Операторные методы исследования систем линейных дифференциальных уравнений большой размерности тема автореферата и диссертации по математике, 01.01.02 ВАК РФ

Орешина, Мария Николаевна АВТОР
кандидата физико-математических наук УЧЕНАЯ СТЕПЕНЬ
Липецк МЕСТО ЗАЩИТЫ
2005 ГОД ЗАЩИТЫ
   
01.01.02 КОД ВАК РФ
Диссертация по математике на тему «Операторные методы исследования систем линейных дифференциальных уравнений большой размерности»
 
Автореферат диссертации на тему "Операторные методы исследования систем линейных дифференциальных уравнений большой размерности"

На правах рукописи

ОРЕШИНА МАРИЯ НИКОЛАЕВНА

ОПЕРАТОРНЫЕ МЕТОДЫ ИССЛЕДОВАНИЯ СИСТЕМ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ БОЛЬШОЙ РАЗМЕРНОСТИ

Специальность 01.01.02 — дифференциальные уравнения

Автореферат

диссертации на соискание ученой степени кандидата физико-математических наук

Воронеж - 2005

Работа выполнена в Липецком государственном техническом университете.

Научный руководитель: доктор физико-математических наук,

профессор Курбатов Виталий Геннадьевич.

Официальные оппоненты: доктор физико-математических наук,

Ведущая организация: Московский государственный институт

электронной техники (технический университет)

Защита состоится 4 октября 2005 года в 15 часов 40 минут на заг седании диссертационного совета К 212.038.05 по присуждению ученой степени кандидата физико-математических наук при Воронежском государственном университете по адресу: 394693 Воронеж, Университетская пл., 1, ВГУ, математический факультет.

С диссертацией можно ознакомиться в бибилиотеке Воронежского государственного университета.

Автореферат разослан " ^ " сентября 2005 года. Ученый секретарь

диссертационного совета К 212.038.05, доктор физико-математических наук,

профессор Смагин Виктор Васильевич доктор физико-математических наук, профессор Чернышов Карнелий Иссидорович

профессор

Ю.Е. Гликлих

¿.ооь -<t

¿SgO J 63

Общая характеристика работы

Актуальность темы. Диссертация посвящена построению и анализу приближенных методов решения систем линейных дифференциальных уравнений первого и второго порядка, неразрешенных относительно старшей производной, с самосопряженными неотрицательно определенными матричными коэффициентами большой размерности.

Такие уравнения возникают, например, в теории линейных электрических цепей. Одним из наиболее сложных примеров таких цепей являются дискретные модели длинных связанных линий, т.е. нескольких параллельных проводов, расположенных на близком расстоянии друг от друга. Расчет больших линейных электрический цепей, в частности, связанных линий, актуален в связи с задачами проектирования микросхем.

Современное развитие электроники движется в сторону создания все более миниатюрных и высокоскоростных микросхем. Такая схема представляет собой сложную систему, состоящую из миллионов полупроводниковых устройств и соединяющих их проводов. С целью учета влияния соединительных проводов их рассматривают как часть принципиальной электрической схемы. При этом длинные линии обычно заменяют дискретными моделями, содержащими достаточно большое количество секций. Использование ДС-моделей приводит к линейному дифференциальному уравнению первого порядка, a RLC-моделей — к линейному дифференциальному уравнению второго порядка.

В инженерных расчетах для решения уравнений, моделирующих соединительные провода в микросхемах, традиционно используются проекционные методы Крылова-Арнольди-Ланцоша. Построением различных вариантов таких методов занимались J.A. Aliaga, D.L. Boley, М. Celik, A. Dounavis, Р. Feldman, R.W. Freund, E.J. Grimme, M. Kamon, M.S. Nakhla, A. Odabasioglu, L.T. Pillegi, D. Skoogh, J. White и другие. В настоящей работе для приближенного решения таких уравнений используются операторные методы.

Существует обширная литература, в которой линейные дифференциальные уравнения (в основном, первого порядка), неразрешенные отно-

сительно старшей производной, изучаются со спектральной точки зрения, см., например, работы А.Г. Баскакова, С.Г. Крейна и К.И. Чернышо-ва, А. Г. Руткаса, Г.А. Свиридюка и другие. Абстрактная спектральная теория дифференциальных уравнений второго и более высокого порядка разрабатывалась в работах М.В. Келдыша, Ф.Р. Гантмахера, М.Г. Крейна и Г.К. Лангера, A.C. Маркуса, И.М. Глазмана и Ю.И. Любича и многих других. Важную роль в этой теории играют так называемые операторные пучки. Некоторые из этих результатов, а также общая идеология используются в настоящей диссертации. Основное отличие настоящей работы от перечисленных заключается в том, что в ней дифференциальные уравнения первого и второго порядка рассматриваются с точки зрения возможности эффективного построения приближенного решения.

Цель работы. Построение и анализ методов приближенного решения линейных дифференциальных уравнений первого и второго порядка, неразрешенных относительно старшей производной, с неотрицательно определенными матричными коэффициентами большой размерности. Исследование функций от квадратичного матричного пучка, возникающих при решении дифференциальных уравнений второго порядка.

Методы исследования. В диссертации используются методы теории дифференциальных уравнений, спектральной теории, в частности, теории операторных пучков, линейной алгебры, а также теории функций комплексного переменного и методы вычислений.

Научная новизна. В диссертации получены следующие основные результаты.

1) Разработан операторный метод приближенного решения линейного дифференциального уравнения первого порядка с самосопряженными неотрицательно определенными матричными коэффициентами, неразрешенного относительно производной. Получены явные оценки абсолютной и относительной точности приближения.

2) Разработан операторный метод приближенного решения линейного дифференциального уравнения второго порядка с самосопряженными неотрицательно определенными матричными коэффициентами,

• г» • I 4

j. -,;к ;

• >». т «<■

неразрешенного относительно старшей производной.

3) Развита теория аналитических функций от квадратичного матричного пучка, являющихся обобщением аналитических функций от одной матрицы. Получены явные формулы для функций от факто-ризованного матричного пучка, основанные на жордановой форме матричных корней пучка. Предлагаются два подхода к вычислению таких функций, основанные на решении непрерывного уравнения Сильвестра. Доказана теорема о представлении произведения функций от факторизованного матричного пучка.

Перечисленные результаты являются новыми.

Теоретическая и практическая значимость. Работа носит теоретический характер. Ее результаты могут применяться в теории дифференциальных уравнений и численных методов их решения, а также в теории операторов.

Апробация работы. Основные результаты работы докладывались на: международной научной конференции "Нелинейный анализ и функционально - дифференциальные уравнения" — Воронеж, 2000; Воронежской зимней математической школе — "Современные методы теории функций и смежные проблемы" — Воронеж, 2001; межвузовской научно -технической конференции "Новые технологии в научных исследованиях, .проектировании, управлении, производстве" — Воронеж, 2001; Воронежской зимней математической школе — Воронеж, 2002; международной научной конференции "Современные проблемы функционального анализа и дифференциальных уравнений" — Воронеж, 2003; Воронежской зимней математической школе — "Современные методы теории функций и смежные проблемы" — Воронеж, 2005; 12-ой Всероссийской межвузовской научно-технической конференции студентов и аспирантов "Микроэлектроника и информатика - 2005" — Москва, 2005; семинаре В.Г. Курбатова (2000-2005, ЛГТУ), семинаре Б.Н. Садовского (2004, ВГУ).

Публикации. Основные результаты работы опубликованы в [1]-[7]. В совместной с В.Г. Курбатовым работе [4] автору диссертации принадлежит метод построения приближенного решения дифференциального

уравнения второго порядка, а В.Г. Курбатову — утверждения о соотношении между корнями квадратичного операторного пучка. В совместной с В.Г. Курбатовым статье [5] автору диссертации принадлежит метод построения приближенного решения дифференциального уравнения первого порядка и оценки его точности, а В.Г. Курбатову — результаты о связи операторных методов с методами Арнольди-Ланцоша. Только результаты, принадлежащие лично автору диссертации, включены в диссертационную работу.

Структура и объем работы. Диссертация состоит из введения, трех глав, разбитых в общей сложности на 12 параграфов (некоторые крупные параграфы, в свою очередь, разбиты на более мелкие — пункты), списка литературы, включающего 88 наименований, и приложения. Для утверждений (теорем, предложений и следствий) и замечаний принята сквозная нумерация, а для формул используется двойная нумерация вида (номер главы.номер формулы в главе). Рисунки нумеруются внутри каждой главы заново. Общий объем диссертации составляет 127 стр., без приложения — 104 стр.

Содержание работы

Во введении обоснована актуальность исследуемой проблемы, перечислены основные результаты, полученные в работе, а также сделан обзор известной литературы по теме диссертации.

Первая глава посвящена построению приближенного решения линейного дифференциального уравнения первого порядка вида

т + Вх = /(*) (1)

с самосопряженными неотрицательно определенными матричными коэффициентами Г) и В.

