептидных носителей с доксорубицином или другими интеркалирующими агентами. Такие соединения, обладающие высокой противоопухолевой активностью, могут быть использованы для доставки генов в злокачественные клетки, поскольку образуют прочные комплексы с ДНК за счет водородных связей. При этом уменьшается токсическое воздействие доксорубицина на нормальные ткани и создаются условия для проявления синергического противоопухолевого действия компонентов системы.
Полученные результаты позволяют сформулировать основные принципы, используемые при разработке полипептидных носителей противоопухолевых препаратов. Данные биологических испытаний показывают что синтетические полипептиды являются перспективным типом носителей позволяющим значительно повысить эффективность лекарственных соединений в результате их направленной доставки к клеткам-мишеням и проявления собственной биологической активности.
Выводы
1. Предложен новый подход к решению проблемы адресной доставки противоопухолевых препаратов, основанный на использовании в качестве носителей синтетических полипептидов, обладающих собственной цитотоксической активностью. Возможности практического применения таких соединений исследованы на примере люлиберина и фрагментов а-цепи фибриногена
2. С целью установления взаимосвязи структура - активность проведен синтез серии аналогов люлиберина, содержащих N-концевуго гидрофобную группировку. Впервые показано, что включение остатка пальмитиновой кислоты в структуру полипептидного носителя приводит к повышению противоопухолевой активности как in vitro, так и in vivo.
3. Разработана новая стратегия получения противоопухолевых соединений на основе аналогов люлиберина, принципиальной особенностью которой является введение цитотоксических группировок в положения 1 или б природной последовательности в сочетании с заменой отдельных аминокислотных остатков в N-концевой части молекулы.
4. Предложен простой и эффективный метод синтеза коныогатов полипептидных носителей с 5-фторурацилом, основанный на применении активированных производных 1 -карбоксиметил-5-фторурапила. На примере аналогов люлиберина впервые показано, что такой подход может быть использован для повышения противоопухолевой активности пептидов in vivo.
5. Синтезированы новые аналоги люлиберина, обладающие комплексным воздействием на опухолевые клетки благодаря направленной доставке химиотерапевтического агента, гормональной, иммуностимулирующей и собственной цитотоксической активности. Впервые установлено, что стимуляция иммунной системы происходит в результате непосредственного взаимодействия аналогов люлиберина с регуляторным участком последовательности гена интерлейкина-2.
6. Установлено, что включение в структуру полипептидного носителя последовательности, обеспечивающей его направленный транспорт в ядро клетки (сигнала ядерной локализации) приводит к существенному повышению противоопухолевой активности in vitro.
7. На примере использования 5-фторурацила и группировки N0 в качестве биологически активных соединений показано, что аналоги фрагментов а-цепи фибриногена являются перспективными носителями для направленного транспорта лекарст венных препаратов к пораженным органам и тканям.
8. Впервые установлено, что аналоги люлиберина, содержащие последовательность ядерной локализации или интеркалирующие агенты, в отличие от
нсмодифицированных соединений, способны к образованию стабильных комплексов пептид/ДНК. В экспериментах in vitro показано, что применение полипептидных носителей, обладающих противоопухолевой активностью, в составе систем доставки «суицидных» генов позволяет повысить эффективность воздействия на опухолевые клетки.
Основное содержание диссертации изложено в следующих работах:
1. Буров C.B., Каурое O.A., Мартынов В.Ф. Синтез [D-Phe(N02)2; Pro3; D-Ala6) и [D-Phe(NH2)2; Pro'; D-Ala6] люлиберина// Хим. прир. соедин. 1980. N 5. С. 706-714.
2. Бурое C.B., Николаев C.B., Смирнова МП., Лупанова Г.Е., Бобров Ю.Ф., Невотш-Лопатин A.M., Китаев Е.М. Синтез биологически активных аналогов люлиберина с укороченной аминокислотной последовательностью II Хим. прир. соедин. 1982. N6. С. 768-773.
3. Буров C.B., Мартынов В.Ф., Николаев C.B., Смирнова М.П., Корхов В.В. Аналоги люлиберина, проявляющие ингибирующее действие на ход процессов овуляции у животных. Авт. св. N 1028663, 1983 (приоритет от 23 июня 1981 г.).
4. Бурое C.B., Николаев C.B., Корхов В.В., Макушева В.П., Лупанова Г.Е. Новые направления синтеза биологически активных аналогов люлиберина // Хим. прир. соедин. 1983. N 3. С. 398-399.
5. Бахарев В.Д., Есппов A.C., Буров C.B., Папсуевич ОС., Чипенс Г.И. Нсклассические эффекты люлиберина, подтверждающие многоадресность нейропептидов // Ж. высшей нервной деят. 1985. T. XXXV. Вып. 1. С. 164-169.
6. Николаев C.B., Буров C.B., Мартынов В.Ф., Подушка С.Б., Казанский Б.Н. Аналоги люлиберина, проявляющие стимулирующее действие на процессы овуляции и икрометание у рыб. Авт. св. N 1389240, 1987 (приоритет от 10 ноября 1985 г.).
7. Korkhov V.V., Makusheva V.P., Lupanova G.E., Burov S.V., Nikolaev S.V. investigation of the influence of a cyclic luliberin analog on ovulation // Neurosci. Behav. Physiol. 1986. V. 16. N. 6. P. 516-519.
8. Буров C.B., Николаев C.B., Корхов В.В., Лупанова Г.Е., Макушева В.П. Синтез и исследование биологической активности укороченных аналогов люлиберина // Хим. прир. соедин. 1987. N 4. С. 590-595.
9. Николаев С.В., Буров С.В., Бахарев В.Д., Макушева В.П., Корхов В.В. Синтез нового циклического аналога люлиберина // Хим. прир. соедин. 1990. N 6. С. 805810.
10. Казакова Т. Б., Мюльберг А.А., Буров С.В., Головко О.И., Гришина Т.В., Морозов В.М., Неустроева Л.Ч., Гущин Г.В. Иммуномодулирующие пептиды, регуляция образования интерлейкина-2 и возможный ее механизм // Бгоял. эксп. билогии и медицины. 1991. Т. CXII. N 7. С. 89-91.
11. Nikolaiev S. V., Sirotkin А. V., Nitray J., Burov S. V. Effects of LF-RH and its chemical analogues on oxytocin, vasopressin and oestradiol secretion by bovine granulosa cells in vitro //Physiol. Res. 1991. V. 40. P. 622.
12. Sirotkin A.V., Nitray J., Nikolaiev S.V., Burov S.V. The action of LH-releasing hormone and five analogues on oestradiol, oxytocin and vasopressin secretion by bovine granulosa cells in culture // J. of Endocrinol. 1993. V. 136. P. 491-496.
13. Sirotkin A. V., Nitray J., Nikolaiev S. V„ Burov S. V., Bulla J. Studuum vplyvu LH-RH (Luteinizacny releasing hormon) a jeho analogov na secreciu cstradiolu bunkami granulozy vajccnikov krav in vitro. The study of influence of LH-RH and its analogues on oestradiol secretion by granulosa cells ovaries in vitro // J. Farm. Anim. Sci. 1993. V. XXVI. P. 33-36.
14. Семко T.B., Бурое С.В., Веселкина ОС., Власов ГЛ. Синтез и исследование противоопухолевой активности укороченных аналогов люлиберина // Хим. нрир. соедин. 1994. N 5. С. 655-662.
15. Власов ГЛ., Буров С.В., Семко Т.В. Декапептид, обладающий противоопухолевой активностью. Патент N 2084458 (приоритет от 27 мая 1993 г).
16. Гуревич B.C., Буров С.В., Попов Ю.Г., Семко Т.В., Власов Г.П. Способ направленного транспорта фармакологических препаратов путем их конюгации с аргинил-глицил-аспартил (RGD) содержащими пептидами. Патент N 2119354 (приоритет от 5 января 1996 г).
17. Казакова Т.Б., Буров С.В., Головко О.И., Гришина Т.В., Новикова Н.С., Мюльберг А.А., Семко Т.В., Корнева Е.А. Биологическая активность аналоге пептидного гормона - люлиберина в регуляции иммунного ответа Т-лимфоцитов Л Бюлл. эксп. биологии и медицины. 1996. Т. 122. N 9. С. 334-337.
18. Gurevich V.S., Lominadze £>., Adeagbo A.S.O., Burov S.V., Popov Y.G., Miller F.N., Schuschke D.A. Usage of RGD peptide for targeted nitric oxide delivery // Platelets. 1996. V.7.N l.P. 83-84.
19. Gurevich V.S., Lominadze D.G., Adeagbo A.S.O., Burov S. V., Popov Y.G., Leko M. V., Miller F.K., Shuschke D.A. Antitrombotic and vasorelaxant properties of a novel synthetic RGD peptide containing nitric oxide // Pharmacology. 1997. 55. P. 1-9.
20. Ignatovich I.A., Dizhe E.B., Pavlotskaya A. V., Akifiev B.N., Burov S. V., Orlov S. V„ Perevozchikov A.P. Complexes of plasmid DNA with basic domain 47-57 of the HIV-1 Tat protein are transferred to mammalian cells by endocytosis-mediated pathways // J. Biol. Chem. 2003. V. 278. N. 43. P. 42625-42636.
21. Burov S., Epstein N. Peptides useful for treating GnRH associated diseases. WO 2005/116058 Al. Priority date 27 May 2004.
22. Буров С.В., Яблокова Т.В., Дороги М.Ю., Шкарубская З.П., Бланк М., Эпштейн Н., Фридкин М. Аналоги люлиберина, обладающие цитотоксическим действием на опухолевые клетки in vitro. Биоорг. химия. 2006. Т. 32. N 5. С. 1-7.
