Построение асимптотической теории гиперзвуковых течений неравновесных сред на основе кинетического уравнения Больцмана тема автореферата и диссертации по физике, 01.04.02 ВАК РФ
Кузнецов, Михаил Михайлович
АВТОР
|
||||
доктора физико-математических наук
УЧЕНАЯ СТЕПЕНЬ
|
||||
Москва
МЕСТО ЗАЩИТЫ
|
||||
2008
ГОД ЗАЩИТЫ
|
|
01.04.02
КОД ВАК РФ
|
||
|
На правах рукописи
Кузнецов Михаил Михайлович
ПОСТРОЕНИЕ АСИМПТОТИЧЕСКОЙ ТЕОРИИ ГИПЕРЗВУКОВЫХ ТЕЧЕНИЙ НЕРАВНОВЕСНЫХ СРЕД НА ОСНОВЕ КИНЕТИЧЕСКОГО УРАВНЕНИЯ БОЛЬЦМАНА
АВТОРЕФЕРАТ
диссертации на соискание ученой степени доктора физико-математических наук
Специальность: 01.04.02 -теоретическая физика
МОСКВА 2008
Работа выполнена на кафедре теоретической физики Московского государственного областного университета
Научный консультант: заслуженный деятель науки РФ,
доктор физико-математических наук, профессор Яламов Ю.И.
Официальные оппоненты:
доктор физико-математических наук, профессор Геворкян Э.В
доктор физико-математических наук, Галкин В.С
доктор физико-математических наук, профессор Ковалев В.Л.
Ведущая организация: Санкт-Петербургский государственный
университет.
Защита состоится 13 марта 2008 года в 15 часов на заседании диссертационного совета Д 212.155.07 при Московском государственном областном университете по адресу: 105005 г. Москва, ул. Радио, д 10а.
С диссертацией можно ознакомиться в библиотеке Московского государственного областного университета
Автореферат разослан «_/_»__2008 г.
Ученый секретарь диссертационного совета кандидат физико-математических наук, доцент
БарабановаН.Н.
ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ
В настоящее время асимптотические методы в теории движения неравновесных сред являются едва ли не самым надежным средством в понимании как механизмов различных физико-химических процессов на молекулярном уровне, так и определении влияния этих процессов на движение газа в целом (макроуровне)
В связи с этим уместно отметить, что основополагающее уравнение движения поступательно-неравновесной среды - уравнение Больцмана -получено именно асимптотическими методами из фундаментального теоретического базиса механики - уравнения Лиувилля.
В настоящей диссертационной работе приведены результаты применения асимптотических подходов как к выводу Замкнутых систем уравнений для макроскопических параметров движения газа из уравнения Больцмана (или эквивалентной ему бесконечной системы уравнений моментов), так и к их последующему анализу и решению, получению критериев подобия, разработке эффективных аналитических и полуаналитических методик решения задач неравновесного гиперзвукового обтекания тел, исследованию некоторых граничных задач кинетической теории газов и физической газовой динамики
В работе дано продвижение асимптотического ньютоновского подхода с традиционного Эйлеровского или Навье-Стоксовского уровня решения задач гиперзвукового обтекания тел на структурно более сложный — кинетический уровень и получение благодаря этому фундаментальной замкнутой системы уравнений движения, позволяющей в рамках сплошносредового подхода учесть влияние эффектов разреженности При этом выявлены решения гиперзвукового обтекания тел, когда эффекты разреженности проявляют себя не только традиционно
в граничных условиях скольжения и температурного скачка, но и в нелинейных по градиенту скорости (компоненту вихря) законах трения и теплопередачи (аналогично турбулентным законам сопротивления).
В работе рассмотрены также движения разреженной среды с различными типами неравновесности поступательной, колебательной, химической и выявлены механизмы их взаимодействия с газодинамическими процессами.
Актуальность темы. В диссертационной работе большое внимание уделено различным прикладным задачам физической газовой динамики, связанным с решением ряда проблем современной авиационно-космической техники и химической технологии созданием газодинамических устройств непрерывного действия (т е лазеров, гиперзвуковых прямоточных воздушно-реактивных двигателей (ГПВРД), прямоточных сверхзвуковых ускорителей тел, высокоэнтальпийных аэродинамических труб), прохождением радиоволн через плазменные образования, гетерогенным катализом.
Делд работы:
■ Вывод методами кинетической теории газов замкнутой системы граничных условий для уравнений физической аэродинамики и доказательство соответствующей теоремы единственности
■ Построение асимптотической теории гиперзвуковых течений вязкого газа на основе кинетического уравнения Больцмана
■ Исследование влияния эффектов поступательной неравновесности на термодинамические и термохимические параметры высокоэнталыгийного потока воздуха во фронте сильной ударной волны
■ Анализ механизмов «накачки» внутренних степеней свободы газа многотемпературными частицами аэрозоля в адсорбционном газодинамическом лазере.
■ Формулировка принципов и эффективных методик моделирования неравновесного теплообмена при гиперзвуковом обтекании тел с каталитически активной поверхностью.
■ Исследование структур коэффициентов гетерогенной каталитической рекомбинации с учетом динамики активных поверхностных центров.
■ Разработка эффективных численно-аналитических методик расчета аэродинамических характеристик тонких крыльев, обтекаемых потоком релаксирующего газа
■ Исследование структуры неравновесных рециркуляционных течений в областях с замкнутыми линиями тока и процессов горения в них.