Содержание §1.1 носит вспомогательный характер. В нем определяется изучаемая начальная задача на оси: до некоторого момента времени система находилась в нулевом положении равновесия х(Ь) — 0, 2 < ¿о, затем поступил входной импульс в виде свободного члена /, который

вызвал некоторый ответный отклик < > ¿о- С математической точки зрения такая постановка задачи сводится к нахождению решения х, удовлетворяющего дифференциальному уравнению на всей оси в предположении, что /(£) = 0 левее некоторой точки ¿о, в классе функций х, обладающих тем же свойством. Кроме того, для приложений обычно интерес представляет решение не самого уравнения (1), а связанной с ним линейной динамической системы

в которой правая часть имеет вид f(t) = Ьи(1) (для электрической цепи это соответствует тому, что схема содержит лишь один входной источник напряжения или тока), а вместо решения х достаточно искать лишь одну его координату, имеющую смысл выхода и порождающую функцию у. Здесь Ь, I — фиксированные векторы, а скалярная функция и задает форму входного сигнала.

Приводятся определения и свойства импульсных характеристик системы (4). Матричной импульсной характеристикой называют матричное решение Ь #(/) уравнения

где 5 — дельта-функция Дирака, равное нулю на (—сю, 0), а скалярной импульсной характеристикой системы (4) называют решение Л системы (4), соответствующее входу и = 6 и равное нулю на (—оо,0). Для импульсных характеристик справедливы представления

В предложении 3 напоминается, что решение, соответствующее произвольной функции и, может быть получено как свертка импульсной характеристики Н с входной функцией и. В предложении 4 показано, что

Ох{р) + ВхЦ) = Ьи(г),

у{1) = {х{1),1),

(2)

НЦ) = АН(г) + teR,

при ^ > 0, при t < 0,

Л(«) = М<) = М*)М>-

точное решение системы (4) представимо в виде

y(t) = (MA)D~4,l),

где i?< — специальная аналитическая функция, явно выражающаяся через функцию и.

В §1.2 излагается основная идея построения приближенного решения уравнения первого порядка (1), состоящая в приближении множителя еЛь в импульсной характеристике аналитической функцией rt(A) от матрицы А. Обсуждаются способы оценки точности такого приближения. Основными результатами являются теоремы 8 и 12, в которых точность приближения импульсной характеристики h(t) оценивается в терминах максимума разности rt(А) — eXt, где А пробегает спектр сг(А) матрицы А. При этом в теореме 8 оценивается абсолютная ошибка, а в теореме 12 — относительная ошибка приближения.

Теорема 8. Пусть на спектре матрицы А — —D~lB приближение А rt(A) отличается от функции A ext на e(t) > 0, т.е.

|rt(A) - ext\ < e(t) для всех А е а(А).

Тогда для приближенной скалярной импульсной характеристики

h,b(t) = (гt(A)D-H,b)

справедлива оценка

|hib(t) - hw{t)| < £{t)^hu(+0)hbb(+0).

Теорема 12. Пусть на спектре матрицы А = —D~lB приближение А н-> fj (А) действительно для действительных А и отличается от функции A >-t ext на s(t)ext, т.е.

|r,(A) - ext\ < e(t)eXt для всех A G а{А).

Тогда для приближенной "диагональной" скалярной импульсной характеристики

huit) = (rt{A)D~\l)

справедлива оценка

|hu{t) - hn(t)| < £{t)hu{t).

A для приближенной скалярной импульсной характеристики huit) выполняется оценка

|hit) ~ Ы*)| < е(0(|М*)| + Vhuit)hbbitj).

Справедливы аналогичные утверждения (теоремы 9 и 13) об оценке точности приближенного решения уЦ) с помощью разности г4(Л) — i9t(A).

Предполагается, что точно спектр <j{A) не известен. В связи с этим в §1.3 обсуждаются методы его оценки, а именно, способы нахождения отрезка [—¡3, —а], содержащего <г(А).

В §1.4 обсуждаются способы выбора приближающей функции rt. Простейшим способом построения приближения является использование в качестве г< многочлена г((Л) = cq(î)1 + c\{t)A + • • ■ + c„(i)An с коэффициентами c*(f), зависящими от t. В пункте 1.4.1 обсуждаются три основных способа построения многочлена rt — использование многочленов Тейлора, интерполяционных многочленов и многочленов наилучшего приближения. Последние дают лучшие результаты, но требуют более сложных вычислений. Интересно также отметить, что выбор многочлена rt зависит от типа оценки точности, которую мы хотим получить, иначе говоря, минимизация абсолютной или относительной ошибки требует использования разных многочленов rt. Отметим, что при использовании многочленов хорошего результата можно добиться лишь на некотором отрезке вида [0,io]- Величина to зависит от количества степеней Ак, которые мы готовы вычислить.

В пункте 1.4.2 вместо многочлена rt используются аппроксимации Паде и рациональные функции наилучшего приближения. Оказывается, использование рациональных функций не требует оценки спектра А. Кроме того, такой подход позволяет получать высокую точность даже при небольшом порядке рациональной функции. К сожалению, прямое вычисление рациональной функции Г( требует в каждой точке t заново обращать матрицу, стоящую в знаменателе. Частично эту проблему

удается решить, если "замораживать" знаменатель и строить приближение на отрезке. Такой отрезок никогда не содержит ноль. Поэтому для построения приближения в окрестности нуля приходится пользоваться многочленами или аппроксимациями Паде без "замораживания". Аналогично случаю многочленов, наилучшее рациональное приближение обеспечивает значительно лучшее качество приближения, но является более трудоемким.

При изложении предлагаемого в главе 1 метода в §1.2—§1.4 предполагается, что матрица И обратима. В §1.5 обсуждается случай, когда Б вырождена. Здесь показано, что этот случай полностью сводится к рассмотренному.

Во второй главе рассматриваются уравнения вида

+ + Вх = /(<), (3)

обладающие специальным свойством: одна из матриц N или В мала, а матрица И обратима. Ограничение на малость матричных коэффициентов обычно выполняется для ДЬС-цепей с малыми индуктивностями, а обратимость матрицы В соответствует тому, что в цепи достаточно много сопротивлений. В этих предположениях предлагается эффективный метод решения уравнения (3), основанный на его сведении к двум уравнениям первого порядка. Как и в первой главе, для уравнения (3) также рассматривается начальная задача на оси, а правая часть предполагается имеющей вид /(£) = ср. с (2).

Первые три параграфа содержат результаты, необходимые для доказательства основных теорем 38 и 39, приведенных в четвертом паг раграфе. В §2.1 с помощью теории операторных пучков показано, что дифференциальный оператор Ь = АГ^ + + В, соответствующий уравнению (3), можно представить в виде произведения {^М 4- MZ +

дифференциальных операторов первого порядка. В §2.2 аналогичным образом для оператора Ь строится факторизация - (^{АУ +

1) + ^ {^У - . В §2.3 устанавливается взаимосвязь между этими представлениями. Наконец, в §2.4 дифференциально? уравнение второ-

го порядка заменяется на два уравнения первого порядка х — Zx = / и Ух - х — /, к которым применимы идеи построения приближенного решения из главы 1.

Теорема 38. Решение начальной задачи на оси для уравнения

N¡0 + Их + Вх = Ьи(г)

можно представить в виде

X = XI + Х2,

где х\ и Х2 — решения уравнений

¿1 - гхх = {N2 + + Юу^Ьи

и

Ух2 -Х2 = (ВУ + БуЩыг + + 1>)-1Ьи.

Приводятся формулы (предложения 25 и 29) для эффективного вычисления матриц 2иУ.

В приложениях часто возникают уравнения вида (3) с правой частью вида /(<) = Ьй{1). В частности, уравнениями такого вида описываются КЬС-цепи. Следующая теорема является аналогом теоремы 38 для таких уравнений.

Теорема 39. Решение начальной задачи на оси для уравнения Мх + Бх + Вх = Ъй{г) можно представить в виде

X = XI + Х2, где хх и х2 — решения уравнений

¿1 - 2хх = -{Иг + 0)~1В{ВУ + УВ + Б)-11т

и

Ух2 -ха = -(ВУ + УВ + ву1ы.

Построение решения для уравнения второго порядка тесно связано с аналитическими функциями от матричного пучка. В связи с этим, в третьей главе изучаются аналитические функции от квадратичных у г-ричных пучков специального вида. А именно, обсуждаются функции от факторизованного матричного пучка

F{A B) = h!v /(A)(A1 ~1(A1 _ B)~l dX (4)

и функции

F(N, = /(A)(A2iV + AD + B)'1 d\ (5)

где матричный пучок не факторизован, но матрица N является обратимой. Функции вида (4) и (5) можно рассматривать как обобщение функций от одной матрицы

В §3.1 показывается, что матричная импульсная характеристика уравнения

(й-*) (г<6)

при t > 0 имеет вид (предложение 42)

H{t) = Exp(t,A,B) = -L [ ем(Х1 - ^)-»(Al - B)~ld\ 2m JY

а решение уравнения (6) представимо в виде (предложение 44)

x{t) = МА,В)Ь = Q^J mA)(A1 " ^)_1(А1 - В)~Ы\)ъ.