23. Диже Э.Б., Игнатович ¡i.A., Буров С.В., Похвощева A.B., Акифьев Б.Н., Ефремов A.M., Перевозчиков А.П., Орлов С.В. Комплексы ДНК с катионными пептидами: условия формирования и факторы, влияющие на эффективность проникновения в клетки млекопитающих. // Биохимия. 2006. Т. 71. Вып. 12. С. 1659-1667.
Бесплатно
Автореферат отпечатан в ИВС РАН. Ризография. Тираж 120 экз.
СПИСОК СОКРАЩЕНИЙ.•
ВВЕДЕНИЕ.
ГЛАВА 1. ЛИТЕРАТУРНЫЙ ОБЗОР.
1.1. АНАЛОГИ ЛЮЛИБЕРИНА В КАЧЕСТВЕ НОСИТЕЛЕЙ ПРОТИВООПУХОЛЕВЫХ ПРЕПАРАТОВ.
1.1.1. Проблема избирательности действия противоопухолевых препаратов.
1.1.2. Изучение взаимосвязи структура — активность в ряду аналогов люлиберина.
1.1.3. Молекулярно-биологические основы противоопухолевого действия агонистов и антагонистов люлиберина.
1.1.4. Применение 'аналогов люлиберина в качестве носителей противоопухолевых препаратов.
1.2. ПРОТИВООПУХОЛЕВЫЕ ПРЕПАРАТЫ НА ОСНОВЕ RGD-ПЕПТИДОВ.
ГЛАВА 2. СИНТЕЗ АНАЛОГОВ ЛЮЛИБЕРИНА, ОБЛАДАЮЩИХ
ПРОТИВООПУХОЛЕВОЙ АКТИВНОСТЬЮ.
2.1. Носители цитотоксических агентов на основе аналогов люлиберина с укороченной аминокислотной последовательностью.
2.2. Получение конъюгатов цитотоксических агентов и аналогов люлиберина с полной аминокислотной последовательностью
2.3. Синтез полипептидных носителей, обладающих собственной цитотоксической активностью.
2.4. Синтез полипептидных носителей, содержащих сигнал ядерной локализации.
ГЛАВА 3. НОСИТЕЛИ ЛЕКАРСТВЕННЫХ ПРЕПАРАТОВ НА
ОСНОВЕ RGD-ПЕПТИДОВ.
ГЛАВА 4. ИСПОЛЬЗОВАНИЕ ПОЛИПЕПТИДНЫХ НОСИТЕЛЕЙ
ДЛЯ ДОСТАВКИ «СУИЦИДНОГО» ГЕНА В ОПУХОЛЕВЫЕ
КЛЕТКИ.
ГЛАВА 5. МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЯ.
5.1. Качественные реакции.
5.2. Определение стабильности аналогов GnRH в плазме крови.
5.3. Синтез вспомогательных реагентов.
5.4. Твердофазный синтез пептидов.
5.5. Синтез аналогов люлиберина с укороченной аминокислотной последовательностью.
5.6. Синтез аналогов люлиберина, содержащих 9-12 аминокислотных остатков.
5.7. Синтез пептидов, содержащих сигнал ядерной локализации
5.8. Синтез носителей на основе RGD-пептидов.
5.9. Синтез пептидов, использованных в составе систем доставки генов.
Актуальность темы. Различные по структуре синтетические полимеры широко используются для увеличения растворимости, биологической активности, длительности и избирательности действия низкомолекулярных лекарственных веществ. Одним из наиболее актуальных направлений исследований является создание новых полимерных носителей противоопухолевых препаратов. Благодаря особенностям строения и физико-химических свойств макромолекул, происходит их постепенное накопление в опухолевой ткани, что позволяет многократно повысить локальную концентрацию присоединенного химиотерапевтического агента.
Тем не менее, общим недостатком существующих подходов остается недостаточная избирательность действия медико-биологических полимеров, что приводит к возникновению значительных побочных эффектов. Кроме того, разработка действенных систем адресной доставки противоопухолевых соединений осложняется рядом факторов таких, как неоднородность состава полимерных носителей и отсутствие четкого контроля за процессом иммобилизации лекарственных веществ, которые могут быть ковалентно связаны с функциональными группами полимера или присутствовать в виде ассоциатов.
К числу перспективных направлений, позволяющих повысить эффективность воздействия и уменьшить побочные эффекты, относится применение природных полимеров и их аналогов в качестве носителей химиотерапевтических агентов. Особенный интерес представляет разработка систем адресной доставки на основе синтетических полипептидов, специфически связывающихся с рецепторами, расположенными на поверхности клеток злокачественных опухолей. Существенным преимуществом при этом является возможность дополнительного влияния на опухолевые клетки благодаря наличию у полипептидного носителя собственной биологической активности.
Эффективность такого действия особенно высока в случае так называемых гормонозависимых опухолей, рост которых ускоряется в присутствии тех или иных гормонов. В настоящее время установлено что, в отличие от нормальной ткани, на поверхности многих злокачественных клеток расположены рецепторы биологически активных полипептидов, что может послужить основой при разработке систем направленного транспорта лекарственных препаратов. Так, например, аналоги некоторых регуляторных пептидов гипоталамуса, широко применяющиеся при терапии гормонозависимых опухолей [1, 2], могут быть использованы в качестве носителей химиотерапевтических агентов.
Существующие в настоящее время подходы позволяют получить аналоги природных полипептидов, обладающие высокой устойчивостью к энзиматическому расщеплению и обеспечивающие эффективный перенос лекарственных соединений к пораженным органам и тканям. Вместе с тем, в случае противоопухолевых препаратов роль полипептидного носителя обычно ограничена специфическим взаимодействием с рецептором, в то время как вопросы его собственного влияния на злокачественные клетки и внутриклеточный транспорт цитотоксического агента изучены недостаточно.
Другим перспективным направлением является разработка методов генной терапии опухолевых заболеваний в том числе с применением систем адресной доставки на основе синтетических полипептидов. Хорошо известным примером является использование так называемых «суицидных» генов, приводящих клетки к самоуничтожению. Так, в случае гена тимидинкиназы вируса простого герпеса [3], злокачественные клетки приобретают способность фосфорилировать противовирусный препарат ганцикловир, что приводит к прекращению синтеза ДНК. Наличие эффекта гибели соседних опухолевых клеток позволяет многократно усилить терапевтическое действие.
Основными причинами, ограничивающими возможности использования синтетических полипептидов в составе систем доставки генов, являются недостаточная избирательность действия и, как правило, неудовлетворительные результаты в экспериментах in vivo. Вместе с тем, несмотря на меньшую эффективность по сравнению с вирусными средствами переноса генов, полипептидные носители свободны от таких недостатков как токсичность и иммуногенность и могут быть использованы при продолжительном лечении. Особенный интерес при этом представляет применение аналогов пептидных гормонов, обеспечивающих специфическое связывание с рецепторами, расположенными на поверхности опухолевых клеток.
Таким образом, при разработке систем адресной доставки противоопухолевых препаратов особенную актуальность приобретает рациональный выбор структуры полипептидного носителя, основанный на изучении особенностей его биологического действия.
Благодаря наличию на поверхности многих опухолевых клеток специфических рецепторов, отсутствующих в большинстве нормальных тканей, к числу наиболее перспективных вариантов полипептидных носителей можно отнести аналоги регуляторного пептида гипоталамуса — люлиберина и фрагментов белков, обеспечивающих межклеточные контакты (RGD-пептидов).
Цель работы. Разработка принципов создания полимерных носителей противоопухолевых препаратов, на основе синтетических полипептидов, обладающих собственной цитотоксической активностью.
Для достижения этой цели было необходимо решить следующие задачи: 1) Синтезировать ряд аналогов люлиберина и исследовать особенности их противоопухолевого действия, включая прямое влияние на злокачественные клетки.
2) Разработать методы модификации структуры полипептидного носителя, с целью повышения его цитотоксической активности.
3) Синтезировать аналоги люлиберина, обеспечивающие направленный транспорт цитотоксических агентов к опухолевым клеткам, их перенос через клеточную мембрану и доставку в ядро.
4) Исследовать возможности применения фрагментов ос-цепи фибриногена и их аналогов в составе систем адресной доставки противоопухолевых препаратов.
5) Разработать системы доставки в опухолевые клетки «суицидных» генов, основанные на использовании полипептидных носителей, обладающих цитотоксическим действием.
Положения, выносимые на защиту. Применение синтетических полипептидов, обладающих цитотоксической активностью, в качестве носителей противоопухолевых соединений повышает эффективность воздействия на опухолевые клетки.
Модификация полипептидов остатком пальмитиновой кислоты, является перспективным подходом при разработке систем адресной доставки цитотоксических агентов.
Преимуществом противоопухолевых соединений на основе аналогов люлиберина, по сравнению с другими природными полипептидами, является комплексное воздействие на клетки ряда аденокарцином в результате подавления секреции стероидных гормонов, направленной доставки цитотоксического агента и стимуляции иммунной системы.
Носители на основе фрагментов а-цепи фибриногена и их аналогов позволяют осуществлять направленный транспорт лекарственных препаратов непосредственно к пораженным органам и тканям.
Эффективность генной терапии опухолевых заболеваний может быть повышена с помощью систем доставки, основанных на использовании пептидов, обладающих противоопухолевой активностью.
Научная новизна. Предложен новый подход к выбору структуры носителей для адресной доставки противоопухолевых препаратов, основанный на использовании синтетических полипептидов, обладающих собственной цитотоксической активностью.
Проведен синтез серии аналогов люлиберина, обладающих комплексным действием на клетки гормонозависимых опухолей в результате подавления секреции стероидных гормонов, направленного транспорта цитотоксического агента, собственной цитотоксической активности и стимуляции иммунной системы.