■ Исследование влияния потерь на аэродинамическое сопротивление и теплопередачу при разгоне тел в сверхзвуковом прямоточном ускорителе
Научная новизна работы:
1 Для уравнений физической аэродинамики установлен универсальный «смешанный» тип граничных условий на поверхностях с различными физико-химическими
процессами, моделируемых обобщенным законом зеркально-диффузного взаимодействия. Доказана соответствующая теорема единственности решения уравнения Больцмана в слое Кнудсена в полном диапазоне изменения коэффициентов
аккомодации. Ранее эта теорема была известна лишь для случая газа, практически полностью аккомодированного к условиям поверхности
2. На основе асимптотического анализа уравнения Больцмана определены пределы применимости континуальной ньютоновской теории вязких ударных или пограничных слоев Найдены законы трения и теплопередачи, нелинейные по величине вихря скорости в таких слоях и исследовано их влияние на параметры течения вблизи некоторых тел.
3 Известная модель «пучок — сплошная среда» модифицирована на случай течения многоатомного газа с физико-химическими реакциями. Простота «пучковой» модели позволила распространить методику вычисления констант поступательно-неравновесных реакций, практически, на любую сложную систему реакций, используемых в различных приложениях
4 При исследовании адсорбционного газодинамического лазера, принцип действия которого был разработан в работах АМ Прохорова и В К Конюхова, установлено влияние теплообмена по внутренним степеням свободы на скорость испарения аэрозоля, а также оценено время испарения и глубина проникновения частиц аэрозоля в поток газа. При некоторых упрощающих предположениях дано аналитическое решение задачи в целом В модельной постановке (одномерный потенциал) решена задача о расчете коэффициента аккомодации колебательной энергии при резонансном обмене квантами в поле адсорбционных сил
5 Приведена методика моделирования неравновесного теплового потока к поверхностям с каталитической активностью, которая была одна из первых в период начала разработки теплозащитных покрытий воздушно-космических самолетов многоразового действия (80-е годы)
6 Исследован эффект «перекрестной» поверхностной рекомбинации, приводящий к существенному отличию коэффициентов гетерогенной рекомбинации в воздухе, от соответствующих коэффициентов в отдельных парциальных газах (азот, кислород)
7 Разработана модель гетерогенной каталитической рекомбинации, учитывающая динамику поверхностных активных центров
8. Выделены параметры подобия и соответствующие универсальные зависимости, определяющие максимальные значения тепловых потоков на теплонапряженном участке траектории планирующего спуска ЛА
9 На основе асимптотической ньютоновской теории тонкого ударного слоя сформулирован метод расщепления задачи неравновесного обтекания тонкого крыла на две последовательно рассматриваемые части При этом газодинамическая часть задачи представляется в аналитическом виде, а кинетическая — сводится к расчетам изменения плотности в релаксирующем одномерном течении за ударной волной
10 Дана асимптотическая классификация неравновесных рециркуляционных течений с замкнутыми линиями тока, когда характерное значение числа Рейнольдса 11е —> сю Для рециркуляционных течений низкотемпературной плазмы
установлено существование характерных неравновесных уровней концентрации электронов. Для возвратных течений с выделением энергии (горением) показано существование узких по толщине областей с большими градиентами температуры и концентраций, расположенных вблизи внешней границы рециркуляционной зоны
Научная н практическая значимость работы
Научная значимость работы заключается в разработке достаточно простых асимптотических моделей движения неравновесных сред, полученных из фундаментальных принципов кинетической теории газов
Строгость исходной теоретической базы обуславливает научную состоятельность разработанных моделей, а их относительная газодинамическая простота позволяет усложнять их при необходимости практически неограниченным набором различных физико-химических процессов. При этом усложненная математическая модель остается все еще доступной для обозримого аналитического или (достаточно экономного по затратам машинного времени) численного исследования
Практическая важность этого подхода обусловлена его непосредственным применением к решению ряда актуальных проблем гиперзвуковых неравновесных течений, связанных с разработкой перспективных воздушно-космических аппаратов и газодинамических устройств непрерывного действия, таких как адсорбционные лазеры и гиперзвуковые воздушно-реактивные двигатели, а также проблем неравновесного гетерогенного катализа
На защиту выносятся следующие результаты
- Теорема единственности решения £ уравнения Больцмана в слое Кнудсена, совпадающего в главном приближении по числу Кнудсена К —* 0 (или —> 0 в пограничном слое) с термодинамически и механически сильно неравновесной локально-максвелловской функцией распределения молекул ^0,(и,Т) Существенно отметить, что в отличие от обычных, асимптотически
малых условий скольжения Аи
и температурного
скачка АТ |—
Т-ц,
, справедливых в области значений
соответствующих коэффициентов аккомодации порядка единицы, в области малых значений этих коэффициентов (~ */К), макропараметры газа вблизи стенки и и Т могут отличаться от параметров самой стенки и = О, Т =Т„ на свою характерную величину
- Продвижение асимптотического ньютоновского подхода к решению задач вязкого гиперзвукового обтекания тел с континуального на структурно более сложный кинетический уровень. Определение условий, при которых вязкие ударные или пограничные слои становятся кинетическими, т.е требующими учета эффектов разреженности в виде нелинейных по компоненте вихря законов трения и теплопередачи Исследование нелинейных явлений переноса при решении задач гиперзвукового обтекания затупленных и тонких тел
- Модификация асимптотической гиперзвуковой " 8" — модели ударной волны Грэда в ее простейшем варианте - «пучок - сплошная среда» на случай течения разреженного газа с физико-химическими
процессами Определение на основе этой модели констант поступательно-неравновесных химических реакций
неаррениусовского типа
- Постановка и принципиальное решение задачи, связанной с возможностью передачи колебательной энергии в газ от конденсированной фазы с одновременным учетом наиболее существенных физических механизмов, происходящих в газе, на поверхности и внутри частиц. Определение условий, необходимых для осуществления эффективного смешения аэрозольных частиц углекислоты с потоком колебательно-возбужденного азота, а также времен жизни частиц и глубины проникновения их в газовую фазу
- Принципы моделирования неравновесного теплообмена при обтекании поверхностей с каталитической активностью
- Эффекты гетерогенного и гомогенного взаимодействия компонентов диссоциированной смеси газов при обтекании ими каталитически активных поверхностей
- Модель гетерогенной каталитической рекомбинации, учитывающей динамику активных центров поверхности
- Параметры подобия и соответствующие универсальные зависимости, определяющие максимальные значения неравновесных тепловых потоков при движении их в атмосфере Земли по траекториям планирующего спуска.
