Особенности строения и протекания тока в дисперсионаполненных полиолефинах тема автореферата и диссертации по химии, 02.00.16 ВАК РФ

Чмутин, Игорь Анатольевич АВТОР
кандидата физико-математических наук УЧЕНАЯ СТЕПЕНЬ
Москва МЕСТО ЗАЩИТЫ
1992 ГОД ЗАЩИТЫ
   
02.00.16 КОД ВАК РФ
Автореферат по химии на тему «Особенности строения и протекания тока в дисперсионаполненных полиолефинах»
 
Автореферат диссертации на тему "Особенности строения и протекания тока в дисперсионаполненных полиолефинах"

РОССИЙСКАЯ АКАДЕМИЯ НАУК ИНСТИТУТ СИНТЕТИЧЕСКИХ ПОЛИМЕРНЫХ МАТЕРИАЛОВ

На правах рукописи

ЧМУТИН Игорь Анатольевич

УДК 537.311:678.01

ОСОБЕННОСТИ СТРОЕНИЯ И ПРОТЕКАНИЯ ТОКА В ДИСПЕРСИОНАПОЛНЕННЫХ ПОЖОЛЕФИНАХ

02.00.16 - химия и технология композиционных материалов

Автореферат диссертации на соискание ученой степени кандидата фмико-матеыатических наук

Москва 1992

Работа выполнена в Институте синтетических полимери материалов РАН.

Научные руководители: доктор химических наук,зав. лаб. А.Т. Пономаренко кандидат химических наук, ст.н.с. В.Г. Шевченко

Официальные оппоненты: доктор технических наук, профессор Л.И. Маневич

доктор химических наук Г.В.Козлов

Ведущая организация - Институт электрохим: им. А .Н.Фрумкина РАН.

Защита состоится "2. ? " июли*_1992 г. в /О час. ]

заседании специализированного Ученого совета К 003.86.01 п] Институте синтетических полимерных материалов РАН по - адрес; 117393, Москва, ул. Профсоюзная, д. 70.

С диссертацией можно ознакомиться в библиотеке Институ синтетических полимерных материалов РАН.

Автореферат разослан " 2/ " мсгЛ_1992 г.

Ученый секретарь специализированного совета,

кандидат химических наук

В.Г. Шевченко

,-а

гаций

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность. Несмотря на достаточно широкое практическое использование электропроводящих композитов, обилие

экспериментальных и теоретических работ в этой области, не все аспекты их электрофизических свойств изучены достаточно подробно. Испытываегся недостаток систематических исследований, в которых устанавливается связь меаду электрическими свойствами и структурой композиционных материалов (КМ), определяемой типом и формой наполнителя, его концентрацией, а также способом совмещения компонентов. Практически во всех работах изучались КМ, полученные методами механического смешения компонентов и почти отсутствовали исследования, на основании которых можно предсказать электрические свойства композиционных материалов, полученных принципиально иными, нетрадиционными методами, например, методом полиыеризационного наполнения. Для целенаправленного регулирования электрофизических свойств КМ и прогнозирования их характеристик такие работы необходимы, особенно в настоящее время, когда разработка новых материалов с заданными свойствами является одним из самых перспективных направлений в области химии и технологии полимерных композитов.

Цель работы заключалась в исследовании влияния структуры композиционного материала, определяемой формой наполнителя и способом получения КМ на его электрофизические свойства, а также в оценке применимости различных моделей для описания этих свойств.

В рамках указанной цели определены следующие задачи:

1. Исследование влияния способа получения КМ и типа наполнителя

на положение и ширину критической области в концентрационных зависимостях электропроводности КМ;

на частотные зависимости электропроводности и диэлектрической проницаемости КМ;

- на вольт-амперные характеристики КМ;

- на коэффициент анизотропии электропроводности.

2. Изучение влияния состояния матрицы на электрофизические свойства композиционных материалов:

- влияние старения на электропроводность и диэлектрическую проницаемость КМ, полученных различными способами;

- влияние теплового расширения матрицы на электропроводность

и диелектрическую проницаемость КМ, имеющих различную упаков частиц;

- зависимость электропроводности .и диэлектрической прониц емости полимеризационнонаполненных КМ от степе кристалличности/матрицы.

Научная новизна. Проведен анализ применимое! теоретических моделей к описанию электрических свойств различной структуры, полученных с использованием наполните разной формы и различных способов получения КМ, включая мет полимеризационного наполнения. Впервые в широком диапазо концентраций наполнителя, температур, частот електромагнитно: поля исследованы електрофизические свойства полимеризационнон полненных КМ с наполнителями различной формы. Показано, что д, полимеризационнонаполненных КЫ характер зависимости электриче' ких свойств от формы наполнителя такой же, как и для Н полученных механическим смешением компонентов. Для полимериз ционнонаполненных КМ обнаружено аномально высокое значеге критического индекса t. Обнаружено, что магнетосопротивлек полимеризационнонаполненных КМ меняет знак не при критическо! а при более высокой концентрации наполнителя. Показано, ч' степень кристалличности и старение полимерной матрицы влияют ] свойства полимеризационнонаполненных КМ в гораздо меныш степени, чем на свойства КМ, полученных механическим смешение компонентов.