Показано, что включение остатка пальмитиновой кислоты в структуру полипептидного носителя приводит к повышению его противоопухолевой активности как in vitro, так и in vivo. Впервые установлено непосредственное взаимодействие аналогов люлиберина с регуляторными участками последовательности гена интерлейкина-2, приводящее к усилению синтеза соответствующей мРНК.
На примере 5-фторурацила разработаны новые методы синтеза гибридных соединений, представляющих собой конъюгаты полипептидных носителей с химиотерапевтическими препаратами.
Впервые разработаны методы химического синтеза, позволяющие получать аналоги люлиберина содержащие фрагменты природных белков, которые обеспечивают направленный транспорт в ядро клетки (сигналы ядерной локализации; NLS). Показано, что включение NLS в последовательность пальмитоилсодержащих аналогов способствует значительному повышению их цитотоксической активности in vitro.
При использовании флуоресцентно меченых пептидов, содержащих остаток пальмитиновой кислоты, исследованы особенности их взаимодействия с клеточной мембраной и проникновения в клетки гепатомы человека, содержащие рецепторы люлиберина.
Показана возможность эффективного использования фрагментов а-цепи фибриногена и их аналогов в системах адресной доставки противоопухолевых и сосудорасширяющих препаратов.
Разработан новый подход к синтезу полипептидных носителей, обеспечивающих адресный перенос генов в опухолевые клетки. Впервые показано, что в качестве таких носителей могут быть использованы аналоги люлиберина, содержащих NLS или доксорубицин.
Практическая ценность и использование работы. Разработан простой и эффективный метод включения 5-фторурацила в структуру полимерного носителя. На основе аналогов люлиберина синтезированы новые носители цитотоксических агентов, обладающие высокой противоопухолевой активности в экспериментах in vitro и in vivo. Разработаны методы синтеза полипептидов, способных осуществлять транспорт химиотерапевтических препаратов непосредственно в ядро клетки. В результате исследования взаимосвязи структура - активность получены конъюгаты аналогов люлиберина с цитотоксическими агентами, перспективные для проведения доклинических испытаний. Разработаны системы направленной доставки генов в опухолевые клетки, основанные на применении в качестве носителей аналогов люлиберина, содержащих NLS и конъюгатов полипептидов с доксорубицином.
Показана возможность применения фрагментов a-цепи фибриногена и их аналогов в качестве носителей для адресной доставки противоопухолевых и сосудорасширяющих препаратов.
Личный вклад автора заключается в постановке цели исследования, разработке теоретических и методологических подходов к решению поставленных задач, участии в их экспериментальном выполнении, а также в анализе, интерпретации и обобщении полученных результатов.
Апробация работы. Основные результаты работы докладывались на 4-м международном симпозиуме по применению аналогов люлиберина при терапии опухолевых заболеваний и нарушений репродуктивной функции (Женева, 1996 г.), 27-м Европейском пептидном симпозиуме (Сорренто 2002 г.), международной конференции «СПИД, рак и родственные проблемы» (С.-Петербург 2001 г.), Восточно-Азиатском симпозиуме по применению полимеров для передовых технологий (Самара 2005), 29-м Европейском пептидном симпозиуме (Гданьск 2006 г.), 1-м Индийском пептидном симпозиуме (Хайдарабад, 2007 г.), III Российском симпозиуме «Белки и пептиды» (Пущино 2007 г.), 30-м Европейском пептидном симпозиуме (Хельсинки 2008 г.)
Публикации. По теме диссертации опубликовано 53 работы, из них 21 статья в отечественных и зарубежных журналах, 27 тезисов докладов, 2 авторских,свидетельства, 2 патента РФ и 1 международный патент.
Структура и объем работы. Диссертация изложена на 217 стр., включает 7 таблиц, 48 рисунков и состоит из введения, пяти глав, заключения, выводов и списка цитируемой литературы, включающего 268 наименований.
ВЫВОДЫ
1. Предложен новый подход к решению проблемы адресной доставки противоопухолевых препаратов, основанный на использовании в качестве носителей синтетических полипептидов, обладающих собственной цитотоксической активностью. Возможности практического применения таких соединений исследованы на примере люлиберина и фрагментов ос-цепи фибриногена.
2. С целью установления взаимосвязи структура - активность проведен синтез серии аналогов люлиберина, содержащих N-концевую гидрофобную группировку. Впервые показано, что включение остатка пальмитиновой кислоты в структуру полипептидного носителя приводит к повышению противоопухолевой активности как in vitro, так и in vivo.
3. Разработана новая стратегия получения противоопухолевых соединений на основе аналогов люлиберина, принципиальной особенностью которой является введение цитотоксических группировок в положения 1 или 6 природной последовательности в сочетании с заменой отдельных аминокислотных остатков в N-концевой части молекулы.
4. Предложен простой и эффективный метод синтеза конъюгатов полипептидных носителей с 5-фторурацилом, основанный на применении активированных производных 1-карбоксиметил-5-фторурацила. На примере аналогов люлиберина впервые показано, что такой подход может быть использован для повышения противоопухолевой активности пептидов in vivo.
5. Синтезированы новые аналоги люлиберина, обладающие комплексным воздействием на опухолевые клетки благодаря направленной доставке химиотерапевтического агента, гормональной, иммуностимулирующей и собственной цитотоксической активности. Впервые установлено, что стимуляция иммунной системы происходит в результате непосредственного взаимодействия аналогов люлиберина с регуляторным участком последовательности гена интерлейкина-2.
6. Установлено, что включение в структуру полипептидного носителя последовательности, обеспечивающей его направленный транспорт в ядро клетки (сигнала ядерной локализации) приводит к существенному повышению противоопухолевой активности in vitro.
7. На примере использования 5-фторурацила и группировки N0 в качестве биологически активных соединений показано, что аналоги фрагментов а-цепи фибриногена являются перспективными носителями для направленного транспорта лекарственных препаратов к пораженным органам и тканям.
8. Впервые установлено, что аналоги люлиберина, содержащие последовательность ядерной локализации или интеркалирующие агенты, в отличие от немодифицированных соединений, способны к образованию стабильных комплексов пептид/ДНК. В экспериментах in vitro показано, что применение полипептидных носителей, обладающих противоопухолевой активностью, в составе систем доставки «суицидных» генов позволяет повысить эффективность воздействия на опухолевые клетки.
ЗАКЛЮЧЕНИЕ
Применение биологически активных полимеров в составе систем адресной доставки фармакологических препаратов ограничено по причине сложного характера взаимосвязи структура - активность и сильной зависимости биологических свойств полимерного носителя от его молекулярного веса. Кроме того, для природных макромолекул характерно наличие иммуногенности и короткое время полужизни в кровяном русле [12]. Вместе с тем, в случае сравнительно небольших олигопептидов, состоящих из 10-20 аминокислотных остатков, иммуногенность не составляет проблемы, а время полужизни, определяющееся устойчивостью к энзиматическому расщеплению, может быть значительно увеличено в результате синтеза аналогов, содержащих неприродные аминокислоты. Возможность сохранения биологической активности как полипептидного носителя, так и присоединенного к нему фармакологического агента определяется рациональным выбором метода конъюгации.
Основой при проведении такого выбора является учет особенностей биологического действия исследуемых соединений, включая их связывание с соответствующими рецепторами, проникновение в клетку и последующее взаимодействие с внутриклеточными мишенями.
В настоящей работе исследованы возможности адресной доставки противоопухолевых препаратов на примере двух типов полипептидных носителей: аналогов регуляторного пептида гипоталамуса - люлиберина и фрагментов белков, принимающих участие в процессах межклеточного взаимодействия - так называемых КХШ-пептидов. Использование рассматриваемых соединений позволяет расчитывать на высокую избирательность действия благодаря наличию на поверхности опухолевых клеток большого количества специфических рецепторов, практически полностью отсутствующих в большинстве нормальных тканей.
Проведенные исследования показывают, что рациональный выбор структуры полипептидного носителя и способа присоединения цитотоксического агента позволяет добиться высокой эффективности противоопухолевого действия. Одним из перспективных направлений является использование пальмитоильной группировки для повышения цитотоксической активности синтетических полипептидов. При этом важно отметить, что такие соединения не оказывают влияния на клетки нормальных тканей, что позволяет синтезировать полипептидные носители, обладающие собственным, избирательным цитотоксическим действием.
Известно, что синтез полипептидов, содержащих один, а тем более два остатка пальмитиновой кислоты, сопряжен с определенными трудностями, связанными с их высокой гидрофобностью и склонностью к образования различного рода комплексов и ассоциатов. Тем не менее, подбор условий для проведения реакции конденсации и последующей очистки конечного продукта, позволяет получить такие соединения с удовлетворительным выходом и высокой степенью чистоты.
Другим перспективным направлением является включение в состав полипептидного носителя фрагментов некоторых природных белков, ответственных за их транспорт в ядро клетки (сигналов ядерной локализации). Такая модификация делает возможной доставку ряда химиотерапевтических агентов непосредственно к внутриклеточным мишеням действия, к числу которых, в первую очередь относится ДНК.
В ходе выполнения настоящего исследования разработаны методы твердофазного химического синтеза таких соединений, основанные на применении стратегии ортогональной защиты. Последующие эксперименты показали, что включение в структуру полипептидного носителя сигнала ядерной локализации позволяет не только добиться повышения эффективности действия цитотоксических агентов in vitro, но делает возможным образование стабильных комплексов пептид/ДНК, которые могут быть использованы в системах адресной доставки генов в опухолевые клетки.