Таким образом, функции H(t) — Exp(t,A,B) и x(t) = $t{A, B)b являются примерами аналитических функций от матричного пучка А (А1 - 5)(А1 - Л).

Основное содержание главы составляет §3.2, в котором для функций вида (4) удается построить достаточно развитую теорию.

В пункте 3.2.1 приводятся явные формулы для нахождения функций от пучка, основанные на жордановой форме матриц А а В. Пусть Т

— матрица перехода к жордановой форме матрицы А, а Я — матрица перехода к жордановой форме матрицы В. Обозначим через S матрицу Т~1Н. Разобьем ее на прямоугольные блоки S — {S1; } размера г, xqj, где г, — порядок жорданова блока А^ матрицы A, a qj — порядок жорданова блока Bj матрицы В. Нам понадобится также вспомогательная блочная матрица L = {£,_,}, блоки которой определяются формулой i)-li4-l / i-ik/ofc

Здесь С*+р — биномиальные коэффициенты, а а, и — собственные значения матриц Au В, отвечающие жордановым блокам А^ и В} соответственно. Размер блока Ьц равен г, х qj.

Теорема 46. Пусть спектры матриц АиВ не пересекаются. Тогда для F(A, В) справедливо представление

F (А, В) — TQH'1,

где Q = Q(f, А, В) = {Qij} — блочная матрица с блоками

Qij = /(4)Ly - Lijf(Bj),

а блоки Lij определены формулой (7).

Эту теорему можно интерпретировать как аналог представления аналитических функций от одной матрицы с помощью ее жордановой формы.

Альтернативная формула для F [А, В) предлагается в теореме 47, в которой используются функции от матриц Л и В, а также специальная матрица Р, которая зависит только от А и В и не зависит от /. Этот факт удобно использовать, если необходимо вычислить несколько функций / от одного и того же пучка.

Теорема 47. Пусть спектры матриц АиВ не пересекаются. Тогда функцию F(A, В) можно представить в виде

F(A,B) = f(A)P-Pf(B),

где

Р = TLH~\ (8)

а матрица L определена формулой (7).

Приводятся также аналоги этих теорем для диагонализуемых матриц А и В, а. также для случая, когда спектры матриц А и В пересекаются.

Для функций от одной матрицы справед лива теорема о функциональном исчислении, утверждающая, в частности, что сумма функций f + g переходит в сумму матриц f(A) + 5(Л), а произведению функций / • g соответствует произведение матриц f{A) ■g(A). В случае квадратичного пучка эта теорема перестает быть справедливой. Сумме функций f + g, очевидно, по-прежнему соответствует сумма матриц F (А, В) + G(A, В), но произведению функций / • g уже не соответствует произведение матриц F(A,B) • G(A,B). В теореме 52 (пункт 3.2.2) приводится представление для произведения функций от квадратичного матричного пучка.

Теорема 52. Для двух аналитических функций fug имеет место тождество

¿ТI /(A)ff(A)(Al - Л)-Х(А1 - Я)-1 d\ = F (A, B)g(B) + f(A)G(A, В).

В пункте 3.2.3 предлагается метод нахождения F(A,B), основанный на решении непрерывного уравнения Сильвестра. Он позволяет обойти некоторые вычислительные трудности, связанные с использованием жордановой формы. Дело в том, что для матриц, далеких от нормальных, плохая обусловленность матрицы перехода к жордановой форме — распространенное явление. В этом случае даже незначительные погрешности округления могут сильно испортить результат вычисления по явным формулам. Предлагаются два способа преодоления этой проблемы. Первый из них основан на представлении F{A, В) — f{A)P — Pf{B) из теоремы 47. При этом для нахождения матрицы Р вместо явной формулы (9) рекомендуется решать уравнение АР — PB — 1. Это уравнение представляет собой непрерывное уравнение Сильвестра, для решения которого известны численно устойчивые ортогональные методы.

Теорема 53. Матрица Р является решением непрерывного уравнения Сильвестра

АР - PB = 1.

Как и в пункте 3.2.1, этот способ рекомендуется для вычисления нескольких функций от одного и того же пучка.

Второй способ описывается в теореме 55. Оказывается, функция F является решением уравнения Сильвестра AF(A, В) - F(A, В)В = f(A) -f(B), которое можно упростить (следствие 56), воспользовавшись разложением Шура матриц А а В.

Теорема 55. Функция F(A, В) удовлетворяет непрерывному уравнению Сильвестра

AF(A, В) - F(A, В)В = }(А) - /(В).

В §3.3 обсуждаются матричные функции вида (6) в предположении, что матрица N обратима. Примером функций такого вида являются матричная импульсная характеристика уравнения (3) (предложение 42)

H{t) = Expit, N, D, В) — -^-7 f eAt(Ä2JV + XD + B)"1 dX,

2m Jr

а также решение уравнения (3), соответствующее правой части вида bu(t) (предложение 44),

x(t) = 4t(N, D, В)Ь =(JüfF <МЛ)(>?N + XD + В)'1 <*Л) b-

Приводятся явные формулы для вычисления многочленов и рациональных функций от матричного пучка А X2N + XD + В, которые можно использовать для построения приближенной импульсной характеристики и приближенного решения уравнения (3). Отметим, что результаты §3.3 могут быть применены в ситуациях, когда дифференциальный оператор L = N^+D^+B факторизовать не удается, и поэтому ни методы из главы 2, ни идеи §3.2 применить нельзя.

В приложении приводятся результаты численных экспериментов, иллюстрирующие применение методов настоящей диссертации к расчету некоторых линейных электрических цепей.

Основные результаты диссертации опубликованы в следующих работах.

1) Гуленко М.Н. Об импедансе некоторых электрических цепей/ М.Н. Гуленко// Нелинейный анализ и функционально-дифференциальные уравнения. Тезисы докладов международной научной конференции. 15 - 20 мая 2000 г.— Воронеж, 2000.— С. 84-85.

2) Орешина М.Н. Об одном методе приближенного расчета линейных электрических цепей/ М.Н. Орешина// Труды межвузовской научно-технической конференции "Новые технологии в научных исследованиях, проектировании, управлении, производстве". 17-18 апреля 2001 г.- Воронеж 2001.- С. 27-28.

3) Орешина М.Н. Об оценке приближенного решения линейного дифференциального уравнения высокой размерности/ М.Н. Орешина// Сборник научных трудов преподавателей и сотрудников, посвященный 45-летию Липецкого государственного технического университета. - Липецк, 2001. Часть 3. - С. 51-54.

4) Орешина М.Н. О нахождении приближенного решения линейного дифференциального уравнения второго порядка/ В.Г. Курбатов, М.Н. Орешина// Вестник ВГУ. Серия физика, математика,— 2003. - № 2. - С. 173-188.

5) Oreshina M.N. Interconnect Macromodelling and Approximation of Matrix Exponent/ V.G. Kurbatov, M.N. Oreshina// Analog Integrated Circuits and Signal Processing. — 2004. — Vol. 40, no. 1.— pp. 5-19.

6) Орешина М.Н. О связи некоторых аналитических функций от матричного пучка с уравнением Сильвестра/ М.Н. Орешина// Воронежская зимняя математическая школа 2005.— Воронеж 2005 - С. 171-172.

7) Орешина М.Н. Об одном методе приближенного расчета RC-цепей. / М.Н. Орешина//12-я Всерос. межвуз. науч.-тех. конф. студентов и аспирантов "Микроэлектроника и информатика-2005". 19 - 21 апреля 2005 года. Тез. докл. — Москва, 2005 - С. 109.

Подписано в печать 30.08.2005г. Формат 60x84 1/16. Печ.л. 1,0. Бумага писчая. Ризография. Тираж 100 экз. Заказ № 897. Типография ЛГТУ 398600 Липецк, ул. Московская, 30.

I \

k

[

0

»1578 5

РНБ Русский фонд

2006-4 15437

 
Содержание диссертации автор исследовательской работы: кандидата физико-математических наук, Орешина, Мария Николаевна

Введение

Глава 1. Уравнения первого порядка

§1.1. Точные формулы для решения линейных дифференциальных уравнений первого порядка.

§1.2. Оценки приближения

§1.3. Оценки спектра матрицы А.

§1.4. Способы приближения.

1.4.1. Приближение многочленами

1.4.2. Приближение рациональными функциями.

§1.5. Случай необратимой матрицы V.

Глава 2. Уравнения второго порядка

§2.1. Факторизация уравнения второго порядка с помощью матричного корня его пучка.

§2.2. Факторизация уравнения второго порядка с помощью матричного корня обратного пучка.

§2.3. Связь между матрицами И и V.

§2.4. Сведение дифференциального уравнения второго порядка к двум уравнениям первого порядка

Глава 3. Аналитические функции от квадратичного пучка

§3.1. Точные формулы для решения линейных дифференциальных уравнений второго порядка.

§3.2. Функции от факторизованного матричного пучка.

3.2.1. Представление функций от пучка с помощью жордановой формы.