Практическая ценность работы. Показана ВОЗМОЖНОСТЬ С03ДЭНИЯ композиционных материалов с варьируемыми в широких предел! электрофизическими свойствами за счет выбора способа I изготовления и типа проводящего наполнителя. Некоторые I рассматриваемых материалов предлагается использовать в качест! резисторов с низким температурным коэффициентом сопротивления диапазоне температур 4,2-300 К, экранирующих материалов микроволновом диапазоне.

Апрооаиия раооты. Материалы диссертации докладывались на 1 и 1: Международных конференциях "Полимеры для электротехники электроники (микроэлектроники)"(ГДР, Г.Берлин, 1985, 1989); 1 Всесоюзном семинаре-совещании "Механизмы релаксационнь процессов в стеклообразных системах" (г.Улан-Уде, 1985); XXVII Микросимпозиуме "Полимерные композиты" (ЧССР.г.Прагг

- з -

1986)¡Международной конференции "4нзика полимеров" (ГДР,г.Лейпциг, 1986); Международной конференции "Органические материалы для электроники и приборостроения" (г.Ташкент, 1987); V Школе по органическим полупроводникам (г.Черновцы, 1988); V111 Международном микросимпозиуме по полимерным композициям (г.Киев, 1989); VI Международной школе по физике конденсированного состояния (НРБ, г.Варна, 1990); конкурсах научных работ ИСШ РАН в 1989-1991гг.

Работа в целом доложена и подробно обсуадена на Ученом совете ИСПМ РАН.

Публикации. По теме диссертации опубликовано 9 печатных работ. Личное участие автора СОСТОИТ В непосредственном Получении экспериментальных данных, математической обработке полученных результатов и их обсуждении.

Структура и ооъем раРоты. Диссертационная работа состоит из введения, пяти глав, заключения и списка используемой литературы.

Основной материал диссертации изложен на страницах

машинописного текста, включающего рисунков и Щ таблиц.

Список используемой литературы содержит /3~2 наименований.

СОДЕРЖАНИЕ РАБОТЫ Во введении обоснована актуальность темы исследования, сформулирована цель работы.

В первой главе проведен обзор работ, посвященных теоретическому и экспериментальному исследованию полимерных композиционных материалов с дисперсными наполнителями. Приведены имеющиеся в литературе данные о факторах, влияющих на электрические свойства композиционных систем. Изложены современные представления о процессах переноса зарядов в подобных системах. Обоснована постановка задач.

Во второй главе изложены методические вопросы. Описаны способы изготовления КМ, используемые наполнители и методы исследования.

В качестве наполнителя использовались: углеродное волокно ВПР-19С длиной 2,5 мм и диаметром 7 мкм, графит ЭУЗ-М с размером частиц <40 мкм, графит ГМЗ с размером частиц <40 мкм и порошкообразный алюминий с размером частиц 10 мкм и толщиной

о

слоя оксида на их поверхности ~ 300 А. Большинство КМ получал! на основе указанных наполнителей и полипропилена (ПП).

В работе исследовались свойства КМ, полученных четырьмя способами: "сухим" смешением _компонентов, совмещением компонентов в расплаве полимера, полимеризационным наполнением и разбавлением полимеризационнонаполненных КМ полимером. При "сухом" смешении порошкообразные полимер и наполнитель перемешивались при комнатной температуре с последующим прессованием полученной смеси при температуре выше температуры плавления полимера. "Сухое" смешение осуществлялось в двух вариантах. В первом случае частицы полимера и наполнителя имели близкие размеры, что позволяло получать КМ со статистическим размещением наполнителя в матрице и близким к симметричному распределением фаз. Во втором случае размер частиц наполнителя был существенно меньше размера частиц полимера, что позволяло создавать структурированный композиционный материал, в котором наполнитель распределяется преимущественно на поверхности полимерных частиц. Смешение в расплаве полимера проводилось на вальцах или в вкструдере. Этот способ наполнения позволял получать КМ различной структуры от статистических до близких к матричным. Полимеризационнонаполненные композиционные материалы (ПНКМ) оказались удобной моделью КМ матричной структуры с проводящими включениями, поскольку их получают полимеризацией соответствующего мономера на поверхности указанных выше частиц наполнителя. Методом "сухого" смешения изготавливали также разбавленные ПНКМ, для чего в качестве проводящего наполнителя использовался порошкообразный ПНКМ. Все образцы получали методом прямого компрессионного прессования.

Электропроводность на постоянном токе определялась четырехэлектродным методом, для чего применялся проводящий серебряный клей с удельной электропроводностью 104(0м'см)~*. Электрические свойства на переменном токе измерялись на образцах в виде диска с напыленными' золотыми электродами. В СВЧ-области электрические свойства измерялись с помощью резонаторной методики, разработанной в ИРЭ РАН. Концентрация наполнителя определялась методом ТГА, степень кристалличности -методом ДСК.

В третьей главе приведены результаты экспериментальных

исследований электрических свойств рассматриваемых КМ на постоянном токе.