Интересные возможности открываются в результате исследования конъюгатов полипептидных носителей с доксорубицином или другими интеркалирующими агентами. Такие соединения обладают высокой противоопухолевой активностью и, вместе с тем, могут применяться для доставки генов в злокачественные клетки, поскольку образуют прочные комплексы с ДНК за счет водородных связей. При этом, с одной стороны, уменьшается токсическое воздействие доксорубицина на клетки нормальных тканей, с другой стороны, образование комплекса не приводит к полному нарушению функциональной активности гена, что позволяет рассчитывать на проявление синергического противоопухолевого действия компонентов системы.
Таким образом, проведенные исследования показывают, что синтетические полипептиды являются перспективным типом носителей позволяющим значительно повысить эффективность действия лекарственных соединений за счет их направленной доставки к клеткам-мишеням и проявления собственной биологической активности.
1. Schally А. V., Nagy A. Cancer chemotherapy based on targeting of cytotoxic peptide conjugates to their receptors on tumors // Eur. J. Endocrinol. 1999. V. 141. N. l.P. 1-14.
2. Rigg A., Sikora K. Genetic prodrug activation therapy. Mol. Med. Today 1997. V. 3. N 8. P. 359-366.
3. Терминологический словарь по онкофармакологии. Стуков А.Н., Акимов А.А., Цырлина Е.В., и др. Под редакцией Филова В.А. и Гершановича М.Л. СПб.: «NIKA», 2005, 121 с.
4. Владимирская Е.Б. Биологические основы точечной терапии при онкогематологических заболеваниях // Вопросы гематологии/онкологии и иммунопатологии в педиатрии. 2004. Т. 3. N4. С. 5-13.
5. Bonilla Е., del Mazo J. Deregulation of gene expression in fetal oocytes exposed to doxorubicin// Biochemical Pharmacology. 2003. V. 65. N 5. P. 1701-1707.
6. Крыжановская Т. С., Лавров Н.А. Применение полимеров в медицине // Пластические массы. 1995. N 2. С. 44-47.
7. Matsumura Y., Maeda Н. A new concept for macromolecular therapies in cancer chemotherapy: mechanism of tumouritropic accumulation of proteins and the antitumour agent SMANCS // Cancer Res. 1986. V. 46. N 12 (Part 2). P. 6387-6392.
8. Targeting Chemotherapy of Hepatocellular Carcinoma. Konno Т., Maeda H. II Neoplsma of the Liver. Okada K., Ishak K.G. (eds). New York: Springer, 1987. P. 343-352.
9. Duncan R. The dawning era of polymer therapeutics // Nat. Rev. Drug Discow. 2003. V. 2. N 5. P. 347-360.
10. Валуев Л. И., Валуева Т. А., Валуев И. Л., Платэ Н. А. Полимерные системы для контролируемого выделения биологически активных соединений // Усп. биол. хим. 2003. Т. 43. С. 307-328.
11. Polymer Conjugates with Anticancer Activity. Putnam D., Kopecek J. II Adv. Polym. Sci.; Biopolymers II. Peppas N.A., Langer R.S. (eds). Berlin: Springer, 1995. V. 122. P. 55-123.
12. Twaites В., Alarcon C. de las Heras, Alexander C. Synthetic polymers as drugs and therapeutics // J. Mater. Chem. 2005. V. 15. N 4. P. 441-455.
13. Malik N.,Duncan R. Method of treating cancerous tumors with a dendritic-platinate drug delivery system // United States Patent 6,790,437. 14.09.2004.
14. Aubree-Lecat A., Duban M.C., Demignot S., Domurado M., Fournie P., Domurado D. Influence of barrier-crossing limitations on the amount of macromolecular drug taken up by its target // J. Pharmacokinet. Biopharm. 1993. V. 21. N l.P. 75-98.
15. Vicent M.J. Polymer-Drug Conjugates as Modulators of Cellular Apoptosis // AAPS J. 2007. V. 9. N 2. P. E200-E207.
16. Коростелев С.А. Противоопухолевые вакцины // Современная онкология. 2003. Т. 5. N 4. С. 1-21.
17. Boon Т., Van der Bruggen P. Human tumor antigens recognized by T lymphocytes // J. Exp. Med. 1996. V. 183. N 3. P. 725-729.
18. Corman J.M., Sercars E.E., Nanda N.K. Recognition of prostate-specific antigenic peptide determinants by human CD4 and CD8 T cells 11 Clin. Exp. Immunol. 1998. V. 114. N 2. P. 166-172.
19. Houghton A.N. Cancer antigens: immune recognition of self and altered self //J. Exp. Med. 1994. V. 180. N 1. P. 1-4.
20. Nechushtan A., Yarkoni S., Marianovsky I., Lorberboum-Galski H. Adenocarcinoma Cells Are Targeted by the New GnRH-PE66 Chimeric Toxin through Specific Gonadotropin-releasing Hormone Binding Sites // J. Biol. Chem. 1997. V. 272. N. 17. P. 11597-11603.
21. Chien C.-H., Chen C.-H., Lee C.-Y. G„ Chang T.-C., Chen R.-J., Chow S.-N. Detection of gonadotropin-releasing hormone receptor and its mRNA in primary human epithelial ovarian cancers // Int. J. Gynecol. Cancer. 2004. V. 14. N. 3. P. 451-458.
22. Grimdker C., Huschmand N.A., Emons G. Gonadotropin-releasing hormone receptor-targeted gene therapy of gynecologic cancers // Mol. Cancer Ther. 2005. V. 4. N2. P. 225-231.
23. Schally A.V. Hypothalamic hormones from neuroendocrinology to cancer therapy // Anticancer Drugs. 1994. V. 5. N 2. P. 115-130.
24. Limonta P., Moretti R.M., Marelli M.M., Motta M. The biology of gonadotropin hormone-releasing hormone: role in the control of tumor growth and progression in humans // Front. Neuroendocrinol. 2003. V. 24. N4. P. 279-295.
25. Schally A.V., Baba Y, Arimura A., Redding T.W., White W.F. Evidence for peptide nature of LH and FSH-releasing hormones // Biochem. Biophys. Res. Commun. 1971. V. 42. N 1. P. 50-56.
26. Arnold W, Flouret G, Morgan R, Rippel R, White W. Synthesis and biological activity of some analogs of the gonadotropin releasing hormone // J. Med. Chem. 1974. V. 17. N 3. P. 314-319.
27. Fujino M., Fukuda T., Shinagawa S., Kobayashi S., Yamazaki I. Synthetic analogs of luteinizing hormone releasing hormone (LH-RH) substituted in position 6 and 10 // Biochem. Biophys. Res. Commun. 1974. V. 60. N. 1. P. 406-413.
28. Coy D.H., Labrie F., Savary M., Coy E.J., Schally A.V. LH-releasing activity of potent LH-RH analogs in vitro // Biochem. Biophys. Res. Commun. 1975. V. 67. N. 2. P. 576-582.
29. Hypothalamic and other peptide hormones. Schally A.V., Comaru-Schally A.M. II Cancer Medicine 5th edition. Ontario.: B.C. Dekker Publishers, 2000. Ch. 53. P. 715-729.
30. Ferland L., Labrie F., Savary M., Beaulieu M., Coy D.H., Coy E.J., Schally AV. Inhibitory activity of analogues of luteinizing hormone-releasing hormone (LH-RH) in vitro and in vivo // Clin. Endocrinol. (Oxford). 1976. N 5. Suppl. P. 279S-289S.
31. Momany F.A. Conformational energy analysis of the molecule, luteinizing hormone-releasing hormone. I. Native decapeptide // J. Am. Chem. Soc. 1976. V. 98. N 10. P. 2990-2996.
32. Momany F.A. Conformational energy analysis of the molecule, luteinizing hormone-releasing hormone. 2. Tetrapeptide and decapeptide analogues // J. Am. Chem. Soc. 1976. V. 98. N 10. P. 2996-3000.
33. Momany F.A. Conformational analysis of the molecule luteinizing hormone-releasing hormone. 3. Analogue inhibitors and antagonists // J. Med. Chem. 1978. V. 21. N 1. P. 63-68.
34. Koerber S.C., Rizo J., Struthers R.S., Rivier J.E. Consensus Bioactive Conformation of Cyclic GnRH Antagonists Defined by NMR and Molecular Modeling // J. Med. Chem. 2000. V. 43. N 5. P. 819-828.
35. Guarnieri F., Weinstein H. Conformational memories and the exploration of biologically relevant peptide conformations: an illustration for the gonadotropin-releasing hormone // J. Am. Chem. Soc. 1996. V. 118. N 24. P. 5580-5589.
36. Ахрем A.A., Голубович В.П., Кирнарский Л.И., Галактионов С.Г. Расчет стабильных конформаций молекулы люлиберина // Биоорг. химия. 1978. Т. 4. N6. С. 838-840.
37. Humphries J., Wan Y.-P., Folkers K., Bowers C.Y. Inhibitory analogues of the luteinizing hormone-releasing hormone having D-aromatic residues in positions 2 and 6 and variation in position 3 // J. Med. Chem. 1978. V. 21. Nl.P. 120-123.
38. Rivier E.J., Vale WW. D-pGhil JD-Phe2,D-Trp3,6.-LRF. A potent luteinizing hormone releasing factor antagonist in vitro and inhibitor of ovulation in the rat // Life Sci. 1978. V. 23. N 8. P. 869-876.
39. Humphries J., Wasiak T., Wan Y.-P., Folkers K., Bowers C.Y. An antiovulatory decapeptide of higher potency which has an L-amino acid (Ac-Pro) in position 1 // Biochem. Biophys. Res. Commun. 1978. V. 85. N 2. P. 709-713.