3.2.2. Произведение функций от квадратичного пучка

3.2.3. Связь функций от пучка с уравнением Сильвестра

§3.3. Функции от нефакторизованного матричного пучка

 
Введение диссертация по математике, на тему "Операторные методы исследования систем линейных дифференциальных уравнений большой размерности"

Настоящая диссертация посвящена построению и анализу приближенных операторных методов решения систем линейных дифференциальных уравнений первого и второго порядка вида

Ох + Вх = /(«) (1) и + Ш + = /(*) (2) на основе аналитических функций от матриц И, В и N. Характерная особенность рассматриваемых уравнений заключается в том, что они являются неразрешенными относительно старшей производной и все матричные коэффициенты £), В и N являются самосопряженными и неотрицательно определенными. В диссертации основное внимание уделяется случаю, когда матрицы И, В и N имеют большой порядок.

Такие уравнения возникают, например, в теории линейных электрических цепей [2, 17, 33, 41, 42, 79]. Одним из наиболее сложных примеров таких цепей являются дискретные модели длинных связанных линий, т.е. нескольких параллельных проводов, расположенных на близком расстоянии друг от друга. Расчет больших линейных электрический цепей, в частности, связанных линий, актуален в связи с задачами проектирования микросхем, см. например, [12, 22, 79].

Современное развитие электроники движется в сторону создания все более миниатюрных и высокоскоростных микросхем. Такая схема представляет собой сложную систему, состоящую из миллионов полупроводниковых устройств и соединяющих их проводов. С целью уменьшения размера микросхемы, провода стараются располагать как можно ближе друг к другу, а с целью увеличения быстродействия — проходящие по ним импульсы стараются сделать как можно более короткими и тем самым с большим содержанием высоких частот. В результате взаимное влияние сигналов, проходящих по соседним проводам, оказывается существенным и его приходится учитывать.

С целью учета влияния соединительных проводов их рассматривают как часть принципиальной электрической схемы. При этом длинные линии обычно заменяют дискретными моделями, содержащими достаточно большое количество секций. Использование ЯС-моделей приводит к линейному дифференциальному уравнению первого порядка (1), а ЯЬС-моделей — к линейному дифференциальному уравнению второго порядка (2).

Для анализа работы микросхемы приходится решать систему, состоящую из огромного числа уравнений, как линейных, так и нелинейных. С целью упрощения этой системы в инженерных расчетах пользуются следующей ее особенностью. Оказывается, нелинейные уравнения можно отделить от линейных. Поэтому линейные уравнения обычно решают независимо, а затем результат подставляют в оставшиеся нелинейные. Однако размерность системы уравнений, описывающих линейные части схемы, все равно остается большой.

Свойства матричных коэффициентов возникающих линейных уравнений зависят от способа составления уравнений. Существует несколько вариантов составления уравнений, что соответствует различным модификациям уравнений Кирхгофа [2, 17, 33, 41, 42, 79]. Для нас важно, что уравнения можно выписать таким образом, чтобы матричные коэффициенты £), В и N в (1) и (2) были самосопряженными и неотрицательно определенными.

Существует обширная литература, в которой линейные дифференциальные уравнения (в основном, вида (1)), неразрешенные относительно старшей производной, изучаются со спектральной точки зрения, см. например, работы А.Г. Баскакова, С.Г. Крейна и К.И. Чернышова [3, 4, 26], А.Г. Руткаса [34, 37, 38], Г.А. Свиридюка [40] и литературу в них. Эти работы имеют некоторые идейные точки соприкосновения с настоящей диссертацией. Основное отличие настоящей работы от перечисленных заключается в том, что в ней дифференциальные уравнения вида (1) рассматриваются с точки зрения возможности эффективного построения приближенного решения.

Абстрактная спектральная теория дифференциальных уравнений второго порядка вида (2) и более высокого порядка разрабатывалась в работах М.В. Келдыша [23], Ф.Р. Гантмахера [10], М.Г. Крейна и Г.К. Лангера [25], A.C. Маркуса [30], И.М. Глазмана и Ю.И. Люби-ча [11] и многих других. Важную роль в этой теории играют так называемые операторные пучки (в случае уравнения (2) это функция А X2N + АD + В). Некоторые из этих результатов, а также общая идеология используются в настоящей диссертации в главах 2 и 3. В диссертации уравнения вида (2) также рассматриваются с несколько иной точки зрения, чем в перечисленных работах, а именно, обсуждается возможность получения с помощью абстрактной теории эффективных методов приближенного решения.

Напомним еще раз, что диссертация посвящена приближенным операторным методам решения уравнений (1) и (2). Классический подход в теории дифференциальных уравнений [32] рекомендует для решения линейного дифференциального уравнения первого порядка вида (1) в случае обратимой матрицы D заменить исходное уравнение (1) на уравнение jtx{t) = Ax{t) + D~1f{t\ (3) где А = —D~lB, и с помощью жордановой формы матрицы А найти фундаментальное решение eAt. К сожалению, на практике процесс вычисления жордановой формы оказывается неустойчивым [14, 21]: даже незначительные возмущения могут сильно испортить результат вычисления. Известны различные модификации этого подхода [14, 21, 66], основанные на других спектральных разложениях А = TAT-1, например, на представлении матрицы А в форме Шура. В результате получаются более устойчивые процедуры. Однако в случае матриц высокого порядка вычисление функции от матрицы типа eAt спектральными методами является довольно трудоемким. Поэтому в общем случае уравнения (1) и (3) приходится решать приближенно.

Следует отметить, что даже в случае обратимой матрицы £) при замене уравнения (1) на уравнение (3) и последующем его решении традиционными методами теории дифференциальных уравнений или численными методами упускается серьезная деталь, а именно, теряется свойство самосопряженности коэффициентов: для самосопряженных матриц I) и В произведение А = —И^В уже самосопряженным не является. В то же время естественно ожидать, что такая важная особенность исходного уравнения, как самосопряженность и неотрицательная определенность матричных коэффициентов, может быть использована при построении решения. В диссертации предлагается приближенный метод, не требующий вычисления собственных значений и собственных векторов и позволяющий учесть указанные свойства матриц И и В. Метод основан на приближении аналитической функции от матрицы А (матричной экспоненты еАг или некоторой специальной функции ^(Л)) многочленом или рациональной функцией г^А).

В случае необратимой матрицы И ситуация усложняется. Классический метод решения уравнений первого порядка с необратимым старшим коэффициентом основан на возможности следующего преобразования, восходящего к Вейерштрассу [80] и Кронекеру [70] (см. также [49, с. 497] и [10, с. 315]): для любой пары матриц И и В существуют невырожденные квадратные матрицы Ги5, такие что где матрица нильпотентна. Прозрачное объяснение существования такого преобразования, использующее контурные интегралы от резольвенты, можно найти в упомянутых выше работах [3, 4, 26, 40]. Современный численный алгоритм построения подобного преобразования берет начало от работы Стюарта [78], см. также его изложение и обсуждение в [49, с. 511], [14, § 7.7] и [18, § 4.5]. К сожалению, этот алгоритм в случае матриц большого порядка является довольно трудоемким и поэтому не всегда удобен. Отметим, что предлагаемый в диссертации метод применим и в случае необратимой матрицы И, см. §1.5.

В литературе по методам вычислений [6, 13, 48, 49] для уравнений вида (1) и (3) обычно рекомендуют использовать различные разностные схемы, наиболее популярными из которых являются методы Рунге-Кут-ты. Схемы Рунге-Кутты образуют целое семейство [48, 49], включающее в себя огромное количество численных методов приближенного решения дифференциальных уравнений. Это семейство распадается на два больших класса — явные методы и неявные. Можно показать [49], что применение явных методов Рунге-Кутты для решения однородного уравнения Ах{*) и тем самым для нахождения импульсной характеристики уравнения (3)) на первом шаге эквивалентно вычислению некоторого многочлена от матрицы А, а затем на последующих шагах возведению этого многочлена в степень (в качестве такого многочлена чаще всего используются многочлены Тейлора для экспоненты). Аналогичным образом неявные методы Рунге-Кутты сводятся к вычислению рациональной функции от матрицы А и возведению ее в степень (для большинства неявных методов такими рациональными функциями являются аппроксимации Паде [5] для экспоненты). Поэтому использование методов Рунге-Кутты для матриц высокого порядка связано со значительными вычислительными затратами: чтобы найти, например, решение в точке, отстоящей от начальной на 100 шагов, по сути дела, приходится матрицу высокого порядка возводить в сотую степень.

В диссертации, приближенное решение также строится с помощью некоторой функции от матрицы А, но выбор такой функции оптимизируется. Поэтому подход, предлагаемый в диссертации, позволяет избежать вычисления высоких степеней и ограничиться вычислением рациональных функций сравнительно небольшого порядка (со степенью знаменателя не выше 15). Кроме того, если необходимо найти решение на отрезке, не содержащем начальную точку, метод, предлагаемый в диссертации, не требует вычисления решения в точках, лежащих между начальной точкой и левой границей интересующего нас отрезка, тогда как в методах Рунге-Кутты расчет всегда необходимо выполнять последовательно от начальной до конечной точки. Это преимущество становится особенно ощутимым, если интересующий нас отрезок расположен достаточно далеко от начальной точки.