- Асимптотическая методика расчета распределения давления и аэродинамических характеристик клина, конуса и тонких крыльев, обтекаемых колебательно и химически неравновесными потоками воздуха
- Аналитическое исследование задач обтекания двойного клина и выпуклого угла гиперзвуковыми потоками релаксирующего газа
- Классификация, структура и параметры подобия неравновесных рециркуляционных течений
Результаты диссертационной работы доложены и обсуждены на
- Международной научно-технической конференции «Фундаментальные проблемы высокоскоростных течений» (г Жуковский, 2004 г)
- Международной научной конференции по механике «Четвертые Поляховские чтения» (СПб-ГУ, 2006 г)
- Всероссийском семинаре «Физико-химическая кинетика в газовой динамике» под руководством профессора С А Лосева и профессора А.И Осипова (НИИМех МГУ, 2006 г)
- XXV Международном симпозиуме по динамике разреженных газов (Репино, 2006 г)
Публикации
По теме диссертации автором лично и в соавторстве опубликовано свыше 36 печатных работ, в том числе 18 статей в журналах, рекомендованных ВАК
Структура и объем диссертации
Диссертация состоит из введения, 8 глав, содержащих 51 фигуру и 6 таблиц, заключения и списка литературы, состоящего из 264 наименований Полный объем 252 страницы.
КРАТКОЕ СОДЕРЖАНИЕ РАБОТЫ
Во введении дана общая характеристика диссертационной работы, обсуждается актуальность темы, указаны цели и новизна исследований, отмечена их практическая значимость, сформулированы положения, выносимые на защиту Дан краткий обзор литературы по теме диссертации Основной обзор литературы, естественным образом, распределен по главам
В связи с использованием методов кинетической теории газов упоминаются монографии, основополагающие работы и принципиальные результаты. НН Боголюбова; С. Чепмена и Т Каулинга, В Н Жигулева, А.В Бобылева, С.В Валландера; Е А Нагнибеда, М А Рыдалевской, В В. Веденяпина, В В Струминского, Ю А Кошмарова, Ю А Рыжова, В П Шидловского, А И Осипова, Ю И Яламова; Ю Н. Григорьева, М.Н Когана, Е Г Колесниченко, С.А. Лосева; В М Жданова, Б В Алексеева, Р Г Баранцева, В С. Галкина; В Я Рудяка; М О Луцета; В В Великодного, Г В Дубровского, Е.М Шахова; В.А. Рыкова, А В Богданова, В И Жука, НК Макашева; С.В Мусанова; Б.В Филиппова, АД Хонькина; ТА Хантулевой, А А Пярнпуу, М.Ш. Шавалиева; Б М Маркеева, О Г Фридлендера; А Я Эндер, И А Эндер
При рассмотрении гиперзвуковых течений в тонких ударных слоях отмечается принципиальный вклад в исследования этих течений, данный в работах ГГ. Черного, В.В. Сычева, В.Я. Нейланда, НК Ченга, В.В. Лунева, Г А Тирского, А Л. Гонора, Н А Остапенко, А И Голубинского, ВН Голубкина
В связи с анализом явления гетерогенной каталитической рекомбинации упоминаются работы, значительно продвинувшие понимание этого явления М.И Якушина, А.Ф Колесникова; В Л Ковалева, Н Н Кудрявцева, Б.Е. Жесткова, В В Лунева, Г.Н Залогина.
Ввиду широкого 1фуга задач, рассмотренных в диссертации, отмечаются также принципиальные результаты, полученные численно Ф Г Черемисиным, О М. Белоцерковским, В.В Аристовым; А И. Ерофеевым, С Л. Гореловым, В И. Власовым, Ю И. Хлопковым, С В. Куликовым, М С. Ивановым, Т Г Елизаровой; Б Н Четверушкиным, В А Перепуховым, В Е. Яницким, С.Б Свирщевским
В первой главе на основе асимптотического анализа уравнения Больцмана при малых значениях числа Кнудсена К (К « 1, К = / Ь"1, где I — средняя длина свободного пробега, Ь - характерный линейный масштаб течения) рассмотрена общая проблема получения замкнутого гидродинамического описания движения разреженного газа с соответствующими граничными условиями.