40. Humphries J., Wan Y.-P., Wasiak T., Folkers K., Bowers C.Y. Structural Requirements in Positions 1, 2, 3, and 6 of the Luteinizing Hormone-Releasing Hormone (LH-RH) for Antiovulatory Activity // J. Med. Chem. 1979. V. 22. N7. P. 774-777.
41. Karten M.J., Rivier J.E. Gonadotropin-releasing hormone analog design. Structure-function studies toward the development of agonists and antagonists: rationale and perspective // Endocr. Rev. 1986. V. 7. N 1. P. 44-66.
42. Bajusz S., Csernus V.J., Janaky T., Bokser L., Fekete M., Schally A. V. New antagonists of LHRH. II. Inhibition and potentiation of LHRH by closely related analogues // Int. J. Pept. Protein Res. 1988. V. 32. N 6. P. 425-435.
43. Schally A. V. LHRH analogues: their impact on the control of tumorigenesis //Peptides. 1999. V. 20. N 10. P. 1247-1262.
44. Emons G., Schally A. V. The use of luteinizing hormone releasing hormone agonists and antagonists in gynecological cancers // Hum. Reprod. 1994. V. 9. N7. P. 1364-1379.
45. Eidne K.A., Flanagan C.A., Harris N.S., Millar R.P. Gonadotropin-releasing hormone (GnRH)-binding sites in human breast cancer cell lines and inhibitory effects of GnRH antagonists // J. Clin. Endocrinol. Metab. 1987. V. 64. N3. P. 425-432.
46. Qayum A., Gullick W., Clayton R.C., Sikora K., Waxman J. The effects of gonadotrophin releasing hormone analogues in prostate cancer are mediated through specific tumour receptors // Br. J. Cancer. 1990. V. 62. N 1. P. 96-99.
47. Imai A., Ohno T., Lida K., Fuseya T., Furui T., Tamaya T. Presence of gonadotropin-releasing hormone receptor and its messenger ribonucleic acid in endometrial carcinoma and endometrium // Gynecol. Oncol. 1994. V. 55. N l.P. 144-148.
48. Limonta P., Dondi D., Moretti R.M., Maggi R., Motta M. Antiproliferative effects of luteinizing hormone-releasing hormone agonists on the human prostatic cancer cell line LNCaP // J. Clin. Endocrinol. Metab. 1992. V. 75. N l.P. 207-212.
49. Emons G., Grundker C., Giinthert A.R., Westphalen S., Kavanagh J., Verschraegen C. GnRH antagonists in the treatment of gynecological and breast cancers // Endocr. Relat. Cancer. 2003. V. 10. N 2. P. 291-299.
50. Sugiyama M., Imai A., Takahashi S., Hirano S., Furui T., Tamaya T. Advanced indications for gonadotropin-releasing hormone (GnRH)analogues in gynecological oncology // Int. J. Oncol. 2003. V. 23. N 2. P. 445-452.
51. Grundker C., Gunthert A.R., Westphalen S., Emons G. Biology of the gonadotropin-releasing hormone system in gynecological cancers // Eur. J. Endocrinol. 2002. V. 146. N. 1. P. 1-4.
52. Fekete M., Zalatnai A., Schally A. V. Presence of membrane binding sites for D-Trp6.-luteinizing hormone-releasing hormone in experimental pancreatic cancer // Cancer Lett. 1989. V. 45. N 2. P. 87-91.
53. Fekete M., Zalatnai A., Comaru-Schally A. M., Schally A. V. Membrane receptors for peptides in experimental and human pancreatic cancers // Pancreas. 1989. V. 4. N 5. P. 521-528.
54. Zhao S., Saito H., Wang X., Saito T., Kaneko T., Hiroi M. Effects of gonadotropin-releasing hormone agonist on the incidence of apoptosis in porcine and human granulosa cells // Gynecol. Obstet. Invest. 2000. V. 49. N 1. P. 52-56.
55. Imai A., Takagi A., Horibe S., Takagi H., Tamaya T. Fas and Fas ligand system may mediate antiproliferative activity of gonadotropin-releasing hormone receptor in endometrial cancer cells // Int. J. Oncol. 1998. V. 13. N l.P. 97-100.
56. Higashijima T., Kataoka A., Nishida T., Yakushiji M. Gonadotropin-releasing hormone agonist therapy induces apoptosis in uterine leiomyoma // Eur. J. Obstet. Gynecol. Reprod. Biol. 1996. V. 68. N 1. P. 169-173.
57. Sarah K., Gal L. , Tamar H., Zvi N. , Rony S. Gonadotropin-releasing hormone induces apoptosis of prostate cancer cells: Role of c-Jun NH2.
58. Terminal kinase, protein kinase B, and extracellular signal-regulated kinase pathways // Cancer Res. 2004. V. 64. N 16. P. 5736-5744.
59. Molecular Cell Biology (5th edition) Lodish H.F., Berk A., Matsudaira P., Kaiser C„ Krieger M, Scott M., Zipursky L., Darnell J.E. New York: W. H. Freeman & Company, 2004. 973 P. Lodish H.F., (eds).
60. McArdle C. A., Franklin J., Green L., Hislop J. N. Signalling, cycling and desensitisation of gonadotrophin-releasing hormone receptors // J. Endocrinol. 2002. V. 173. N 1. P. 1-11.
61. Yang W.-H., Wieczorck M., Allen M.C., Nett T.M. Cytotoxic Activity of Gonadotropin-Releasing Hormone (GnRH)-Pokeweed Antiviral Protein Conjugates in Cell Lines Expressing GnRH Receptors // Endocrinology. 2003. V. 144. N4. P. 1456-1463.
62. Suarez-Quian C.A., Wynn P.C., Catt K.J. Receptor-mediated endocytosis of GnRH analogs: differential processing of gold-labeled agonist and antagonist derivatives // J. Steroid. Biochem. 1986. V. 24. N 1. P. 183-192.
63. Jennes L., Stumpf W.E., Conn P.M. Receptor-mediated binding and uptake of GnRH agonist and antagonist by pituitary cells // Peptides. 1984. V. 5. Suppl. 1. P. 215-220.
64. The relationship existing between chemical constitution, distribution, and pharmacological action. Ehrlich P. II The Collected Papers of Paul Ehrlich.
65. Himmelweite F., Marquardt M., Dale H. (eds). Elmsford, New York: Pergamon, 1956. V. 1. P. 596-618.
66. Hertler A.A., Frankel A.E. Immunotoxins: A clinical review of their use in the treatment of malignancies // J. Clin. Oncol. 1989. V. 7. N 12. P. 19321942.
67. Channabasavaiah K., Stewart J.M. New analogs of luliberin which inhibit ovulation in the rat. Bioch. Bioph. Res. Commun. 1979. V. 86. N 4. P. 12661273.
68. Kovacs M., Schally A., Nagy A., Koppan M., Groot K. Recovery of pituitary function after treatment with a targeted cytotoxic analog of luteinizing hormone-releasing hormone // Proc. Natl. Acad. Sci. USA. 1997. V. 94. N 4. P. 1420-1425.
69. Grundker C. Cytotoxic luteinizing hormone-releasing hormone conjugates and their use in gynecological cancer therapy // Eur. J. Endocrinol. 2000. V. 143. N5. P. 569-572
70. Liebow C., Lee M.T., Kamer A.R., Schally A.V. Regulation of luteinizing hormone releasing hormone receptor binding by heterologous and autologous receptorstimulated tyrosine phosphorylation // Proc. Natl. Acad. Sci. USA. 1991. V. 88. N 6. P. 2244-2248.
71. Rahimipour S., Weiner L., Shrestha-Dawadi P.B., Bittner S., Koch Y., Fridkin M. Cytotoxic peptides: naphthoquinonyl derivatives of luteinizing hormone-releasing hormone // Lett. Pept. Sci. 1998. V. 5. N 5-6. P. 421-427.
72. Lev-Goldman V., Mester B., Ben-Aroya N., Koch Y., Weiner L., Fridkin M. Synthesis and active oxygen generation by new emodin derivatives and their gonadotropin-releasing hormone conjugates // Bioconjug. Chem. 2006. V. 17. N4. P. 1008-1016.
73. Leuschner C., Enright F.M., Gawronska-Kozak B., Hansel W. Human prostate cancer cells and xenografts are targeted and destroyed through luteinizing hormone releasing hormone receptors // Prostate. 2003. V. 54. N 4. P. 239-249.
74. Leuschner C., Enright F.M., Gawronska B., Hansel W. Membrane disrupting lytic peptide conjugates destroy hormone dependent and independent breast cancer cells in vitro and in vivo // Breast Cancer Res. Treat. 2003. V. 78. N 1. P. 17-27.
75. Leuschner C., Hansel W. Targeting breast and prostate cancers through their hormone receptors // Biol. Reprod. 2005. V. 73. N 5. P. 860-865.
76. QiL., Nett T.M., Allen M.C., ShaX., Harrison G.S., FrederickB.A., Glode L.M. GnRH-PAP hormonotoxin targets cytotoxicity to prostate cancer cell lines //Urol. Res. 2003. V. 31. N 6. P. 374-377.
77. Harrison G.S., Wierman M.E., Nett T.M., Glode L.M. Gonadotropin-releasing hormone and its receptor in normal and malignant cells // Endocr. Relat. Cancer. 2004. V. 11. N 4. P. 725-748.
78. Harvie P., Paul R., Cudmore S., O'Mahony D.J. Lipid-comprising drug delivery complexes and methods for their production // European Patent Application EP 1383480. 04.30.2002.
79. GnRH analogues in ovarian, breast and endometrial cancers. Emons G., Ortmann O., Schulz K.-D. II GnRH analogues. The state of the art 1996. Lunenfeld B., Insler V. (eds). New York: The Parthenon Publishing Group, 1996. P. 95-120.