В приложениях, связанных с расчетом микросхем, для решения уравнений типа (1) традиционно используются проекционные методы Крыло-ва-Арнольди-Ланцоша [54]—[56], [58]—[65], [67]—[69], [71]-[77], [81], которые позволяют понизить порядок системы. На практике эти методы обычно неплохо работают, но присутствие некоторого элемента случайности в выборе приближения иногда приводит к сбоям (например, приближенная модель может оказаться неустойчивой [71]). Кроме того, недостатком этих методов является невозможность оценить точность результата. При таком способе расчета неясно, как именно необходимо построить приближение, какой размерности должна быть новая система, чтобы получить решение, удовлетворяющее заранее выбранной точности. Метод приближенного решения уравнения (1), излагаемый в настоящей диссертации, по объему вычислений сопоставим с методами Крылова-Арнольди-Ланцоша, но в принципе позволяет в явном виде получить оценку точности вычислений.

Некоторые уравнения вида (1) возникают как результат применения метода прямых [6, 7, 27] к некоторому параболическому уравнению, тем самым методы решения уравнения (1) можно интерпретировать как схемы приближенного решения уравнений в частных производных. В терминах нашего основного приложения это означает, что для расчета длинных линий можно использовать не только дискретные, но и непрерывные модели. Во втором случае длинные линии описываются системой телеграфных уравнений с самосопряженными неотрицательно определенными матричными коэффициентами, которая при Ь = 0 имеет параболический тип. Среди численных методов для уравнений в частных производных к обсуждаемому в работе подходу наиболее близки разностные схемы Кранка-Николсон [7, 57] для параболических уравнений, см., например, работы В.В. Смагина [43, 44, 45]. Отметим, что разностные схемы Кранка-Николсон аналогичны неявным методам Рунге-Кутты, поскольку эти методы также основаны на вычислении рациональной функции от некоторого оператора, возникающего после дискретизации по переменным ви^и последующем возведении ее в степень. Поэтому сделанные выше замечания о методах Рунге-Кутты относятся и к методам Кранка-Николсон.

Для решения уравнений второго порядка вида (2) в классической теории дифференциальных уравнений обычно рекомендуют [32] заменить исходное уравнение (2) на уравнение первого порядка удвоенной размерности. В приложениях с помощью специальных способов записи уравнений Кирхгофа (метод переменных состояния [79], модифицированный метод узловых напряжений [17, 33]) вместо уравнения второго порядка выписывают уравнение первого порядка с матрицами того же порядка. И в том, и в другом случае матричные коэффициенты уравнения первого порядка, как правило, уже не являются неотрицательно определенными. После этого к полученным уравнениям первого порядка применяют те или иные из упомянутых выше методов решения. Отметим также, что известны [6] разностные схемы типа схем Рунге-Кутты, применимые непосредственно к уравнениям второго порядка и не требующие предварительного сведения этих уравнений к системам первого порядка, однако в существенном (возведение в большую степень рациональной функции от некоторой матрицы) эти методы очень близки к методам Рунге-Кутты для уравнений первого порядка. В диссертации предлагается альтернативный подход для приближенного решения уравнения (2), учитывающий свойства самосопряженности и неотрицательной определенности матричных коэффициентов Ы, И и В, основанный на факторизации квадратичных операторных пучков [10, 11, 25, 30].

Первая глава посвящена построению приближенного решения линейного дифференциального уравнения первого порядка вида (1) с самосопряженными неотрицательно определенными матричными коэффициентами D и В.

Содержание §1.1 носит вспомогательный характер. В нем определяется изучаемая начальная задача на оси: до некоторого момента времени система находилась в нулевом положении равновесия x(t) = 0, t < to, затем поступил входной импульс в виде свободного члена /, который вызвал некоторый ответный отклик x(t)} t > to. С математической точки зрения такая постановка задачи сводится к нахождению решения ж, удовлетворяющего дифференциальному уравнению на всей оси в предположении, что f(t) = 0 левее некоторой точки to, в классе функций х, обладающих тем же свойством. Кроме того, для приложений обычно интерес представляет решение не самого уравнения (1), а связанной с ним линейной динамической системы

Dx(t) + Bx(t) = bu(t), в которой правая часть имеет вид f(t) = bu(t) (для электрической цепи это соответствует тому, что схема содержит лишь один входной источник напряжения или тока), а вместо решения х достаточно искать лишь одну его координату, имеющую смысл выхода и порождающую функцию у. Здесь 6, I — фиксированные векторы, а скалярная функция и задает форму входного сигнала.

Приводятся определения и свойства импульсных характеристик системы (4). Матричной импульсной характеристикой называют матричное решение t H(t) уравнения

H(t) = AH(t) + D-X6(t), t e R, где S — дельта-функция Дирака, равное нулю на (—оо,0). (Скалярной) импульсной характеристикой системы (4) называют решение h системы (4), соответствующее входу и = S и равное нулю на (—оо,0). Для импульсных характеристик справедливы представления eMD~l при t > О, Hit) ={

I О при t < О, h(t) = hlb(t) = (H(t)bJ).

В предложении 3 напоминается, что решение, соответствующее произвольной функции и, может быть получено как свертка импульсной характеристики h с входной функцией и. В предложении 4 показано, что точное решение системы (4) представимо в виде y(t) = (,h{A)D~\l>, где dt — специальная аналитическая функция, явно выражающаяся через функцию и.

В §1.2 излагается основная идея метода приближенного решения уравнения первого порядка (1), состоящая в приближении множителя eAt в импульсной характеристике аналитической функцией rt(A) от матрицы А. Обсуждаются способы оценки точности такого приближения. Основными результатами являются теоремы 8 и 12, в которых точность приближения импульсной характеристики h(t) оценивается в терминах максимума разности г* (Л) — eXt, где Л пробегает спектр сг(Л) матрицы А. При этом в теореме 8 оценивается абсолютная ошибка, а в теореме 12 — относительная ошибка приближения.

Теорема 8. Пусть на спектре матрицы А = —D lB приближение А rt(A) отличается от функции А ь->- еЛ* на e{t) > 0, т.е. rt(A) - ext\ < e(t) для всех А € (г(А).

Тогда для приближенной импульсной характеристики hlb{t) = (rt(A)D~ll,b) справедлива оценка

Ы*) - М*)| < c(t) л/Л||(+0)Л»(+0).

Теорема 12. Пусть на спектре матрицы А = —D~lB приближение А п{Л) действительно для действительных А и отличается от функции А н-> eAi на e(t)ext, т.е. г*(А) - ел*| < e(t)ext для всех А Е Тогда для приближенной "диагональной" импульсной характеристики hn(t) = (rt(A)D-%l) справедлива оценка

Лн(0-ад*)| <e(t)hn(t).

А для приближенной импульсной характеристики hib(t) имеем |hib{t) - Ы*)| < e(t) (|Ы*)| + y/hii{t)hbb{t)).

Справедливы аналогичные утверждения (теоремы 9 и 13) об оценке точности приближенного решения y(t) с помощью разности rt(À) — $<(А).

Предполагается, что точно спектр с (А) не известен. В связи с этим в §1.3 обсуждаются методы его оценки, а именно, способы нахождения отрезка [—(3, —а], содержащего <т(А).

В §1.4 обсуждаются способы выбора приближающей функции г t. Простейшим способом построения приближения является использование в качестве rt многочлена rt(A) = co(i)l + ci(t)A + • • • + cn{t)An с коэффициентами Ck(t), зависящими от t. В пункте 1.4.1 обсуждаются три основных способа построения многочлена rt — использование многочленов Тейлора, интерполяционных многочленов и многочленов наилучшего приближения. Последние дают лучшие результаты, но требуют более сложных вычислений. Интересно также отметить, что выбор многочлена rt зависит от типа оценки точности, которую необходимо получить, иначе говоря, минимизация абсолютной или относительной ошибки требует использования разных многочленов rt. Отметим, что при использовании многочленов хорошего результата можно добиться лишь на некотором отрезке вида [0,£о]- Величина ¿о зависит от количества степеней А* которые мы готовы вычислить.

В пункте 1.4.2 вместо многочлена г* используются аппроксимации Паде и рациональные функции наилучшего приближения. Оказывается, использование рациональных функций не требует оценки спектра А. Кроме того, такой подход позволяет получать высокую точность даже при небольшом порядке рациональной функции. К сожалению, прямое вычисление рациональной функции г* требует в каждой точке I заново обращать матрицу, стоящую в знаменателе. Частично эту проблему удается решить, если "замораживать" знаменатель и строить приближение на отрезке. Такой отрезок никогда не содержит ноль. Поэтому для построения приближения в окрестности нуля приходится пользоваться многочленами или аппроксимациями Паде без "замораживания". Аналогично случаю многочленов, наилучшее рациональное приближение обеспечивает значительно лучшее качество приближения, но является более трудоемким.