Оказалось, что для различных видов физико-химического взаимодействия молекул газа с поверхностью, моделируемого обобщенным зеркально-диффузным отражением молекул, макроскопические граничные условия имеют одинаковый математический тн смешанный тип
где у — нормаль к поверхности, V и § — вектор-столбцы соответственно размерных и безразмерных характеристик газа (например, для тепловой аккомодации с коэффициентом а на дне пограничного слоя будет
- температура стенки)
Следует отметить, что при § ~ 1 граничные условия (1) будут сильно отличаться от термодинамически и механически равновесных условий прилипания, причем имеет место следующая Теорема единственности:
Единственным решением уравнения Больцмана в слое Кнудсена на непроницаемой в главном приближении (при К « 1) зеркально-диффузной поверхности является локально-максвелловская функция распределения с макроскопическими параметрами v,
удовлетворяющими граничным условиям (1)
Поясним, что для ряда физических процессов, таких как испарение и конденсация, гетерогенная каталитическая рекомбинация, аккомодация активных и внутренних степеней свободы молекул и тд, зеркально-диффузная схема взаимодействия молекул с поверхностью может быть соответствующим образом обобщена. Поэтому в вектор столбец v входят не только параметры газа v и (Т — Tw) вблизи стенки с обычной зеркально-диффузной схемой рассеяния Максвелла, но и макроскопические параметры, отвечающие упомянутым гетерогенным процессам
Во второй главе на основе асимптотического анализа уравнения Больцмана для газа с внутренними степенями свободы исследован вопрос о границах применимости феноменологического описания гиперзвуковых течений вязкого газа Найдена асимптотическая форма макроскопических уравнений гиперзвукового движения разреженного газа при совершении ньютоновского предельного перехода
Мж —> ао, Res -> со, s -» 0, sM^, ~ 1 (2)
в бесконечной цепочке кинетических моментов функции распределения по скоростям молекул (здесь Мш — число Маха в набегающем потоке, Res, е -соответственно число Рейнольдса и степень сжатия во фронте ударной волны)
Видно, что в силу предельного перехода (2) появляется еще один малый параметр е, помимо числа Кнудсена К, которое непосредственно связано с числом Рейнольдса Res
р V Ь 4еМ Яе 00 00 - а
я и К
здесь |Хз — коэффициент динамической вязкости при температуре за фронтом скачка Т3
Малый параметр е пропорционален обратной величине числа возбужденных степеней свободы молекул I » 1 (поступательных, вращательных, колебательных и т д ).
Наличие второго малого параметра е позволяет провести асимптотический анализ уравнения Больцмана даже в тех случаях, когда его левая и правая части имеют одинаковый порядок величины, что, по принятой в кинетической теории газов терминологии, соответствует не континуальному, а т н переходному режиму течения разреженного газа
Проведенные асимптотические оценки позволяют сформулировать следующую теорему, устанавливающую границы применимости асимптотической континуальной теории вязких гиперзвуковых течений-
Гиперзвуковые вязкие ударные или пограничные слои, в которых число Кнудсена Кз , определенное по толщине этих слоев (при Ь — 8) и приблизительно равное величине, обратной числу Маха, при температуре за ударной волной Т8 (или при температуре торможения То в пограничном слое) являются не континуальными, а кинетическими, причем К$ — М'1 ~ л!е
Таким образом, в ньютоновской кинетической теории нарушение континуального режима вязких гиперзвуковых течений происходит не при числе Кнудсена К ~ 1, а несколько ранее, поскольку е « 1
Наличие второго малого параметра в позволяет также расщепить конвективный оператор уравнения Больцмана (т е его левую часть) на
главную и поправочную части При этом для главной части конвективного оператора будет отсутствовать зацепление уравнений для моментов п-го порядка с уравнением для моментов (п+1)-го порядка Это позволяет провести строгий асимптотический обрыв бесконечной системы уравнений моментов (т.н уравнений переноса Максвелла) и получить замкнутые выражения для компонент тензора напряжения Рар и вектора теплового потока qa, нелинейных по компоненте градиента скорости, нормальной к обтекаемой поверхности. Эти выражения для случая плоского или осесимметричного течения газа в системе координат (х,у), где х и у — соответственно тангенциальная и нормальная к поверхности координаты, имеют следующий вид
ди
Руу + ) > P^^-Veff—, Чу—К
8Т_ ду1
Meff = Mns /(1 + Äeff = ZN-s /(1 +
T' -T _2 Cy
LQ
а
Г
з Cy 1+2q2 3
P'
T_ T"
p = nkT,
(3)
ßtf-s = Np'rQ. + a)~~l, £ =
CS l + a
yCy
а
l + a dy 2 , 2
где Су} - теплоемкости внутренних степеней свободы, а - отношение времен неупругих и упругих столкновений, т - время релаксации в модельном уравнении Морза, Т', Т - соответственно температура поступательных степеней свободы и равновесная температура, Рг — число
Прандтля, к, R — соответственно постоянная Больцмана и универсальная газовая постоянная
При C(vl)= 0 соотношения (3) переходят в соответствующие выражения, полученные Н.К. Ченгом в бесструктурном газе.
Численные исследования уравнений гиперзвукового движения с нелинейными законами переноса (3) для Рар и q„ были проведены в следующих случаях
1 Гиперзвуковое обтекание параболоида вращения фреоном-14 при Моо= 12, Reco= 145.