В широком диапазоне концентраций наполнителя исследованы зависимости электропроводности КМ (а) от объемной доли наполнителя . Для большинства типов КМ, как известно, электропроводность возрастает с увеличением содержания проводящего наполнителя, причем, имеется некоторая критическая концентрация (т^), в окрестности которой происходит наиболее резкое изменение электропроводности. Концентрационные зависимости электропроводности, полученные нами для КМ с графитом ЭУЗ-М и алюминием приведены на рисЛ.

Рис.1. Зависимость электропроводности КМ с алюминием (а) и графитом ЭУЗ-М (Ь) от объемной доли наполнителя; 1 - "сухое" смешение, 2 - полимеризационное наполнение, 3 - смешение в расплаве.

Необходимо отметить, что зависимости а(у^) для КМ с алюминием имеют ряд особенностей. Электропроводность прессованного порошка алюминия зависит от напряженности электрического поля, действию которого подвергался образец. При

о

повышении напряженности поля от О до 10 В/см

электропроводность обнаруживает ряд скачкообразных изменений и

-10 -I -I -1

возрастает от 10 до 10 Ом см , Эти изменения являются

необратимыми и происходят, вероятно, в результате пробоя

диэлектрического слоя оксида между контактирующими частицами

алюминия и их "сваривания" друг с другом.

Этот же фактор действует И в отношении КМ, наполненных

- б -

алюминием, причем лишь при концентрациях последнего выше критической, когда практически все подаваемое напряжение падает на слоях АХ^Оу. Напряженность электрического поля может достигать в этом случае 10®В/см, при этом происходит "формовка" образца с образованием электрических контактов между частицами наполнителя. При , когда частицы алюминия разделены еще и

диэлектрическими слоями полимера с высокой пробойной напряженностью до 200кВ/см, указанная зависимость отсутствует.

Согласно теории протекания, электропроводность перколяционных систем при концентрации проводящего компонента выше критической зависит от следующим образом:

О ~ ^-у*)* (I)

где t - критический индекс электропроводности, для которого теория протекания в трехмерном случае предсказывает значение 1,9.

Используя метод наименьших квадратов, из зависимостей ) для разных типов КМ определены величины пороговых концентраций и критического индекса Результаты представлены в таблице 1. '

Таблица I.

Критические концентрации и критические индексы КМ, полученных различными способами

Способ получения КМ А1 Графит ЭУЗ-М

* Г1 t * t

Полимеризацион-ное наполнение 0.44 2.5 0.046 3.13

"Сухое" смешение 0.16 1.90 0.09 2.1

Смешение в расплаве 0.58 1.93 0.13 2.05

Наилучшее соответствие теоретическим величинам ^ и 1; получено для "сухих" смесей, так для КМ с алюминием порог составляет 0,16, а критический индекс 1,93. Близкие значения получены и для "сухих" смесей с графитом ГМЗ. Это связано с тем, что при данном способе смешения компонентов получаются КМ со статистическим и наиболее симметричным распределением

проводящей и непроводящей фаз, что и является предпосылкой теоретических расчетов. В дальнейшем, при невозможности рассчитать теоретический порог протекания, величины критических концентраций, полученные для "сухих" смесей, используются как базовые и с ними сравниваются у^ значения для других КМ. Есть основания полагать, что низкое значение критической концентрации для "сухих" смесей с грантом ЭУЗ-М объясняется чешуйчатой формой и высокой анизометричностью его частиц, облегчающими образование проводящих путей.

Значение критической концентрации для КМ, полученных смешением компонентов в расплаве полимера, выше, чем для "сухих" смесей, что связано с возможностью более полного смачивания наполнителя полимером, затрудняющим образование проводящих путей. Порог протекания варьируется от величины 0,13 для КМ с графитом ЭУЗ-М, которые получены екструдированием по стандартной технологии, до 0,5& для КМ с алюминием, изготовленных вальцеванием по специальному режиму, обеспечивающему, по-видимому, максимальное покрывание частиц наполнителя полимером. Однако отклонения критической концентрации от теоретического значения не повлияли на величину критического индекса t для КМ, полученных смешением в расплаве. Для всех них величина t близка к 1,9. Этот результат согласуется с современными представлениями об универсальности критического индекса t для перколяционных систем и его зависимости только от размерности системы.

Изучение концентрационных зависимостей электропроводности ПНКМ показало, что критическая область для них более широкая, чем для соответствующих КМ, полученных двумя другими способами, И' это соответствует большим значениям критического индекса 1;. Соотношение мевду критическими концентрациями ПНКМ и

соответствующих "сухих" смесей зависит от типа наполнителя. Для *

КМ с алюминием выше в случае полимеризационного наполнения, а для КМ с графитом ЭУЗ-М - в случае "сухого" смешения.

Зависимость критической концентрации от формы частиц наполнителя достаточно хорошо известна для КМ, полученных механическими методами смешения компонентов. Предстояло выяснить, как тип наполнителя влияет на электропроводность ПНКМ. Результаты исследования приведены на рис.2 и в таблице 2.