При изложении предлагаемого в главе 1 метода в §1.2—§1.4 предполагается, что матрица £) обратима. В §1.5 обсуждается случай, когда D вырождена. Здесь показано, что этот случай полностью сводится к рассмотренному.

Во второй главе рассматриваются уравнения вида (2), обладающие специальным свойством: одна из матриц N или В мала, а матрица И обратима. Ограничение на малость матричных коэффициентов обычно выполняется для ЯЬС-цепей с малыми индуктивностями, а обратимость матрицы И соответствует тому, что в цепи достаточно много сопротивлений. В этих предположениях предлагается эффективный метод решения уравнения (2), основанный на его сведении к двум уравнениям первого порядка. Как и в первой главе, для уравнения (2) также рассматривается начальная задача на оси, а правая часть предполагается имеющей вид /(¿) = ср. с (4).

Первые три параграфа содержат результаты, необходимые для доказательства основных теорем 38 и 39, приведенных в четвертом параграфе. В §2.1 с помощью теории операторных пучков [11, 30] показано, что дифференциальный оператор Ь = ТУ"-С- + И 4т + В, соответствующий уравнению (2), можно представить в виде произведения у^М +

MZ + — Z^ дифференциальных операторов первого порядка.

В §2.2 аналогичным образом для оператора L строится факторизация — (^jt(AV +1) 4- (jfiV — . В §2.3 устанавливается взаимосвязь между этими представлениями. Наконец, в §2.4 дифференциальное уравнение второго порядка заменяется на два уравнения первого порядка х — Zx = / и Vx — х — /, к которым применимы идеи построения приближенного решения из главы 1.

Теорема 38. Решение начальной задачи на оси для уравнения

Nx + Dx + Bx = bu{t) можно представить в виде х = х\ + #2, где х\ их 2 — решения уравнений

Х\ - Zx 1 = (NZ + ZN + ИуЧи и

Vx2 -х2 = (BV + D)~lN(NZ + ZN + D)~lbu.

Приводятся формулы (предложения 25 и 29) для эффективного вычисления матриц Z и V.

В приложениях часто возникают уравнения вида (2) с правой частью вида f{t) = bù(t). В частности, уравнениями такого вида описываются RLC-цепи. Следующая теорема является аналогом теоремы 38 для таких уравнений.

Теорема 39. Решение начальной задачи на оси для уравнения

Nx + Dx + Вх = bù(t) можно представить в виде x — х\ + #2, где х\ и Х2 — решения уравнений

1 - Zxi = —(NZ + D)~1B(BV + VB + D)~4u и

Vx2 -х2 = -(BV + VB + D)~lbu.

Построение решения для уравнения второго порядка тесно связано с аналитическими функциями от матричного пучка. В связи с этим, в третьей главе изучаются аналитические функции от квадратичных матричных пучков специального вида. А именно, обсуждаются функции от факторизованного матричного пучка

ПА = (AI - ЛГЧА1 - B)~l d\ (5) и функции

F(N, D, В) = -^т [ /(A)(A2iV + AD + B)~ld\, (6) т Jr где матричный пучок не факторизован, но матрица N является обратимой. Функции вида (5) и (6) можно рассматривать как обобщение функций от одной матрицы

В §3.1 показывается, что матричная импульсная характеристика уравнения (?) при t > 0 имеет вид (предложение 42)

H(t) = Ехр(£, А, В) = -^т [ ext(\l - Л)~1(А1 - В)~1 d\,

2т Ур а решение уравнения (7) представимо в виде (предложение 44) x(t) = ^(Л, В)Ь = (^т j 04(А)(А1 - Л)1(А1 - В)'1 d\y.

Таким образом, функции Н(£) — Ехр(£, А, В) и = ^(А,В)Ь являются примерами аналитических функций от матричного пучка Л (А1-£)(А1-Д).

Основное содержание главы составляет §3.2, в котором для функций вида (5) удается построить достаточно развитую теорию.

В пункте 3.2.1 приводятся явные формулы для нахождения функций от пучка, основанные на жордановой форме матриц А и В. Пусть Т ~ матрица перехода к жордановой форме матрицы А, а Н — матрица перехода к жордановой форме матрицы В. Обозначим через Б матрицу Т~гН. Разобьем ее на прямоугольные блоки Б = размера г* х^, где г^ — порядок жорданова блока Аг матрицы А, а qj — порядок жорданова блока В] матрицы В. Нам понадобится также вспомогательная блочная матрица Ь = {Ь^}, блоки которой определяются формулой

ЕЕЙ^П- (8)

Здесь С^+р — биномиальные коэффициенты, а с^ и /Зу — собственные значения матриц А и 13, отвечающие жордановым блокам Ах и В$ соответственно. Размер блока Ь^ равен Г{ х

Теорема 46. Пусть спектры матриц А и В не пересекаются. Тогда для .Р(.Д, В) справедливо представление где ф — Ау В) = {С?^} — блочная матрица с блоками

Яц = /(А)Д-; а блоки Ьц определены формулой (8).

Эту теорему можно интерпретировать как аналог представления функций от одной матрицы [53] с помощью ее жордановой формы.

Альтернативная формула для В) предлагается в теореме 47, где используются функции от матриц А и В, а также специальная матрица Р, которая зависит только от А и В и не зависит от /. Эту формулу удобно использовать, если необходимо вычислить несколько функций / от одного и того же пучка.

Теорема 47. Пусть спектры матриц Л и В не пересекаются. Тогда функцию F(A,B) можно представить в виде

F(A,B) = f(A)P-Pf(B), где

Р = TLH~\ (9) а матрица L определена формулой (8).

Приводятся также аналоги этих теорем для диагонализуемых матриц А и В, а также для случая, когда спектры матриц Лий пересекаются.

Для функций от одной матрицы хорошо известна теорема о функциональном исчислении [36, 53], утверждающая, в частности, что сумма функций / + g переходит в сумму матриц f(A) + g(A), а произведению функций / • g соответствует произведение матриц f(A) • g(A). В случае квадратичного пучка эта теорема перестает быть справедливой. Сумме функций / + д, очевидно, по-прежнему соответствует сумма матриц F(AyB) + G(A,B), но произведению функций / • д уже не соответствует произведение матриц F(A, В) • G(A, В). В теореме 52 (пункт 3.2.2) приводится представление для произведения функций от квадратичного матричного пучка.

Теорема 52. Для двух аналитических функций fug имеет место тождество J f(X)g(X)(A1 - А)-\A1 - В)-1 d\ = F(A, B)g(B) + f(A)G(A, B).

В пункте 3.2.3 предлагается метод нахождения F(A, В), основанный на решении непрерывного уравнения Сильвестра. Он позволяет обойти некоторые вычислительные трудности, связанные с использованием жордановой формы. Дело в том, что для матриц, далеких от нормальных, плохая обусловленность матрицы перехода к жордановой форме — распространенное явление. В этом случае даже незначительные погрешности округления могут сильно испортить результат вычисления по явным формулам. Предлагаются два способа преодоления этой проблемы.

Первый из них основан на представлении F(A, В) — f(A)P — Pf (В) из теоремы 47. При этом для нахождения матрицы Р вместо явной формулы (9) рекомендуется решать уравнение АР — РВ = 1. Это уравнение представляет собой непрерывное уравнение Сильвестра, для решения которого известны численно устойчивые ортогональные методы [21].

Теорема 53. Матрица Р является решением непрерывного уравнения Сильвестра

АР - РВ = 1.

Как и в пункте 3.2.1, этот способ рекомендуется для вычисления нескольких функций от одного и того же пучка.

Второй способ описывается в теореме 55. Оказывается, функция F является решением уравнения Сильвестра AF(A, В) — F(A, В)В = f{A) — f(B)y которое можно упростить (следствие 56), воспользовавшись разложением Шура [14, 21] матриц А л В.

Теорема 55. Функция F(A, В) удовлетворяет непрерывному уравнению Сильвестра

AF{A, В) - F(A, В)В = f(A) - f{B).

В §3.3 обсуждаются матричные функции вида (6) в предположении, что матрица N обратима. Примером функций такого вида являются матричная импульсная характеристика уравнения (2) (предложение 42)

H{t) = Exp(i, N, D, В) = —^ f eXt(\2N + \D + В)'1 dX,

2ш Jг а также решение уравнения (2), соответствующее правой части вида bu(t) (предложение 44), x(t) = tit{N, D> В)Ь = (i^i J tft(A)(A2iV + AD + В)'1 dA^ b.

Приводятся явные формулы для вычисления многочленов и рациональных функций от матричного пучка А ■-» А2 N АD + В, которые можно использовать для построения приближенной импульсной характеристики и приближенного решения уравнения (2). Отметим, что результаты

§3.3 могут быть применены в ситуациях, когда дифференциальный оператор Ь = N•¿¿2+0-^+13 факторизовать не удается, и поэтому ни методы из главы 2, ни идеи §3.2 применить нельзя.

В приложении приводятся результаты численных экспериментов, иллюстрирующие применение методов настоящей диссертации к расчету некоторых линейных электрических цепей.