2 Гиперзвуковое обтекание сферического затупления молекулярным азотом при Мм = 26, Res = 65
3 Гиперзвуковое обтекание скользящего цилиндра при Мш = 26, Res = 30
4 Обтекание пластины с острой передней кромкой потоком вращательно возбужденного азота при M«, = 23
В результате было получено, что решения уравнений с нелинейными законами переноса (3) лучше совпадают с расчетами по методу Монте-Карло, чем решения уравнений вязкого ударного слоя
На рис. 1 показано распределение безразмерной компоненты тензора напряжений Рп = Руу / Р^ по безразмерной длине пластины х = х/А/т, где
Рис 1. Сравнение распределений Рп вдоль плоской пластины с острой передней кромкой на основе кинетической версии параболизованных уравнений Навье-Стокса и прямого численного моделирования на основе метода Монте-Карло Сплошная линия -теория нелинейного переноса, пунктирная линия теория сильного взаимодействия, крестики - прямое численное моделирование
В третьей главе исследовано влияние поступательной неравновесности на величины констант химических реакций в сильной ударной волне при М® » 1 Найдены аналитические неаррениусовские представления широкого класса констант таких реакций. Ранее аналогичные представления для отдельных типов реакций были получены В.В Великодным
Показано, что в рамках асимптотической гиперзвуковой "3" — модели ударной волны Грэда, в ее простейшем варианте - «пучок — сплошная среда», дополненной учетом химических реакций, поступательно неравновесные константы могут быть получены для любых бинарных реакций, аррениусовский вид которых известен При этом в поступательно неравновесных константах предэкспоненциальный множитель остается, практически, таким же, как и в равновесных, а
экспоненциальный множитель ехр(- В) заменяется на более сложное выражение
О2 -|ехр[-(х-г)2]-ехр[-(х + , (4)
где Ъъ Т) — соответственно безразмерная скорость «пучка» относительно «сплошной среды» и безразмерный энергетический порог реакции, причем первая величина отнесена к тепловой скорости, а вторая — к тепловой энергии молекул «сплошной среды», п — показатель степени предэкспоненциального множителя в константе аррениусовской химической реакции
При X — 0 выражение (4) переходит в соответствующий аррениусовский множитель в равновесной константе
Выражение (4) дает существенное увеличение скорости химической реакции по сравнению с законом Аррениуса, поскольку из-за большой не нулевой скорости относительного движения «пучка» и «сплошной среды» происходит как бы эффективное снижение порога реакции
В силу структурного подобия формул, полученных для поступательно неравновесных констант, и формул для поступательно равновесных констант, первые из них будут определены при тех же значениях свободных параметров. п,Ои т.д., что и второе Этот результат, предопределенный простотой исходной модели «пучок - сплошная среда», имеет существенное практическое значение, поскольку позволяет модифицировать с помощью соотношения (4), практически, тобые сложные системы химических кинетик, используемых в прикладных задачах
Выражение (4) представляет интерес также и для тн обратной задачи определения сечений молекулярных столкновений по известным
температурным зависимостям констант скоростей химических реакций. Для поступательно равновесной кинетики такая проблема была рассмотрена ранее М.А. Рыдалевской. Ввиду большой стоимости экспериментального определения сечений в поступательно-неравновесном газе, их теоретическая оценка может быть практически полезной.
В разделе 3.2. с целью количественной оценки указанного типа неравновесности рассмотрена диссоциация двухатомных молекул (02, Ы2) в ударных волнах. Анализировался случай, когда энтальпия «пучка» соизмерима по величине с удельной энергией диссоциации молекул. На рис. 2 этому случаю соответствует значение параметра > 1.
Сравнивались величины поступательно неравновесной концентрации атомов а,, концентрации, обусловленной термической диссоциацией молекул а, и равновесной концентрации ае.
Рис. 2. Графики равновесной аг, температурной а? и неравновесной а1 степеней диссоциации в зависимости от безразмерной энергии ва, при
ре = 0,1, х = 1, у = 1,4, ра=0£,ра = \,2$ кг/м5: 1 - в, (г = 0); 2 - «„ (г = 40 км); 3 - а, (г = 80км); 4 - ; 5 - а..
Значения концентраций а5 и а[ вычислялись на характерной толщине ударной волны, где концентрация «пучковых» молекул составляла 0,1 от первоначальной величины
Из рис 2 следует, что для практически реальных значений параметра 9а > 1,5 значения пренебрежимо малы по сравнению с сц.
Как показали расчеты более сложной модели диссоциации высокотемпературного воздуха, эффект поступательной неравновесности наиболее сильно влияет на скорости протекания обменных реакций Как показано на рис.3, в «пучковой модели, из-за многократного возрастания скорости обменной реакции 0% + N —> О + N0 внутри фронта ударной волны профиль концентрации молекул N0 приобретает довольно резкий максимум
С
0.03-
0.02-
0.01-
/
/
0.00
-2
-1
0 1 2 Х/1
Рис 3 Профили массовой доли окиси азота в ударной волне в воздухе -модель пучок-газ,---------модель Навье-Стокса
В противоположность этому, при Навье-Стоксовом описании ударной волны с поступательно равновесной термической диссоциацией профиль концентрации молекул N0 строго монотонен
В четвертой главе исследованы течения дисперсных сред с внутренними степенями свободы, с учетом процессов колебательной релаксации в газе, на поверхностях раздела фаз и внутри аэрозольных частиц, а также фазовых переходов - испарения и конденсации.