- а -

Соотношение между значениями критической концентрации для наполнителей различной формы оказалось таким же, как и в случае композитов, полученных механическим смешением компонентов. Для

частиц наполнителя в форме чешуек V? ниже, чем для сферических _ *

частиц. Для волокон с высоким отношением длины к еще ниже и уменьшается с ростом этого отношения.

диаметру ^

Рис.2. Концентрационные

зависимости электропроводности ПНШ с различными наполнителями:

1 - углеродное волокно

2 - графит ЭУЗ-М

3 - графит ГМЗ

4 - алюминий.

О

о,к

Таблица 2.

Критические концентрации и критические индексы

полимеризационнонаполненных КМ с различными наполнителями

Напол- А.1 Графит Графит Углеродное

нитель ЭУЗ-М ГМЗ волокно

* *Х 0.44 0.046 0.09 0.04

г 2.5 3.13 5.2 1.84

Электропроводность исследованных КМ, таким образом, может быть описана выражением (1), причем, для "сухих" смесей значения и t совпадают с теоретическими. Для КМ, полученных совмещением компонентов в расплаве, величина t также совпадает с теоретическим значением, величина же критической концентрации смеща-ется в сторону более высоких содержаний наполнителя.

Полимеризационнонаполненные КМ отличаются от остальных композитов тем, что для всех видов наполнителя, кроме углеродных волокон, обнаружены высокие значения критического индекса Ь, что означает "размытость" перехода

Несмотря на все свои преимущества, метод полимеризационного наполнения требует подбора условий синтеза при каждом изменении концентрации наполнителя, что несколько затрудняет его использование при конструировании материалов с заданными свойствами. В работе исследованы свойства КМ, полученных новым способом, при котором ПНКМ с достаточно высоким содержанием наполнителя используются как концентрат, разбавляемый до необходимой степени полимером.

(Омсм)

Рис.3. Концентрационные зависимости электропроводности ПНКМ (ПП + ЭУЗ-М) и его смесей с ПП:

1 2

3 - ПНКМ

4 - ПНКМ

ПНКМ

ПНКМ (Уг=0,18) + ПП (уг=0,30) + ПП (?£=0,63) + ПП

и от

0,1/ 0,6 &А отоб.

На рис.3 приведены зависимости О^) для ПНКМ(ПП+ЭУЗ) смесей на его основе. Критическая концентрация зависит соотношения размеров частиц полимера и частиц ПНКМ. В нашем случае это соотношение составляло 3, что позволило получить критические концентрации 0,05; 0,058; 0,073 при разбавлении ПНКМ с объемными содержаниями графита 0,18; 0,30; 0,63 соответственно. Эти величины ниже, чем порог протекания для КМ, полученных механическим смешением компонентов. Для всех рассмотренных смесей ПНКМ и полимера значения критического индекса t выше 1,9. Этот способ, таким образом, позволяет в значительной степени сочетать достоинства полимеризационного наполнения (близкие к нему величины и Ю и простоту традиционного смесевого способа. Композиционные материалы, полученные разбавлением ПНКМ, являются кроме того хорошими объектами для исследования свойств самих ПНКМ.

Одним из важнейших параметров композиционного материала,

характеризующих его структуру и определяющих потенциальные возможности, является анизотропия электропроводности . Значение коэффициента анизотропии электропроводности К=ох/ац (где Оц и ах значения электропроводности в плоскости прессования и в перпендикулярном направлении) зависит от формы частиц наполнителя и способа получения КМ.

Для КМ с алюминием, независимо от способа их изготовления, К приблизительно равен единице, что объясняется близкой к сферической формой частиц этого наполнителя.

КМ с графитом ЭУЗ имеют высокий коэффициент анизотропии, причем он значительно превышает единицу и вне критической области концентраций. Это обстоятельство объясняется, по-видимому, тем ,что частицы этого графита не только анизомет-ричны, но и обладают анизотропной электропроводностью: в плоскости слоев а на два-три порядка величины выше, чем в перпендикулярном направлении. При горячем прессовании чешуйки графита ориентируются в поле механических сил в плоскости прессования. Это подтверждается измерениями диамагнитной восприимчивости при двух направлениях магнитного поля: вдоль плоскости прессования и по нормали к ней. Величина среднего квадрата синуса угла разориентации нормалей к графитовам слоям относительно

о

плоскости прессования оказалась равной <з1л 6>=0,43-Анизотропия электропроводности в критической области концентраций связана, по-видимому с анизометричностью частиц графита ЭУЗ-М, вне ее - с анизотропией их электропроводности.

о

Величина <з!п 6> для графита ГМЗ составляет 0,57, т.е. ориентация выражена гораздо слабее (для полностью изотропного

О

материала <в:т 9>=2/3), что связано с более близкой к сферической формой и поликристалличностью частиц этого графита. Соответственно, анизотропия электропроводности КМ с графитом ГШ ниже, чем у КМ с графитом ЭУЗ-М.

Глава 4 посвящена уточнению механизма транспорта носителей зарядов в рассматриваемых КМ. В ней приводятся результаты исследования электропроводности и диэлектрической проницаемости КЫ на переменном токе в диапазоне частот 102-10& Гц и в СВЧ-диапазоне.