Основные результаты работы докладывались на: международной научной конференции "Нелинейный анализ и функционально-дифференциальные уравнения" — Воронеж, 2000; Воронежской зимней математической школе "Современные методы теории функций и смежные проблемы" — Воронеж, 2001; межвузовской научно-технической конференции "Новые технологии в научных исследованиях, проектировании, управлении, производстве" — Воронеж, 2001; Воронежской зимней математической школе — Воронеж, 2002; международной научной конференции "Современные проблемы функционального анализа и дифференциальных уравнений" — Воронеж, 2003; Воронежской зимней математической школе "Современные методы теории функций и смежные проблемы" — Воронеж, 2005; 12-ой Всероссийской межвузовской научно-технической конференции студентов и аспирантов "Микроэлектроника и информатика - 2005" — Москва, 2005; семинаре В.Г. Курбатова (2000-2005, ЛГТУ), семинаре Б.Н. Садовского (2004, ВГУ).

Основные результаты работы опубликованы в [82]—[88]. В совместной с В.Г. Курбатовым работе [85] автору диссертации принадлежит метод построения приближенного решения дифференциального уравнения второго порядка, а В.Г. Курбатову — утверждения о соотношении между корнями квадратичного операторного пучка. В совместной с В.Г. Курбатовым статье [86] автору диссертации принадлежит метод построения приближенного решения дифференциального уравнения первого порядка и оценки его точности, а В.Г. Курбатову — результаты о связи операторных методов с методами Арнольди-Ланцоша. Только результаты, принадлежащие лично автору диссертации, включены в диссертационную работу.

 
Список источников диссертации и автореферата по математике, кандидата физико-математических наук, Орешина, Мария Николаевна, Липецк

1. Бабенко К.И. Основы численного анализа/ К.И. Бабенко. — М.: Наука, 1986. — 744 с.

2. Балабанян Н. Синтез электрических цепей/ Н. Балабанян. — M.-JL: Госэнергоиздат, 1961. — 416 с.

3. Баскаков А.Г. Построение фазового пространства и решений линейных уравнений, не разрешенных относительно производной/ А.Г. Баскаков, К.И. Чернышев// Докл. РАН — 2000. — Т. 371, № 3. — С. 295-298.

4. Баскаков А.Г. Спектральный анализ линейных отношений и вырожденные полугруппы операторов/ А.Г. Баскаков, К.И. Чернышев// Мат. сб. 2002. - Т. 193, № И. - С. 4-42.

5. Бейкер Дж. Аппроксимации Паде/ Дж. Бейкер, П. Грейвс-Моррис.М.: Мир, 1986. — 502 с.

6. Березин И.С. Методы вычислений/ И.С. Березин, Н.П. Жидков. — М.: ГИФИЛ, Т. 1, Т.2, 1962. 464с., 639 с.

7. Вержбицкий В.М. Основы численных методов/ В.М. Вержбицкий.М.: Высшая школа, 2002. — 840 с.

8. Владимиров B.C. Уравнения математической физики/ B.C. Владимиров. — М.: Наука, 1976. — 528 с.

9. Воеводин В.В. Вычислительные основы линейной алгебры/ В.В. Воеводин, Ю.А. Кузнецов. — М.: Наука, 1977. — 320 с.

10. Гантмахер Ф.Р. Теория матриц/ Ф.Р. Гантмахер. — М.: Наука, 1988. 552 с.

11. Глазман И.М. Конечномерный линейный анализ/ И.М. Глазман, Ю.И. Любич. М.: Наука, 1969. - 476 с.

12. Глориозов Е.Л. Введение в автоматизацию схемотехнического проектирования/ Е.Л. Глориозов, В.Г. Ссорин, П.П. Сыпчук. — М.: Советское радио, 1976. — 224 с.

13. Годунов С.К. Разностные схемы/ С.К. Годунов, B.C. Рябенький. — М.: Наука, 1977. 400 с.

14. Голуб Дж. Матричные вычисления/ Дж. Голуб, Лоун Ч. Ван. — М.: Мир, 1999. 548 с.

15. Гончаров В.Л. Теория интерполировалия и приближения функций/ В.Л. Гончаров. — 2 изд. М.: Гостехиздат, 1954. — 316 с.

16. Данфорд Н. Линейные операторы. Общая теория/ Н. Данфорд, Дж.Т. Шварц. М.: ИЛ, 1962. - 896 с.

17. Дезоер Ч.А. Основы теории цепей/ Ч.А. Дезоер, Э.С. Ку. — М.: Связь, 1976. — 364 с.

18. Деммель Дж. Вычислительная линейная алгебра. Теория и приложения/ Дж. Деммель. — М.: Мир, 2001. — 430 с.

19. Дзядык В.К. Введение в теорию равномерного приближения функций многочленами/ В.К. Дзядык. — М.: Наука, 1977. — 514 с.

20. Иванов В.В. Оценки равномерной нормы полинома интерполяции по узлам Чебышева/ В.В. Иванов// Мат. зам.—1977.

21. Икрамов Х.Д. Численное решение матричных уравнений/ Х.Д. Ик-рамов. — М.: Наука, 1984. — 192 с.

22. Ильин В.П. Машинное проектирование электронных схем/ В.П. Ильин. — М.: Энергия, 1972. — 280 с.

23. Келдыш M.B. О собственных значениях и собственных функциях некоторых классов несамосопряженных уравнений/ М.В. Келдыш// ДАН СССР, 1951. Т.77, № 1. - С. 11-14.

24. Красносельский М.А. Приближенное решение операторных уравнений/ М.А. Красносельский, Г.М. Вайникко, П.П. Забрейко, Я.Б. Рутицкий, В.Я. Стеценко. — М.: Наука, 1969. — 456 с.

25. Крейн М.Г. О некоторых математических принципах линейной теории демпфированных колебаний континуумов/ М.Г. Крейн, Г.К. Лангер // Тр. межд. симп. по прим. теории функций в мех. спл. среды.— 1965.— С. 283-322.

26. Крейн С.Г. Сингулярно возмущенные дифференциальные уравнения в банаховом пространстве/ С.Г. Крейн, К.И. Чернышов //IX межд. конф. по нелинейным колебаниям. — Киев: Наукова думка, 1984 — Т.1. — С. 283-322.

27. Крылов В.И. Вычислительные методы/ В.И. Крылов, В.В. Бобков, П.И. Монастырный. — Т.2. М.: Наука, 1977. — 567 с.

28. Лаврентьев М.А. Методы теории функций комплексного переменного/ М.А. Лаврентьев, Б.В. Шабат. — М.: Наука, 1965. — 716 с.

29. Лоран П.-Ж. Аппроксимация и оптимизация/ П.-Ж. Лоран. —М.: Мир, 1975. 496 с.

30. Маркус A.C. Введение в спектральную теорию полиномиальных операторных пучков/ A.C. Маркус. — Кишинев: Штиинца, 1986. 260 с.

31. Полна Г. Задачи и теоремы из анализа/ Г. Полна, Г. Сего. Т. 2. — М., Наука, 1978. — 432 с.

32. Понтрягин С.Л. Обыкновенные дифференциальные уравнения/ С.Л. Понтрягин. — М.: Наука, 1982. — 331 с.

33. Попов В.П. Основы теории цепей/ В.П. Попов.— М.: Высшая школа, 1998. 575 с.

34. Радбель Н.И. О линейных операторных пучках и некононических системах/ Н.И. Радбель, А.Г. Руткас// Теория функций, функциональный анализ и их приложения. — 1973. — № 17. — С. 3-14.

35. Ремез Е.Я. Основы численных методов чебышевского приближения/ Е.Я. Ремез.— Киев: Наукова думка, 1969. — 483 с.

36. Рудин У. Функциональный анализ/ У. Рудин.— М.: Мир, 1975. — 443 с.

37. Руткас А.Г. Задача Коши для уравнения Ax'(t) + Bx{t) = fit)/ А.Г. Руткас// Дифференциальные уравнения. — Ноябрь, 1975. — Т.11, № 11. С. 1996-2010.

38. Руткас А.Г. Об одном классе линейных автоматов на графах/ А.Г. Руткас, Д.М. Чаусовский// Кибернетика. — 1969. — N® 3, с. 11-16.

39. Садовский Б.Н. Предельно компактные и уплотняющие операторы/ Б.Н. Садовский// Успехи математических наук. — Январь-февраль, 1972.- т. XVII, вып. 1 (163).- С. 81-146.

40. Свиридюк Г.А. К общей теории полугрупп операторов/ Г.А. Свири-дюк// УМН.- 1994,- Т. 49, вып. 4.- С. 47-74.

41. Сешу С. Анализ линейных цепей/ С. Сешу, Н. Балабанян — M.-JL: Государственное энергетическое издательство, 1963. — 476 с.

42. Сешу С. Линейные графы и электрические цепи/ С. Сешу, М.Б. Рид.— М.: Высшая школа, 1971. — 448 с.

43. Смагин В.В. Коэрцитивные оценки погрешностей проекционного и проекционно-разностного методов для параболических уравнений/ В.В. Смагин// Мат. сборник. 1994.- Т.185, №11.- С. 79-93.