Идея создания адсорбционного-газодинамического квантового генератора была сформулирована в работе В К. Конюхова и АМ Прохорова в 1971 г. В 1978 г в работе автора, совместно с Кузнецовым В М, была обоснована принципиальная возможность существования сильной уровневой неравновесности в течениях дисперсной среды за ударными волнами Эффект инверсной населенности возникал вследствие избирательного возбуждения колебательных мод многоатомных молекул при адсорбции на частицах аэрозоля Было получено аналитическое решение газодинамической задачи, учитывающее процессы гомогенной и гетерогенной релаксации, протекающих одновременно. В 1976 г в работах А М Прохорова, В М Марченко, А С Бирюкова, В И Алферова и др. был предложен способ создания активной лазерной среды путем ввода в колебательно-возбужденный поток азота (воздуха) аэрозоля углекислоты СС>2 Двухфазное смешение потоков имело целью повысить плотность инверсии, энергетические характеристики и однородность активной среды
В разделе 41 процесс смешения двухфазных потоков проанализирован на основе законов сохранения потоков массы, импульса и энергии для течения в канале постоянного поперечного сечения
Аналитическое решение этой задачи показало, что в результате квазиспутного смешения величины давления и температуры смеси растут с увеличением числа Маха газовой фазы, или нормальной компоненты
скорости частиц аэрозоля Рост давления особенно нежелателен, поскольку он может приводить к нарушению однородности течения Однако, при специальном выборе исходных параметров потока можно добиться минимальных изменений параметров смеси, в частности неизменности величины давления до и после смешения.
В разделе 4 2 исследован вопрос о влиянии колебательной неравновесности сверхзвукового потока на скорость испарения частиц аэрозоля, их время жизни и глубину проникновения в поток Благодаря тому, что удельная теплота испарения частиц С02 намного превышает их тепловую энергию, задача допускает значительные асимптотические упрощения и позволяет найти приближенное аналитическое решение
Так, для времени испарения частиц, покоящихся относительно газа, была получена конечная формула, включающая вклад теплового потока от неравновесных колебательных степеней свободы при произвольном значении числа Кнудсена по размеру частицы. Существенно отметить, что даже при малых значениях коэффициента аккомодации внутренних степеней свободы а, (например, аг ~ ес, при ес « 1, еа ~ число Кнудсена «по частице») тепловой поток от внутренних степеней свободы может быть соизмеримым с соответствующим потоком от активных степеней свободы
Аналитическое решение задачи удалось получить и для случая частиц, отстающих от газа с дозвуковой скоростью Например, между величинами скорости V и радиуса частицы Я, отнесенными к своим начальным значениям, оказалась справедливой следующая зависимость
ЬГвд^г^СД-ш^од, 5 = (5)
3 л У
0Р=т,1Тао,
р с
Здесь Ми и Со соответственно число Нуссельта и коэффициент сопротивления, Тр - температура частицы, Тао — начальная температура газовой фазы, д — удельная теплота испарения, <2 » 1.
Выражение (5) показывает, что необходимость совместного решения задачи о торможении и испарении капли определяется параметром В. При малых значениях В, когда (2 » 1, время испарения частицы можно оценивать по покоящемуся газу.
Проведенный анализ показал, что условию достаточно глубокого проникновения частиц в поток (~ 50 см) в диапазоне давлений р = (0,1 — 0,01 )-105 Па удовлетворяют частицы с радиусами гр > 1 мкм.
Рис. 4. Путь торможения 8Р и время жизни т* частиц различных диаметров в зависимости от давления р в газовом потоке
На рис. 4 показаны сводные результаты, характеризующие путь торможения 5Р и время жизни частиц различных диаметров в потоке, в
зависимости от давления (о* — концентрация насыщенного пара, Уо начальная скорость отставания частиц, Гц — время молекулярной диффузии на межчастичное расстояние)
Движение колебательно неравновесных дисперсных сред представляет особый интерес для лазерной газодинамики, поскольку наибольшую энергию внутримолекулярных колебаний в единице объема можно запасти в аэрозоле В работе Б.Ф Гордиеца, М С. Мамедова, Л А Шелепина (1975 г) было показано, что температура колебательных степеней свободы молекул аэрозоля возбужденных электронным пучком может существенно превосходить обычную температуру «фононных» молекулярных колебаний 7£ Существенно отметить также, что время существования этого эффекта т,£ весьма значительно 0,1 — 1 сек, что больше соответствующего времени деактивации колебательных степеней свободы т1С? в газовой фазе
Важно, однако, не только запасти энергию в аэрозоле, но и передать ее молекулам лазерной среды В исследовании этой проблемы весьма существенным оказался результат, полученный В К Конюховым и В.Н Файзулаевым в 1978 г. Ими было показано, что молекулы газовой среды будут колебательно возбуждаться в процессе резонансных V — V переходов при адсорбции на поверхности двухтемпературного аэрозоля
При этом необходимо, чтобы Тл » Ть и частоты колебаний внутри молекул газовой и конденсированной фаз были одинаковы
Вопрос о дальнейшем перераспределении энергии между аэрозолем и газовой фазой рассмотрен в разделе 4 3 Оказалось, что для эффективной передачи энергии внутренних степеней свободы молекул аэрозоля соответствующим степеням свободы молекул газа необходимо выполнение следующего основного асимптотического неравенства
гЬ
Здесь т, — характерное время подачи колебательной энергии к поверхности
колебательной деактивации газовых молекул на поверхности частиц, / — основное газодинамическое время
Как показано в разделе 4 3 наличие основного асимптотического неравенства позволяет выделить в задаче две различные стадии:
1 быстрая «накачка» колебательных степеней молекул газовой фазы поверхностью аэрозоля,
2 поступательно-колебательная деактивация молекул газовой фазы
Для каждой из стадий найдено соответствующее аналитическое решение Например, на 1-ой стадии для температуры колебательных степеней свободы Т1(} газовой фазы будет выполняться следующее равенство
Здесь (у) — тепловая скорость молекул, еь - число Ван-дер-Ваальса
по концентрации частиц аэрозоля Ыь еь р(а1) - отношение
плотностей газовой рс и аэрозольной рь фаз, рь = "(V Ей 7ь ~ плотность частиц аэрозоля, % — вероятность резонансной «накачки».