Концентрационные зависимости электропроводности,

измеренные на постоянном токе и на некоторой частоте £, при

диэлектрик-металл. Это явление может быть объяснено тем, что указанный переход в ПНКМ связан не только с образованием цепочек непосредственно контактирующих частиц наполнителя, но и с участием в переносе носителей зарядов вблизи v^ полимерных прослоек между частицами. На возможность переноса носителей зарядов в КМ через полимерные прослойки впервые указано Polley и Boonstra, изучавшими саженаполненные резины {I]. В пользу реализации такого механизма проводимости в ПНКМ свидетельствуют следующие факты. Во-первых, частицы наполнителя в них равномерно распределены в полимерной матрице, что подтверждается микроскопическими исследованиями, независимостью О от толщины образца в интервале от 50 до 500мкм, а также линейностью R-1 характеристик (К - сопротивление, а 1 -расстояние между потенциальными электродами). Во-вторых, в достаточно широком диапазоне концентраций выше критической магнетосопротивление ПНКМ при гелиевых температурах отрицательно, в то время как в случае переноса зарядов по цепочкам контактирующих частиц наполнителя оно должно быть, как и для самих частиц графита, положительно.

Для описания экспериментальных зависимостей электропроводности ПНКМ предложена модель, согласно которой перенос зарядов мезеду частицами наполнителя может происходить, когда расстояние между ними меньше некоторой величины 2h, что равносильно наличию у частиц наполнителя (радиусом г и электропроводностью af) проводящей оболочки (толщиной h и электропроводностью aQ).

Проводящие каналы из частиц наполнителя, контактирующих такими

#

оболочками, появляются при более низкой концентрации v^, чем

проводящие пути из частиц наполнителя, контактирующих

* *

непосредственно (при концентрации v^) (в качестве vf1 принимали критическую концентрацию, определенную из зависимости a(vf) для данного типа Ш, а в качестве - концентрацию

наполнителя, при которой магнетосопротивление меняет знак). Если О^>ао, перколяционный механизм преобладает при высоких концентрациях, при низких же содержаниях наполнителя доминирует перенос по оболочкам. Анализ показывает, что при наличии двух механизмов переноса критическая область действительно расширяется, а индекс t увеличивается по сравнению с величинами характерным для чисто перколяционного переноса.

Для уточненения механизма проводимости полимерных прослоек в ПНКМ проведен анализ температурных зависимостей электропроводности в интервале 4,2-ЗООК. Оказалось, что их характер связан с типом наполнителя. Для композиционных материалов с графитом ГМЗ при содержании наполнителя, близком к изменяется не только знак ыагнетосопротивления, но и характер температурных зависимостей О. При содержании наполнителя меньше 0,5 полученные результаты описываются выражением

0=о0ехр{-(8а/кЯ")1/4}, (2)

характерным для прыжковой проводимости. Величина энергии активации прыжков еа уменьшается при увеличении содержания от 0,6 при ^=0,25 до нуля при у^О ,45, следовательно, для образцов с 7^~0,45 мала и средняя длина прыжков. Увеличение 8а с уменьшением г^ позволяет предположить, что влияние наполнителя распространяется на ограниченное расстояние от поверхности графитовых частиц.

Температурные зависимости электропроводности ПНКМ с графитом ЭУЗ-М существенно отличаются от моттовского закона (2). Механизм переноса через полимерные прослойки в этом случае является более сложным. Можно лишь заметить, что полимеризационное наполнение обеспечивает тесный контакт молекул полимера с частицами наполнителя, способствуя инжекции носителей зарядов из графитовых частиц в полимерные прослойки под действием внешнего электрического поля. С большей вероятностью это может быть реализовано в КМ с частицами графита ЭУЗ-М, представляющими собой пакеты гранитовых плоскостей, края которых хорошо контактируют с полимером. В то же время частицы графита ГМЗ обладают менее совершенной структурой, пакеты графитовых плоскостей в них искажены, особенно на краях, и контактирование полимерных молекул с краевыми атомами плоскостей существенно затруднено по сравнению с графитом ЭУЗ-М. В этом случае инжекция носителей зарядов в полимер ограничена и электропроводность прослоек определяется термически активированными носителями примесных центров. В ПНКМ с графитом ГМЗ, таким образом, как и в ПНКМ с алюминием, доминирует прыжковая проводимость (в последнем случае инжекция затруднена наличием слоя оксида). Различие природы наполнителя, следовательно, приводит к различию в механизме проводимости.

высоких содержаниях наполнителя совпадают. При низких же концентрациях наполнителя электропроводность на переменном токе выше, чем на постоянном. Концентрация, при которой эти величины перестают совпадать, зависит от типа КМ и частоты Г.

На рис.4 приведены зависимости электропроводности и диэлектрической проницаемости ПНКМ (ПП+ГМЗ) от частоты. Отсутствие частотной зависимости при концентрациях существенно выше критической указывает на движение носителей зарядов в непрерывном спектре. Если т^ близка к критической, динамическая электропроводность начиная с некоторой частоты становится выше статической. Рост О обусловлен токами смещения, связанными с движением зарядов в ограниченных областях пространства. При ненулевой частоте носители зарядов становятся нечувствительными к неоднородностям структуры КМ, превышающим их смещение за период поля. Поэтому изолирующие диэлектрические прослойки между частицами наполнителя становятся проводящими на высоких частотах. С увеличением . частоты 1 доля таких прослоек увеличивается, а с ней растет и электропроводность КМ.