44. Смагин В.В. Оценки скорости сходимости проекционного и проекционно-разностного методов для слабо разрешимых параболических уравнений/ В.В. Смагин// Мат. сборник. — 1997.— Т.188, №3.- С. 143-160.

45. Суетин П.К. Классические ортогональные многочлены/ П.К. Суетин.— М.: Наука, 1979. — 416 с.

46. Уолш Дж.Л. Интерполяция и аппроксимация рациональными функциями в комплексной области/ Дж.Л. Уолш.— М.: ИЛ, 1961. 508 с.

47. Хайрер Э. Решение обыкновенных дифференциальных уравнений. Нежесткие задачи/ Э. Хайрер, С. Нёрсетт, Г. Ваннер. — М.: Мир, 1990. 512 с.

48. Хайрер Э. Решение обыкновенных дифференциальных уравнений. Жесткие и дифференциально-алгебраические задачи/ Э. Хайрер, Г. Ваннер.— М.: Мир, 1999. — 685 с.

49. Хейнеман Р. РБРЮЕ. Моделирование работы электронных схем/ Р. Хейнеман — М.: ДМК Пресс, 2002. — 336 с.

50. Хемминг Р.В. Численные методы для научных работников и инженеров/ Р.В. Хемминг— М.: Наука, 1972. — 400 с.

51. Хилле Э. Функциональный анализ и полугруппы/ Э. Хилле, Р. Фил-липс. — М.: ИЛ, 1962. — 830 с.

52. Шилов Г.Е. Математический анализ. Конечномерные линейные пространства/ Г.Е. Шилов.— М.: Наука, 1969. — 432 с.

53. Boley D.L. Krylov space methods on state-space control models/D.L. Boley// Circuits Systems Signal Processing. — 1994. — Vol. 13, no. 6. — pp. 733-758.

54. Cheney E.W. Two new algorithms for rational approximation/E.W. Cheney and H.L. Loeb// Numer. Math. — 1961. — Vol. 3, no. 1. pp. 72-75.

55. Crank J. A practical method for numerical evalution of solution of partial differential equations of the heat-conduction type/ J. Crank, P. Nicolson — Proc. Cambridge Philos. Soc., 43 (1947).— pp. 50-67.

56. Dounavis A. Passive closed-form trasmission-line model for general purpose circuit simulators/ A. Dounavis, Xin Li, M.S. Nakhla, and R. Achar// IEEE Trans, on Microwave Theory and Techniques.— Vol. 47, no. 12 — Dec. 1999 — pp. 2450-2459.

57. Elfadel I.M. A block rational Arnoldi algorithm for multiple passive model-order reduction of mutliport RLC networks/ I.M. Elfadel and D.D. Ling// IC-CAD'97. Proc. IEEE/ACM Int. Conf. on Computer-Aided Design. — 1997. — pp. 66-71.

58. Feldman P. Efficient linear circuit analysis by Pade approximation via the Lanczos process/ P. Feldman and R.W. Freund// IEEE Trans. Computer-Aided Design. — May 1995. — Vol. 14. — pp. 639-649.

59. Freund R.W. Passive Reduced-Order Modelling via Krylov Subspace Methods/ R.W. Freund// Numerical Analysis Manuscript no. 00-3-02.— March 2000 — http://cm.bell-labs.com/cs/doc/00

60. Gallivan K. Asymptotic waveform evaluation via a Lanczos method/ K. Gallivan, E.J. Grimme, and P. Van Dooren// Appl. Math. Lett. — 1994. Vol. 7. - pp. 75-80.

61. Grimme E.J. Krylov Projection Methods for Model Order Reduction/ E.J. Grimme// Ph.D thesis. University of Illinois at Urbana-Champaign — 1997. — 213 p.

62. Ho C.W. The modufied nodal approach to network analysis/ C.W. Ho, A.E. Ruehli, and P.A. Brennan// IEEE Trans, on Circuit ans Systems.— Vol. Cas-22.— June 1975.- pp. 504-509.

63. Hwang C. A multi-point continued fraction expansion for linear system reduction/ C. Hwang and M.Y. Chen// IEEE Trans. Autom. Control. 1986. - Vol. 31. - pp. 648-651.

64. Kägström B. Numerical Computation of Matrix Functions/ B. Kägström// Department of Information Processing Report UMINF-58.77 — University of Umea, Sweden, 1977.

65. Kenney C. Frequency response computation via rational interpolation/ C. Kenney, A.L. Laub, and S. Stubberud// IEEE Trans. Autom. Control. 1993. - Vol. 38. - pp. 1203-1213.

66. Kim H.M. Structural dynamics analysis using an unsymmetric block Lanczos algorithm/ H.M. Kim and R.R. Craig Jr.// Int. J. Numer. Methods Eng. 1988. - Vol. 26. - pp. 2305-2318.

67. Kim H.M. Computational enhancement of an unsymmetric block Lanczos algorithm/ H.M. Kim and R.R. Craig Jr.// Int. J. Numer. Methods Eng. 1990. - Vol. 30. - pp. 1083-1089.

68. Kroneker L. Algebraische Reduction der Schaaren bilinearer Formen/ L. Kroneker// Akad. der Wiss. Berlin 27. — Nov. 1890 — Werke vol. Hipp. 141-155.

69. Odabasioglu A. PRIMA: Passive reduced-order interconnect macromodeling algorithm/ A. Odabasioglu, M. Celik, and L.T. Pillegi//

70. EE Trans. Computer-Aided Design. — Aug. 1998. — Vol. 17, no. 8.pp. 645-654.

71. Odabasioglu A. Practical consideration for passive reduction of RLC circuits/ A. Odabasioglu, M. Celik, and L.T. Pillegi// Proc. IEEE/ACM Int. Conf. on Computer-Aided Design. — Nov. 1999. — pp. 214-219.

72. Pillage L.T. Asymptotic waveform evaluation for timing analysis/ L.T. Pillage and R.A. Rohrer IEEE Trans. Computer-Aided Design.Apr. 1990. — Vol. 9, no. 4. — pp. 352-366.

73. Raghavan V. AWE-inspired/ V. Raghavan, R.A. Rohrer, L.T. Pillage, J.Y. Lee, J.E. Bracken and M.M. Alaybeyi// Proc. IEEE Custom Integrated Circuit Conf.— May 1993.

74. Shamash Y. Linear system reduction using Pade approximation to allow retention of dominant modes/ Y. Shamash// Int. J. Control. — 1975.Vol. 21. pp. 257-272.

75. Silveira L.M. Efficient reduced-order modelling of frequency-dependent coupling inductances associated with 3-D interconnect structures/ L.M. Silveira, M. Kamon, and J. White// IEEE/ACM Proc. DAC. — June 1995. — pp. 376-380.

76. Skoogh D. A Rational Method for Model Order Reduction/ D. Skoogh// Report no. 1998-47.— http://www.math.chalmers.se/Math/Reseaxch/Preprints

77. Stewart G.W. On the sensitivity of the eigenvalue problem Ax = XBx/G.W. Stewart// SIAM J. Numer. Anal.- 1972.- Vol. 9. -pp. 669-686.

78. Vlach J. Computer Methods for Circuit Analysis and Design/ J. Vlach and K. Singhal — New York: Van Nostrand Reinhold, 1983,1994. — 566 p., 584 p.

79. Weierstrass K. Zur Theorie der bilineaxen und quadratischen Formen/ K. Weierstrass// Akad. der Wiss. Berlin 18, May 1868 — Werke vol. II— pp. 19-44.

80. Xiheng H. FF-Pade method of model reduction in frequency domain/ H. Xiheng// IEEE Trans. Autom. Control.- 1987. Vol. 32. — pp. 243246.

81. Гуленко M.H. Об импедансе некоторых электрических цепей/ М.Н. Гуленко// Нелинейный анализ и функционально-дифференциальные уравнения. Тезисы докладов международной научной конференции. 15 20 мая 2000 г.— Воронеж, 2000.— С. 84-85.

82. Курбатов В.Г. О нахождении приближенного решения линейного дифференциального уравнения второго порядка/ В.Г. Курбатов, М.Н. Орешина// Вестник ВГУ. Серия физика, математика.— 2003.- № 2. С. 173-188.

83. Kurbatov V.G. Interconnect Macromodelling and Approximation of Matrix Exponent/ V.G. Kurbatov, M.N. Oreshina// Analog Integrated Circuits and Signal Processing.— 2004.— Vol. 40, no. 1.— pp. 5-19.

84. Орешина М.Н. О связи некоторых аналитических функций от матричного пучка с уравнением Сильвестра/ М.Н. Орешина// Воронежская зимняя математическая школа 2005.— Воронеж 2005.- С. 171-172.

85. Орешина М.Н. Об одном методе приближенного расчета ИС-цепей. / М.Н. Орешина// 12-ой Всерос. межвуз. науч.-тех. конф. студентов и аспирантов "Микроэлектроника и информатика-2005". 19-21 апреля 2005 года. Тез. докл. — Москва, 2005- С. 109.