80. Zidan J., Zohar S., Mijiritzky I., Krai S., Bilenca B. Treating relapsed epithelial ovarian cancer with luteinizing hormonereleasing agonist (goserelin) after failure of chemotherapy // Isr. Med. Assoc. J. 2002. V. 4. N 8. P. 597-599.
81. Parmar H., Nicoll J., Stockdale A., Cassoni A., Phillips R., Lightman S., Schally A. Advanced ovarian carcinoma: response to the agonist D-Trp-6-LH-RH // Cancer Treat. Rep. 1985. V. 69. N 11. P. 1341-1342.
82. Jeyarajah A., Gallagher C., Blake P., Oram D., Dowsett M, Fisher C., Oliver R. Long-term follow-up of gonadotrophin-releasing hormone analog treatment for recurrent endometrial cancer // Gynecol. Oncol. 1996. V. 63. N l.P. 47-52.
83. Brawer M.K. The Evolution of Hormonal Therapy for Prostatic Carcinoma // Rev. Urol. 2001. V. 3. Suppl. 3. P. S1-S9.
84. Smith J.A. Jr., Glode L.M., Wetthaufer J.N., Stein B.S., Glass A.G., Max D.T., Anbar D., Jagst C.L., Murphy G.P. Clinical effects ofgonadotropin-releasing hormone analogue in metastatic carcinoma of the prostate //Urology. 1985. V. 25. N2. P. 106-114.
85. Rizzo M., Mazzei T., Mini E., Bartoletti R., Periti P. Leuprorelin acetate depot in advanced prostatic cancer: a phase II multicentre trial I I J. Int. Med. Res. 1990. V. 18. Suppl. l.P. 114-125.
86. Szepeshazi K., Lapis K., Schally A. V. Effect of combination treatment with analogs of luteinizing hormone-releasing hormone (LH-RH) or somatostatin and 5-fluorouracil on pancreatic cancer in hamsters // Int. J. Cancer. 1991. V. 49. N 2. P. 260-266.
87. Blumenfeld Z., Haim N. Prevention of gonadal damage during cytotoxic therapy // Ann. Med. 1997. V. 29. N 3. P. 199-206.
88. Recchia F., Sica G., De Filippis S., Saggio G., Ross ell i M., Rea S. Goserelin as ovarian protection in the adjuvant treatment of premenopausal breast cancer: a phase II pilot study // Anticancer Drugs. 2002. V. 13. N4. P. 417-424.
89. Griindker C., Schulz K., Gunthert A.R., Emons G. Luteinizing hormone-releasing hormone induces nuclear factor kb-activation and inhibits apoptosis in ovarian cancer cells // J. Clin. Endocrinol. Metab. 2000. V. 85. N 10. P. 3815-3820.
90. Medl M., Peters-Engel C., Fuchs G., Leodolter S. Triptorelin (D-Trp-6-LHRH) in combination with carboplatin-containing polychemotherapy for advanced ovarian cancer: a pilot study 11 Anticancer Res. 1993. V. 13. N 6B. P. 2373-2376.
91. Rzepka-Gorska I., Chudecka-Glaz A., Kosmider M., Malecha J. GnRH analogues as an adjuvant therapy for ovarian cancer patients // Int. J. Gynaecol. Obstet. 2003. V. 81, N 2. P. 199-205.
92. Schally A., Comaru-Schally A., Plonowski A., Nagy A., Halmos G., Rekasi Z. Peptide analogs in the therapy of prostate cancer // Prostate. 2000. V. 45. N2. P. 158-166.121. http://www.cancercompass.com/cancer-news/1,11825,00.htm.
93. Ruoslahti E. Fibronectin in cell adhesion and invasion // Cancer Metastasis Rev. 1984. V. 3.N 1. P. 43-51.
94. Ruoslahti E. The Walter Herbert Lecture. Control of cell motility and tumour invasion by extracellular matrix interactions // Br. J. Cancer. 1992. V. 66. N 2. P. 239-242.
95. Horton M.A. Arg-Gly-Asp (RGD) Peptides and Peptidomimetics as Therapeutics: Relevance for Renal Diseases // Exp. Nephrol. 1999. V. 7. N2. P. 178-184.
96. Nichols A.J., Ruffolo R.Jr., Huffman W.F., Poste G., Samanen J. Development of GP Ilb/IIIa antagonists as antithrombotic drugs // Trends Pharmacol. Sci. 1992. V. 13. N 11. P. 413-417.
97. Okroj M., Dobrzanska-Paprocka Z., Rolka K,, Bigda J. In vitro and in vivo analyses of the biological activity of RGD peptides towards Ab Bomirski melanoma // Cell Mol. Biol. Lett. 2003. V. 8. N 4. P. 873-884.
98. Vlakh E.G., Panarin E.F., Tennikova T.B., Suck K., Kasper C. Development of multifunctional polymer-mineral composite materials for bone tissue engineering // J. Biomed. Mater. Res. A. 2005. V. 75. N 2. P. 333-341.
99. Korzhikov V., Roeker S., Vlakh E., Kasper C., Tennikova T. Synthesis of multifunctional polyvinylsaccharide containing controllable amounts of biospecific ligands //Bioconjug. Chem. 2008. V. 19. N. 3. P. 617-625.
100. Karpatkin S., Pearlstein E. Role of platelets in tumor cell metastases // Ann. Intern. Med. 1981. V. 95. N 5. P. 636-641.
101. Humphries M.J., Olden K., Yamada KM. A synthetic peptide from fibronectin inhibits experimental metastasis of murine melanoma cells // Science. 1986. V. 233. N 4762. P. 467-470.
102. Ugen K.E., Mahalingan M, Klein P.A., Kao K.J. Inhibition of tumor cell-induced platelet aggregation and experimental tumor metastasis by synthetic Gly-Arg-Gly-Asp-Ser peptide // J. Natl. Cancer Inst. 1988. V. 80. N18. P. 1461-1466.
103. Komazawa H., Saiki I., Igarashi Y., Azuma I., KojimaM., OrikasaA., OnoM., ItohL Inhibition of tumor metastasis by synthetic polymer containing a cell-adhesive RGDS peptide // J. Bioact. Compat. Polymers. 1993. V. 8. N 3. P. 258-274.
104. Matsuoka T., Hirakawa K, Chung Y.S., Yashiro M, Nishimura S., Sawada T., Saiki I., Sowa M. Adhesion polypeptides are useful for the prevention of peritoneal dissemination of gastric cancer. Clin. Exp. Metastasis. 1998. V. 16. N 4. P. 381-388.
105. Koivunen E., Wang В., Ruoslahti E. Phage libraries displaying cyclic peptides with different ring sizes: ligand specificities of the RGD-directed integrins // Biotechnology. 1995. V. 13. N 3. P. 265-270.
106. Shannon K.E., Keene J.L., Settle S.L., Duffin T.D., Nickols M.A., Westlin M., Schroeter S., Ruminski P.G., Griggs D.W. Anti-metastatic properties of RGD-peptidomimetic agents SI37 and S247 // Clin. Exp. Metastasis. 2004. V. 21. N 2. P. 129-138.
107. Arap W., Pasqualini R., Ruoslahti E. Cancer Treatment by Targeted Drug Delivery to Tumor Vasculature in a Mouse Model // Science. 1998. V. 279. N5349. P. 377-380.
108. Гуревич B.C., Буров С.В., Попов Ю.Г., Семко Т.В., Власов Г.П. Способ направленного транспорта фармакологических препаратов путем их конъюгации с аргинил-глицил-аспартил (RGD) содержащими пептидами // Патент N 2119354. 05.01.1996.
109. Denekamp J. Review article: angiogenesis, neovascular proliferation and vascular pathophysiology as targets for cancer therapy // Br. J. Radiol. 1993. V. 66. N783. P. 181-196.
110. Balasubramanian S., Kuppuswamy D. RGD-containing peptides activate S6K1 through p3 integrin in adult cardiac muscle cells // J. Biol. Chem. 2003. V. 278. N 43. P. 42214-42224.
111. Ruoslahti E., Pasqualini R. Angiogenic homing molecules and conjugates derived therefrom // United States Patent 6,576,239. 10.09.1997.
112. D.J. Burkhart, B.T. Kalet, M.P. Coleman, G.C. Post, T.H. Koch. Doxorubicin-formaldehyde conjugates targeting av(33 integrin 11 Mol. Cancer Ther. 2004. V. 3. N 12. P. 1593-1604.
113. Koizumi N., Mizuguchi H., Hosono T., Ishii-Watabe A., Uchida E., Utoguchi N., Watanabe Y., Hayakawa T. Efficient gene transfer by fibermutant adenoviral vectors containing RGD peptide // Biochim. Biophys. Acta. 2001. V. 1568. N. 1. P. 13-20.
114. Davydova J., LeL.P., Gavrikova Т., WangM., Krasnykh V, Yamamoto M. Infectivity-enhanced cyclooxygenase-2-based conditionally replicative adenoviruses for esophageal adenocarcinoma treatment // Cancer Res. 2004. V. 64. N. 12. P. 4319-4327.
115. Freer R.J., Stewart J.M. Alkylating analogs of peptide hormones. 1. Synthesis and properties of p-N,N-Bis(2-chloroethyl)amino.-phenylbutyryl derivatives of bradykinin and bradykinin potentiating factor. // J. Med. Chem. 1972. V. 15. N 1. P. 1-5.
116. Paiva T.B., Paiva A.C.M., Freer R.J., Stewart J.M. Alkylating analogs of peptide hormones. 2. Synthesis and properties of p-N,N-Bis(2-chloroethyl)amino.phenylbutyryl derivatives of angiotensin II. J. Med. Chem. 1972. V. 15. N l.P. 6-8.