Частотная дисперсия электропроводности КМ с близким к пороговому содержанием наполнителя свойственна всем

рассматриваемым типам композиционных материалов. Концентрация, при которой происходит переход от частотных зависимостей электропроводности с дисперсией к зависимостям без дисперсии (в рассматриваемом диапазоне частот) определяется типом наполнителя и способом получения КМ, и, в конечном счете, обусловлена различием в критических концентрациях.

Обнаружено, что частота Г, при которой начинает проявляться дисперсия электропроводности, зависит не только от концентрации, но и от типа наполнителя. Эту зависимость нельзя объяснить влиянием скин-еффекта, который при рассматриваемых частотах еще не проявляется. По-видимому, она связана с различием в размерах частиц, определяющим соотношение между смещением носителей за период шля и размером неоднородностей структуры КМ.

Описание частотных зависимостей электропроводности рассматриваемых КМ с помощью теории эффективной среды встречается с рядом трудностей. Эта модель непригодна для описания электрических свойств КМ, имеющих отличные от теоретических значения критической концентрации и критического индекса. Кроме того, оказалось, что параметры теории эффективной среды, подобранные для одной области концентраций наполнителя, не применимы для других. Более удачной нам представляется система уравнений, предложенная для описания электрических свойств перколяционных систем в переменных полях А.К.Сарычевым и др. [2]. Эта модель позволяет описывать свойства дисперснонаполненных КМ со значениями критических индексов, отличающихся от теоретического. Кроме того, она предсказывает наблюдавшееся в наших экспериментах перемещение максимума диэлектрической проницаемости с критической концентрации в сторону более высоких содержаний наполнителя.

Измерения показали, что при малых содержаниях наполнителя концентрационные зависимости действительной (8') и мнимой (Б") частей комплексной диэлектрической проницаемости в СВЧ-области полученные для КМ, изготовленных разными способами совпадают, слабо зависят от у^ и близки к параметрам полимерной матрицы. При приближении к критической области е* и е" начинают резко возрастать. В СВЧ-области, как и на постоянном токе, различия электрофизических свойств для КМ, имеющих разную структуру,

связаны с разницей в положении и ширине критической области (см. рис.5). 60

У,А0ЛПС

Рис.5. Концентрационные зависимости 6' (а) и б" (Ъ) для КМ алюминием: I - "сухие" смеси; 2 - ПНКМ; 3 - вальцованные КМ.

Из величины е" по формуле

о=2%1е0еи (3)

находились значения электропроводности. Как правило, электропроводность рассматриваемых КМ в СВЧ-области практически не зависит от частоты и образует высокочастотное плато. Исключение составляли только образцы с очень низким содержанием наполнителя. Для них плато расположено, по-видимому, на более высоких частотах. Электропроводность всех рассматриваемых композитов с содержанием наполнителя вблизи ^ имеет, таким образом, низкочастотное и высокочастотное плато с дисперсионным участком меаду ними. Значение О в области низкочастотного плато совпадает с ее значением на постоянном токэ, т.е. определяется уравнением (I) с соответствующими и 1;. Для оценки величины электропроводности в области высокочастотного плато было использовано модифицированное нами уравнение, которое Боаг1вЬг1к [31 получил для электропроводности КМ на постоянном токе. Уравнение имеет вид:

2°вч= <№2 2 , <4>

где о определяется из равенства Зо -2о и дает долю

наполнителя, участвующего в переносе зарядов в данном

направлении. Уравнение (4) выводилось как асимптотическое и не

претендует на описание о

вч

при низких концентрациях

наполнителя. Однако в области высоких концентраций наполнителя (для ПНКМ (ПШ-А1) при 7£=0,3-0,8) оно достаточно хорошо описывает электропроводность КМ в СВЧ-области.

В главе 5 приведены данные, иллюстрирующие временную зависимость электрофизических свойств , а также их зависимость от некоторых факторов, потенциально возможных в различных условиях применения КМ.

Электропроводность КМ на постоянном токе в диапазоне температур 4,2-ЗООК изменяется незначительно: на 3-15$• Так, для КМ с графитом ЭУЗ-М с увеличением температуры электропроводность сначала возрастает, затем стабилизируется и в области 0°С начинает убывать. Температура, при которой температурный коэффициент сопротивления (а) меняет знак с положительного на отрицательный, растет с увеличением содержания наполнителя. При температурах выше 300К изменения о с ростом температуры значительно больше, чем при низких температурах, причем, величина а зависит от содержания наполнителя и способа получения КМ. Для одного и того же способа получения а растет с уменьшением содержания наполнителя. В таблице 3 приведены значения а для КМ с графитом ЭУЗ-М, полученных разными способами и имеющими близкий уровень проводимости.