На второй стадии деактивация колебательной энергии определяется
функцией е , где
5 5
частицы, тг — время резонансной V — V накачки, т1Ь, тг1 — время
£
колебательной релаксации на поверхности и внутри частиц, — время
1-1
92 а ^[1 + 414*0 + + £/4*0)
Здесь ^ - вероятность ударной гетерогенной деактивации частиц газа
Полученные решения наглядно показывают, что эффективность
гетерогенной «накачки»
ча
и продолжительность колебательного
возбуждения в газе 0 ~ 1/ц2) определяются безразмерными параметрами еь Ки = —, зависящими от концентрации коллектива частиц N1,
и вероятностей упругих § и неупругих ^ взаимодействий с поверхностью.
Рис 5 Колебательная Тй и поступательная Т0 температуры газа на стадии деактивации его внутренней энергии
На рис. 5 показаны температурные зависимости колебательной Т,0 и поступательно-вращательной Т0 газовых температур на второй стадии
Отношение температур
т(0) 1>1 у
показано сплошными линиями,
штриховьши. Начальные данные были выбраны следующими р(аг'} =0,1
Еь = Ю'3, во = 0,4, т:й ~ 4 10"4 с, ^ = 1 Каждая кривая соответствует только одному значению ¿.¡.
В разделе 4.3.3 задача о передаче колебательной энергии от аэрозоля газу рассмотрена с учетом фазового перехода на поверхности аэрозоля Показано, что принципиальная роль «коллективных» параметров еь Ра'К Ки не изменяется при наличии фазовых переходов Многочисленные параметрические расчеты, проведенные в этом случае, свидетельствуют о
том, что максимальное значение
Гт \
г(0) Ул11 У
по-прежнему растет с
увеличением е^ коэффициента резонансного обмена квантами 4. а также с увеличением времени замороженности колебательной энергии Г,£ в аэрозоле
По сравнению с отсутствием фазового перехода новым является
наличие режимов, на которых высокая степень неравновесности, т.е.
1, может достигаться тогда, когда значительная часть аэрозоля
гт \ г(0)
гр(0
еще не испарилась, т.е. —--1.
гро
В разделе 4 3.4. рассмотрена квантовомеханическая задача о расчете вероятности резонансного обмена квантами колебательной энергии § в поле адсорбционных сил Величину можно также трактовать как коэффициент аккомодации внутримолекулярной колебательной энергии Снова, благодаря наличию асимптотического неравенства Ь<вп<<0<< М2о, решение задачи удается получить в конечном аналитическом виде (Здесь Б — глубина потенциальной ямы, Ьсо0, - дебаевский и внутримолекулярный колебательные кванты)
В итоге величина § оказывается равной отношению С, /1+ С,, где С, -безразмерный параметр, равный отношению характерного времени десорбции к времени резонансного обмена квантами внутренних колебаний молекул
Показано, что для эффективного механизма резонансного обмена внутренними колебательными квантами в адсорбционном слое необходимо выполнение неравенства £ » 1, что количественно выражает условие длительности взаимодействия. При ц ~ 1 и переходном режиме разреженности вблизи частицы аэрозоля, те при ес ~ 1, распределение частиц в адсорбционном слое по внутримолекулярным колебательным
аналитический вид этого распределения
В пятой главе дано исследование вероятностей гетерогенной каталитической рекомбинации и ее влияния на максимальный нагрев космических аппаратов
Определение зависимостей коэффициентов гетерогенной каталитической рекомбинации к'„ от материала и температуры поверхности, давления и состава газовой фазы тесно связано с задачей уменьшения теплового потока к обтекаемой поверхности Теоретически знание структуры коэффициентов гетерогенной рекомбинации
к1 = ) столь же необходимо, как и знание структур
диссипативных коэффициентов (коэффициентов диффузии, вязкости, теплопроводности и т.д.), поскольку последние входят в систему
газодинамических уравнений движения, а коэффициенты к1 — в
граничные условия на химически реагирующей поверхности
уровням не будет больцмановским Для случая
найден
В настоящее время из-за отсутствия достаточной информации о взаимодействии атомов с поверхностью твердых тел при исследовании кинетики гетерогенных процессов применяют, в основном, феноменологическую ленгмюровскую теорию адсорбционных взаимодействий. Теория Ленгмюра обладает большой общностью и с ее помощью в работах Н Н Кудрявцева, Г Н. Залогина, В В Лунева, Б Е, Жесткова, В Л Ковалева и др получен ряд важных результатов, в том числе по структуре коэффициентов гетерогенной рекомбинации.