117. Varga J.M. Hormone-drug conjugates // Methods Enzymol. 1985. V. 112. P. 259-269.
118. Rivier J., Amoss M, Rivier C., Vale W. Synthetic luteinizing hormone releasing factor. Short chain analogs // J. Med. Chem. 1974. V. 17. N 2. P. 230-233.
119. Sandow J., König W. Studies with fragments of a highly active analogue of luteinizing hormone releasing hormone // J. Endocrinol. 1979. V. 81. N 2. P. 175-182.
120. Буров С.В., Николаев С.В., Смирнова М.П., Лупанова Г.Е., Бобров Ю.Ф., Неволин-Лопатин A.M., Китаев Е.М. Синтез биологически активных аналогов люлиберина с укороченнойаминокислотной последовательностью // Хим. прир. соедин. 1982. N 6. С. 768-773.
121. Буров С.В., Николаев С.В., Корхов В.В., Лупанова Г.Е., Макушева В.П. Синтез и исследование биологической активности укороченных аналогов люлиберина // Хим. прир. соедин. 1987. N 4. С. 590-595.
122. Буров С.В., Николаев С.В., Корхов В.В., Макушева В.П., Лупанова Г.Е. Новые направления синтеза биологически активных аналогов люлиберина // Хим. прир. соедин. 1983. N 3. С. 398-399.
123. Haviv F., Palabrica С.A., Bush E.N., Diaz G., Johnson E.S., Love S., Greer J. Active reduced-size hexapeptide analogues of luteinizing hormone-releasing hormone // J. Med. Chem. 1989. V. 32. N 10. P. 2340-2344.
124. Ozaki S., Ike Y., Mizuno H., Ishikawa K, Mori H. 5-Fluorouracil derivatives. The synthesis of l-carbamoyl-5-fluorouracils // Bull. Chem. Soc. Jpn. 1977. V. 50. N 9. P. 2406-2412.
125. Ozaki S., Watanabe Y., Hoshiko Т., Mizuno H., Ishikawa K, Mori H 5-Fluorouracil derivatives IV. Synthesis of antitumor-active acyloxyalkyl-5-fluorouracils // Chem. Pharm. Bull. 1984. V. 32. N . P. 733-738.
126. Ouchi Т., Yuyama H., Vogl O. Synthesis of poly(ethylene glycols)-capped with 5-fluorouracil units through ester bonds and their antitumor activities // J. Polym. Sci. Part C. 1987. V. 25. N 7. P. 279-285.
127. Jones A.S., Lewis P., Withers S.F. The synthesis of carboxymethyl derivates of purines and pyrimidines and their condensation with naturally occuring macromolecules // Tetrahedron. 1973. V. 29. N 15. P. 2293-2296.
128. Семко T.B., Буров C.B., Веселкина О.С., Власов Г.П. Синтез и исследование противоопухолевой активности укороченных аналогов люлиберина // Химия природ, соединений. 1994. N 5. С. 655-662.
129. Jacobson J.D., Ansari М.А., MansfieldМ.Е., МсArthur С.P., Clement L.T. Gonadotropin-releasing hormone increases CD4(+) T-lymphocyte numbers in an animal model of immunodeficiency // J. Allergy Clin. Immunol. 1999. V. 104. N3. P. 653-658.
130. Azad N., Agrawal С., Emmanuele N.V., Kelley M.R., Mohagheghpour N., Lawrence A.M. Amer. J. Reprod. Immunol. 1991. V. 26. P. 160-172.
131. Wright J.M., Wiersma P. A., Dixon G.H. Use of protein blotting to study the DNA-binding properties of histone HI and HI variants // Eur. J. Biochem. 1987. V. 168. N 2. P. 281-285.
132. Levite М., Koch Y. Methods and pharmaceutical compositions for GnRH-I and GnRH-II modulation of T-cell activity, adhesion, migration and extravasation // United States Patent 20050158309. 07.21.2005.
133. Власов Г.П., Буров C.B., Семко T.B. Декапептид, обладающий противоопухолевой активностью // Патент N 2084458. 27.05.1993.
134. Бурое С.В., Яблокова Т.В., Дорош М.Ю., Шкарубская З.П., Бланк М., Эпштейн Н., Фридкин М. Аналоги люлиберина, обладающие цитотоксическим действием на опухолевые клетки in vitro // Биоорг. химия. 2006. Т. 32. N 5. С. 1-7.
135. Keisari Y. A colorimetric microtiter assay for the quantitation of cytokine activity on adherent cells in tissue culture. // J. Immunol. Methods. 1992. V. 146. N2. P. 155-161.
136. Coy D.H., Labrie F., Savary M., Coy E.J., Schally A.V. Antagonistic activity of analogs of luteinizing hormone-releasing hormone (LHRH) in vitro // Mol. Cell Endocrinol. 1976. V. 5. N 4. P. 201-208.
137. Wasiak T., Humphries J., Folkers K., Bowers C.Y. A new category of ovulation inhibitors: linear LH-RH analogues having more than ten residues //Biochem. Biophys. Res. Commun. 1979. V. 86. N 3. P. 843-848.
138. Bowers C.Y., Humphries J., Wasiak T., Folkers K., Reynolds G.A., Reichert L.E. Jr. On the inhibitory effects of luteinizing hormone-releasing hormone analogs // Endocrinology. 1980. V. 106. N 3. P. 674-683.
139. De Pablo M.A., Susin S.A., Jacotot E., Larochette N., Costantini P., Ravagnan L., Zamzami N., Kroemer G. Palmitate induces apoptosis via a direct effect on mitochondria // Apoptosis. 1999. V. 4. N 2. P. 81-87.
140. Harada H., Yamashita U., Kurihara H., Fukushi E., Kawabata J., Kamei Y. Antitumor activity of palmitic acid found as a selective cytotoxic substance in a marine red alga // Anticancer Res. 2002. V. 22. N 5. P. 25872590.
141. Burov S., Epstein N. Peptides useful for treating GnRH associated diseases //WO 2005/116058 Al. 27.05.2004.
142. Pati D., Habibi H.R. Inhibition of human hepatocarcinoma cell proliferation by mammalian and fish gonadotropin-releasing hormones // Endocrinology. 1995. V. 136. N 1. P. 75-84.
143. LaCasse E.C., Lefebvre Y.A. Nuclear localization signals overlap DNA- or RNA-binding domains in nucleic acid-binding proteins // Nucleic Acids Research. 1995. V. 23. N 10. P. 1647-1656.
144. Conti E., Uy M., Leighton L.,. Blobel G., Kuriyan J. Crystallographic Analysis of the Recognition of a Nuclear Localization Signal by the Nuclear Import Factor Karyopherin a // Cell. 1998. V. 94. N 2. P. 193-204.
145. Ogris M., Carlisle R.C., Bettinger Т., Seymour L.W. Melittin Enables Efficient Vesicular Escape and Enhanced Nuclear Access of Nonviral Gene Delivery Vectors 11 J. Biol. Chem. 2001. V. 276. N 50. P. 47550-47555.
146. Standiford D.M., Richter J.D. Analysis of a developmentally regulated nuclear localization signal in Xenopus 11 J. Cell Biol. 1992. V. 118. N5. P. 991-1002.
147. Kalderon D., Richardson W.D., Markham A.F., Smith A.E. Sequence requirements for nuclear location of simian vims 40 large-T antigen // Nature. 1984. V. 311. N 5981. P. 33-38.
148. Nishio K, Nishiuchi Y., Ishimaru M., Kimura T. Chemical synthesis of kurtoxin, a T-type calcium channel blocker // Int. J. Pept. Res. Ther. 2003. V. 10. N5-6. P. 589-596.
149. Ginj M., Hinni K., Tschumi S., Schulz S., Maecke H. R. Trifunctional somatostatin-based derivatives designed for targeted radiotherapy using auger electron emitters 11 J. Nucl. Med. 2005. V. 46. N 12. P. 2097-2103.
150. Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s // Nature. 1993. V. 362. N 6423. P. 801-809.
151. Radomski M. W., Palmer R.M., Moncada S. Comparative pharmacology of endothelium-derived relaxing factor, nitric oxide and prostacyclin in platelets //Br. J. Pharmacol. 1987. V. 92. N 1. P. 181-187.
152. Thatcher G.R.J., Weldon H. NO problem for nitroglycerin: organic nitrate chemistry and therapy // Chem. Soc. Rev. 1998. V. 27. N 5. P. 331-337.
153. Singh R.J., Hogg N., Joseph J., Kalyanaraman B. Mechanism of Nitric Oxide Release from S-Nitrosothiols // J. Biol. Chem. 1996. V. 271. N 31. P. 18596-18603.
154. Tao L., English A.M. Protein S-glutathiolation triggered by decomposed S-nitrosoglutathione II Biochemistry. 2004. V. 43. N 13. P. 4028-4038.
155. Whiteside W.M., Sears D.N., Young P.R., Rubin D.B. Properties of Selected S-Nitrosothiols Compared to Nitrosylated WR-1065 II Radiat. Res. 2002. V. 157. N5. P. 578-588.
156. Soler M. N., Bobe P., Benihoud K., Lemaire G., Roos B. A., Lausson S. Gene therapy of rat medullary thyroid cancer (Mtc) by naked NO synthase II DNA injection // J. Gene Med. 2000. V. 2. N 5. P. 344-352.
157. Richardson G., Benjamin N. Potential therapeutic uses for S-nitrosothiols // Clin. Sci. 2002. V. 102. N 1. P. 99-105.