Таблица 3

Температурный коэффициент сопротивления для КМ с графитом ЭУЗ-М

Материал Ч1 а (1/К)

Т=300К Т=350К

Сухая смесь 0.18 0.009 0.01

Смешение в расплаве 0.22 0.013 0.016

ПНКМ 0.055 0.012 0.015

ПНКМ+ПП 0.1 0.003 0.007

Приведенные данные свидетельствуют о том, что снижение электропроводности с ростом температуры связано, по-видимому, с различием коэффициентов теплового расширения матрицы и наполнителя (коэффициент теплового расширения при Т=300-400К для графита равен 2,5-5'Ю"6 К-1, а для ПП - 1-2'Ю"4 К-1). Это

различие приводит к росту среднего расстояния между частицами наполнителя и уменьшению его объемного содержания. Меньше всего изменение температуры влияет на электропроводность смесей ПНКМ и полимера, т.к. проводящие частицы ПНКМ располагаются на поверхности полимерных частиц и поверхностная концентрация такого наполнителя меняется меньше, чем объемная в КМ, полученных смешением в расплаве.

Электропроводность на частоте 100 МГц зависит от температуры слабее, чем при í=0, что связано с возможностью компенсации увеличивающегося среднего расстояния между частицами наполнителя за счет токов смещения.

Изучалось влияние степени кристалличности полимерной матрицы на электропроводность ПНКМ с графитом ЭУЗ и алюминием. Изменение степени кристалличности осуществлялось двумя способами: путем отжига и закалки образцов, а также посредством удаления атактической фракции полипропилена. Отожженые образцы обладали на несколько процентов более высокой степенью кристалличности, чем подвергнутые закалке. Удаление атактической фракции повышает степень кристалличности, т.к. при этой процедуре увеличивается доля изотактического ПП, способного к кристаллизации. Величина изменения степени кристалличности при этом более высокая, чем в первом случае.

Устойчивой корреляции между электропроводностью образцов, подвергнутых отжигу и закалке не обнаружено. Образцы с удаленной атактической фракцией имеют более высокую электропроводность, чем исходные с таким же содержанием наполнителя. Для КМ на основе графита отношение между электропроводностями таких образцов равно ~2 при высоких содержаниях наполнителя и около десяти в критической области. Для КМ с алюминием разница между рассматриваемыми образцами сравнима с ошибкой эксперимента.

В ПНКМ изменение степени кристалличности матрицы приводит к меньшему изменению электропроводности, чем для КМ, полученных механическим смешением компонентов. Объясняется это тем, что в механических смесях рост электропроводности с увеличением кристалличности матрицы вызван действием двух факторов. Во-первых, кристаллизация матричного полимера приводит к росту эффективной концентрации наполнителя, располагающегося, главным

образом в аморфных областях. Во-вторых, при кристаллизации возрастает плотность полимера, что также увеличивает объемное содержание наполнителя.

В ПНКМ наполнитель'не может быть вытолкнут в аморфные области. Поэтому в ПНКМ может действовать лишь второй фактор, и влияние процессов кристаллизации матрицы на электропроводность менее заметно.

Электрические свойства в СВЧ-диапазоне для исходных образцов и образцов с удаленной атактической фракцией практически не отличаются.

Исследовалось также изменение электрических свойств КМ с графитом в процессе старения. Образцы выдерживались при комнатной температуре в течение 5'104час. Наблюдалось увеличение электропроводности КМ во времени, причем, наибольшему изменению подвергается электропроводность на постоянном токе, о в СВЧ-области практически не изменялась. Это свидетельствует о том, что в процессе старения электропроводность кластеров частиц наполнителя изменяется слабо, все изменения происходят с сопротивлением перехода между ними и связаны они, по-видимому, с кристаллизацией и усадкой матрицы.

Величина изменений электрических свойств со временем зависит от способа получения КМ. Минимальны они для композиционных материалов, полученных полимеризационным наполнением, максимальны для КМ, полученным смешением в расплаве. "Сухие" смеси и разбавленные ПНКМ занимают промежуточное положение.

Выводы.

X. В широком диапазоне частот исследованы электрические свойства КМ, полученных различными способами. Показано, что для полимеризационнонаполненных КМ, как и для КМ, полученных способами механического совмещения компонентов, критическая концентрация зависит от формы проводящего наполнителя. Минимальная критическая концентрация наблюдается у КМ с волокнами, максимальная - у КМ с частицами алюминия, покрытых слоем оксида. Для чешуйчатых частиц графита критическая концентрация ниже, чем для сферических.

2. Для полимеризационнонаполненных КМ обнаружено аномально

высокое значение критического индекса t. Предложено объяснение отклонения критического индекса t от универсального значения, связанное с наличием, помимо перколяционного, другого механизма переноса носителей зарядов.

3. Показано, что для КМ с графитом ЭУЗ-М характерны высокие значения коэффициента анизотропии электропроводности как в критической области концентраций, так и вне ее. Предполагается, что анизотропия в критической области вызвана анизометричной формой частиц этого графита, а вне критической области -анизотропией их электропроводности.