158. Janczuk A.J., Jia Q., Xian M., Wen Z., WangP.G., Cai T. NO donors with anticancer activity II Expert Opin. Ther. Patents. 2002. V. 12. N 6. P. 819826.
159. Clark S. New treatments for advanced and metastatic colorectal cancer -clinical applications II Austr. Prescriber. 2002. V. 25. N 5. P 111-113.
160. Wood M.J.A., Charlton H.M., Wood K.J., Kajiwara K, Byrnes A.P. Immune responses to adenovirus vectors in the nervous system // Trends in Neurosciences. 1996. V. 19. N 11. P. 497-501.
161. Thomas C.E., Ehrhardt A., Kay M.A. Progress and problems with the use of viral vectors for gene therapy // Nat. Rev. Genet. 2003. V. 4. N 5. P. 346-358.
162. Dorigo O., Berek J.S. Gene therapy for ovarian cancer: development of novel treatment strategies // Int. J. Gynecol. Cancer. 1997. V. 7. N1. P. 1-13.
163. Gottschalk S., Sparrow J. T., Hauer J., Mims M.P., Leland F.E., Woo S.L.C., Smith L.C. A novel DNA-peptide complex for efficient gene transfer and expression in mammalian cells // Gene Ther. 1996. V. 3. N 5. p. 448-457.
164. Harbottle R.P., Cooper R.G., Hart S.L., Ladhoff A., McKay T., Knight A.M., Wagner E., Miller A.D., Coutelle C. An RGD-oligolysine peptide: a prototype construct for integrin-mediated gene delivery // Hum. Gene Ther. 1998. V. 9. N 7. P. 1037-1047.
165. Foster M.R., Hornby E.J., Brown S., Kitchin J., Hann M., Ward P. Improved potency and specificity of Arg-Gly-Asp (RGD) containingpeptides as fibrinogen receptor blocking drugs // Thromb. Res. 1993. V. 72. N3.P. 231-245.
166. Melikov K., Chernomordik L.V. Arginine-rich cell penetrating peptides: from endosomal uptake to nuclear delivery // Cell. Mol. Life Sci. 2005. V. 62. N23. P. 2739-2749.
167. M. Silhol, M. Tyagi, M. Giacca, B. Lebleu, E. Vives. Different mechanisms for cellular internalization of the HTV-1 Tat-derived cell penetrating peptide and recombinant proteins fused to Tat // Eur. J. Biochem. 2002. V. 269. N 2. P. 494-501.
168. Richard J.P., Melikov K., Vives E., Ramos C., Verbeure B., Gait M.J., Chernomordik L. V., Lebleu B. Cell-penetrating peptides. A reevaluation of the mechanism of cellular uptake // J. Biol. Chem. 2003. V. 278. N 1. P. 585-590.
169. Rogers F.A., Manoharan M., Rabonovitch P., Ward D.C., Glazer P.M. Peptide conjugates for chromosomal gene targeting by triplex-forming oligonucleotides. Nucleic Acids Res. 2004. V. 32. N 22. P. 6595-6604.
170. Gait M.J. Peptide-mediated cellular delivery of antisense oligonucleotides and their analogues. Cell. Mol. Life Sci. 2003. V. 60. N 5. P. 844-853.
171. Messori L., Temperini C., Piccioli F., Animati F., Di Bugnob C., Orioli P. Solution chemistry and DNA binding properties of MEN 10755, a novel disaccharide analogue of doxorubicin // Bioorg. Med. Chem. 2001. V. 9. N7. P. 1815-1825.
172. Lee C.J., Kang J.S., Kim M.S., Lee K.P., Lee M.S. The study of doxorubicin and its complex with DNA by SERS and UV-resonance Raman spectroscopy // Bull. Korean Chem. Soc. 2004. V. 25, N 8. P. 1211-1216.
173. Hall S. W., Benjamin R.S., Burgess M.A., Bodey G.P., Luna M.A., Freireich E.J. Doxorubicin-DNA complex: a phase I clinical trial // Cancer Treat. Rep. 1982. V. 66. N 12. P. 2033-2037.
174. Paul C., Gahrton B.G., Gahrton G., Lockner D., Peterson C. Reducing the cardiotoxicity of anthracyclines by complex-binding to DNA // Cancer. 1981. V. 48. N7. P. 1531-1534.
175. Rinnova M. , Souv.ek M, Lebl M. Solid-phase peptide synthesis by fragment condensation: Coupling in swelling volume // Lett. Pept. Sci. 1999. V. 6. N 1. P. 15-22.
176. Weber P.J.A., BaderJ.E., Folkers G., Beck-Sickinger A.G. A fast and inexpensive method for N-terminal fluorescein-labeling of peptides // Bioorg. Med. Chem. Lett. 1998. V. 8. N 6. P. 597-600.
177. Игнатович И.А. Катионные пептиды как средство переноса ДНК в клетки млекопитающих : Дис. . канд. биол. наук. СПб., 2005. 120 с.
178. Morphological and biochemical assays of apoptosis. Duke R.C., Cohen J.J. II Current Protocols in Immunology. Coligan I.S., Kruisbeek A.M., Margulies D.N., Shevach S.M., Strober W. (eds). New York: Wiley and Sons. Inc., 1992. V. 1. P. 3.17.1-3.17.16.
179. Futaki S., Ohashi W., Suzuki Т., Niwa M., Tanaka S., Ueda K., Harashima H., Sugiura Y. Stearylated arginine-rich peptides: A new class of transfection systems//Bioconjug. Chem. 2001. V. 12. N6. P. 1005-1011.
180. Rudolph C., Plank C., Lausier J., Schillinger U., Muller R.H., Rosenecker J. Oligomers of the arginine-rich motif of the HIV-1 TAT protein are capable of transferring plasmid DNA into cells // J. Biol. Chem. 2003. V. 278. N 13. P. 11411-11418.
181. Niidome T., Ohmori N., Ichinose A., Wada A., Mihara H., Hirayama T., Aoyagi H. Binding of cationic alpha-helical peptides to plasmid DNA and their gene transfer abilities into cells // J. Biol. Chem. 1997. V. 272. N 24. P. 15307-15312.
182. Cartier R., Reszka R. Utilization of synthetic peptides containing nuclear localization signals for nonviral gene transfer systems // Gene Therapy. 2002. V. 9.N3.P. 157-167.
183. Liu Q.Y., Dou K.F., Zhang J.S., Sun L., Huang L.Y., Zhang Y.Q. Gonadotropin hormone-releasing hormone analog induces apoptosis in human hepatocarcinoma cell in vitro // Shijie Huaren Xiaohua Zazhi. 2003. V. 11. N9. P. 1329-1332.
184. Collas P., Alestrom P. Preparation of DNA-NLS complexes for microinjection into fertilized zebrafish eggs // Zebrafish Sci. Monitor. 1996.1. V 4. N 1. P. 3.
185. Лазарев B.H., Говорун B.M., Александрова H.M., Лопухин Ю.М. Генная терапия хронических инфекционных заболеваний урогенитального тракта с использованием цитотоксических пептидов // Вопросы медицинской химии. 2000. Т. 46. N 3. С. 324-331.
186. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays // J. Immunol. Methods. 1983. V. 65. N 1-2. P. 55-63.
187. Berger A., Noguchi J., Katchalski E. Poly-L-cysteine // J. Am. Chem. Soc. 1956. V. 78. N 17. P. 4483-4488.
188. Дэвыни Т., ГергейЯ. Аминокислоты, пептиды и белки. Под редакцией Незлина Р.С. М.: «Мир», 1976, 364 с.
189. Synthetic peptides as antigens. Solid-Phase Peptide Synthesis. Plaue S., Briand J. P. II Laboratory techniques in biochemistry and molecular biology. Burdon R.H., Knippenberg P.H. (eds). Amsterdam: Elsevier, 1988.1. V 19. P. 41-94.
190. Kaiser E., Bossinger C.D., Colescott R.L., Olsen O.B. Color test for terminal prolyl residues in the solid-phase synthesis of peptides // Anal. Chim. Acta. 1980. V. 118. P. 149-151.
191. Krchnark V., Vagner J., Safar P., Lebl M. Non-invasive continuous monitoring of solid phase peptide synthesis by acid-base indicator // Coll. Czech. Chem. Comm. 1988. V. 53. P. 2542-2548.
192. Pischel H., Holy A., Wagner G. Immunosupressant antigene conjugates XXI. Synthesis of conjugates of 5-halouracils with proteins using activated esters // Collect. Czech. Chem. Commun. 1979. V. 44. P. 1634-1641.
193. Applied Biosystems. Introduction to cleavage technique. 2nd edition. Foster City, 1995.
194. Dutta A.S., Barrington F. J. A., Giles M.B. Polypeptides. Part 15. Synthesis and biological activity of alpha-aza-analogues of luliberin modified in position 6 and 10 // J. Chem. Soc. Perkin 1. 1979. N 2. P. 379388.
195. Shinagawa S., Fujino M. Synthesis of a highly potent analog of luteinizing hormone-releasing hormone (LH-RH) des Gly-NH210, Pro-NHEt9.-LH-RH // Chem. Pharm. Bull. 1975. V. 23. N P. 229-232.
196. Guttmann S., Biossonnas R.A. Synthese d'analogues structuroux de la bradikinine //Helv. Chim. Acta. 1961. Bd. 44. S. 1713-1723.
197. Fisher R.F., Whetstone R.R. Peptide derivatives containing two trifunctional amino acids // J. Amer. Chem. Soc. 1954. V. 76. N 20. P. 50765080.
198. Gisin B.F. The preparation of Merrifield-resins through total esterification with cesium salts//Helv. Chim. Acta. 1973. Bd. 56. S. 1476-1482.