4. Установлено, что различие электрических свойств в переменных электромагнитных полях для КМ, полученных разными способами и имеющих различный наполнитель, связано в первую очередь с разницей в критических концентрациях.

5. Для всех КМ с концентрацией наполнителя вблизи критической зависимость электропроводности от частоты имеет низкочастотное и высокочастотное плато с дисперсионным участком между ними. Электропроводность в области низкочастотного плато совпадает с электропроводностью на постоянном токе. Предложено асимптотическое выражение для значений электропроводности на высокочастотном плато в области высокого содержания наполнителя.

6. Обнаружена сильная зависимость от температуры электропроводности рассматриваемых КМ выше Т=300 К, обусловленная разницей в коэффициентах теплового расширения матрицы и наполнителя. Температурный коэффициент теплового расширения КМ зависит от способа получения материала, и связан с различиями в структуре КМ.

7. Показано, что для ПНКМ зависимость электрических свойств от степени кристалличности матрицы выражена слабее, чем для КМ, полученных механическим смешением компонентов. Это обстоятельство связано с хорошей адгезией матрицы к наполнителю.

8. Показано, что в процессе старения электрические свойства ПНКМ и их смесей с полимером изменяются в существенно меньшей степени, чем КМ, полученных механическим смешением компонентов.

Цитируемая литература

1. Polley М.Н., Boonstra B.B. Carbon Blacks for Highly Conductive Rubber. // Rubb.Chen.Теohnol. -1957. -7.30. -N1. -P.170-179.

2. Виноградов А.П., Каримов А.М., Сарычев А.К. Диэлектрическая проницаемость перколяционных композитных материалов: закон подобия и уравнение состояния. // ЖЭТФ.-1988. -Т.94. -Вып.10. -с.301-308.

3. Soarisbriok R.M. Eleotrioally conduoting mixtures. // J.Phys.D: Appl. Phys. -1973. -V.16, -P.2098-3009.

Основное содержание диссертации изложено в следующих работах:

1.Пономаренко А.Г., Шевченко В.Г., Чмутин И.А., Ениколопов Н.С. Температурно-частотные зависимости электропроводности композитов // Сб.науч.тр. Материалы 11 Всесоюзного семинара-совещания "Механизмы релаксационных процессов в стеклообразных системах". -Улан-Уде, 1985.-е.23-26.

2. Недорезова П.М., Шевченко В.Г., Галашина Н.М., Чмутин И.А., Саратовских C.JT., Цветкова В.П., Пономаренко А.Т., Дьячковский Ф.С. Ениколопов Н.С. Синтез полимеризационнонаполненных композитов полипропилен-графит, структура и электрические свойства //Межд. конф."Органические материалы для электроники и приборостроения"; Тез.докл.-Черноголовка, 1987. с.183-184.

3.А.Т.Пономаренко, Шевченко В.Г., Чмутин И.А., Ениколопян Н.С. Методы получения, электрические свойства и применение проводящих полимерных композитов// Межд. конференция "Органические материалы для электроники и приборостроения": Тез.докл.- Черноголовка, 1987. с.109-110.

4.Чмутин И.А., Пономаренко АЛ., Шевченко В.Г. Особенности электрических свойств полимеризационнонаполненных композитов вблизи порога протекания //VIII Межд.микросимп. по полимерным композициям: Тез.докл.- Киев,1939.с.57.

5.Ponomarenko А.Т., Sohewtsohenko W.G., Tsohmutin I.A., Enikolopjan N.S. Physikalishe prtnzipien des auibaues elektrisch leitender polymerkompositionen.-Vortrage 1 ta^jpng über polymere iur Elektrotechnik, Elektronik (Mikroelektronik). -Berlin: 19S5.-AW DDR.- s.204-214.

6.Ponomarenko A.T., Shevohenko V.G., Tchmutin I.A., Ovohinnikov A.A..Enikolopov N.S. Conduoting polymer oomposites. Prooceedings 28th miorosymposium on Maoromoleoules. -Prague./ed. B.Sedlaoek.- Walter de Gruyter. -Berlin -N.Y. -1986. -P.67-87.

7.Pristupa A.I., Ponomarenko A.T., Shevohenko V.G., Tchmutin. I.A., Ovohinnikov A.A., Enikolopyan N.S. Eleotrioal and magnetic properties oi conduoting polymer oomposites// Kurzfassungen der vortrage und poster. 8 Tagung "Polyraerphysik-86", 22-25 Sept.: Leipzig. DDR, 1986.- S.98-99.

8-Котосонов A.C., Кувшинников C.B., Чмутин И.А., Шевченко В.Г., Пономаренко А.Т., Ениколопян Н.С. Анизотропия свойств и механизм проводимости графитонаполненного полипропилена // Высокомол.соед..-T.33.-J68.-I991.-с.1746-1752.

9.Borisov Yu.V., Grinev V.G., Kudinova O.I., Novokshonova L.A., Tarasova G.Ii., Ponomarenko A.T., Tohmutin I.A., Ryvkina N.G., Shevohenko V.G. Eleotrioal properties оi polyolefine based alumoplastics // Acta Polumerica. -v.43- -N2. -1992. -p.131-133.