Если бы были известны явные структурные зависимости
то результаты измерений теплового потока на моделях в газодинамических установках можно было бы пересчитать на натурные условия. Однако современный уровень знаний о кинетике гетерогенных реакций не позволяет сделать это чисто теоретически. Поэтому в экспериментальных условиях приходится воспроизводить натурные значения
термодинамических параметров, от которых зависят величины к1^
Основная трудность при этом заключается в том, что для практически
интересных слабо каталитических поверхностей (к1^ ~ 0,5 - 5, м/с)
величина химической составляющей теплового потока qj может стать сравнимой с ошибкой эксперимента 8qc
В разделе 5.1 4. сформулирована методика моделирования теплового
потока и экспериментального определения величин к1^ с учетом ошибки
5 К1 Моделирование отдельных составляющих теплового потока, qc
(конвективной) и q<j (химической), было предложено М.Н Коганом и НК Макашевым (1980 г) Эта методика предполагала наличие пограничного слоя на поверхности модели Однако стремление уменьшить
приводит к случаям, когда теория пограничного слоя неприменима
из-за недостаточно больших значений числа Рейнольдса Ле.
Методика, изложенная в разделе 5 1.4., включает общий случай зависимости безразмерных критериев тепло- и массопереноса от числа Яе
Соблюдение условия 5 А^« 1 может сделать необходимым
переход от гиперзвукового натурного режима обтекания летательного аппарата к дозвуковому обтеканию его модели в эксперименте. Соответствующий критерий выбора режима обтекания модели был сформулирован А.Ф Колесниковым в 1993 г.
С асимптотической точки зрения оптимальному условию газодинамического эксперимента должно отвечать неравенство
(Ча 1ц_с\ » $яс
Здесь индекс I соответствует условиям трубного эксперимента
На практике требуется более конкретная числовая оценка Она была получена численно в работе В Л. Беспалова, Г Н Залогина и др. в 1985 г.
для тн числа Дамкелера поверхности Г^ = 0,6 — 0,7 Аналитическое
исследование этого вопроса в широком диапазоне условий трубного эксперимента, приведенное в разделе 5.1 5 , показало, что оптимальным
режимам работы плазмотрона соответствует значение Г'^ = ^^ / це , а
минимальная ошибка в определении константы каталитичности
отличается от стандартной ошибки в определении теплового потока 5qc в Т" раз, где
/Г = л/2(1 + (1- <7/ / ЯеТ1
Таким образом, оптимальная точность газодинамического эксперимента тем больше, чем меньше отношение qj■l qe,т& чем шире
интервал между случаями полностью каталитической (при К1 —» оо ) и полностью некаталитической (при 0) поверхностей
Газодинамические испытания свойств каталитических покрытий часто проводят в струях диссоциированного азота или кислорода В натурных же условиях имеет место более сложная по составу смесь газов — диссоциированный воздух, в котором могут протекать обменные взаимодействия, идущие, в частности, с участием молекулярного кислорода и атомарного азота. При достаточно большой вблизи стенки концентрации молекул кислорода (как показано В П Агафоновым и В С. Никольским (1980 г), В Г Воронкиным и Г.Н. Залогиным (1980 г)) основная масса атомов азота будет рекомбинировать не на поверхности, а в газовой фазе Поэтому, на определенных режимах обтекания тел, тепловой поток перестает зависеть от каталитической активности поверхности по отношению к атомам азота Естественно, что это ставит серьезные проблемы перед моделированием каталитических свойств поверхности в аэродинамических установках на кислороде или азоте, где подобный эффект полностью отсутствует.
С целью определения полной области влияния эффекта обменных реакций на каталитичность поверхности по отношению к атомам азота были проведены подробные численные расчеты обтекания передней критической точки затупленных тел Обтекание рассматривалось в рамках модели т н. тонкого вязкого ударного слоя с неравновесными химическими реакциями, протекающими в диссоциированном воздухе (схема реакций Я Б Зельдовича)
В разделе 5 16 приведена полная область существования рассматриваемого эффекта в пространстве изменения трех независимых
параметров- константы каталитичности кислорода , скорости потока
V„, параметра бинарного подобия p^Rw, (Rw — радиус затупления JIA)
В разделе 5 2 1 проанализирован малоисследованный вопрос о перекрестном взаимодействии на поверхности компонентов диссоциированного воздуха
При наличии смеси диссоциированных газов (0,N,. ) на поверхности могут протекать как процессы «прямой» каталитической рекомбинации
N+NS k" ■>N + S
o+os kS >o+s
так и «перекрестной», идущей с образованием молекулы смешанного составам?
N + OS к° > NO+ S
O + NS k]' >NO + S Здесь NS, OS - атомы азота или кислорода, адсорбированные на поверхности, S — атом поверхности твердого тела, К", К°0, К*, К°ы — константы скоростей ударной каталитической рекомбинации
Как и в главе 4 можно выделить основное асимптотическое неравенство
(K%,K°0,K?,K°N)» KD (6)
где под Ко обобщенно понимается любая из констант скоростей гетерогенных реакций со значительными энергиями активации
Е ~ 100——, отвечающих таким процессам, как термодесорбция, моль
рекомбинация адатомов и т д
Следует отметить, что некоторые из этих активированных процессов, такие как термодесорбция, могут оказаться существенными для углеродно-кварцевых малокаталитических материалов (БхС) при температуре поверхности > 1500 К (см раздел 5.2 1). При этом итоговое значение
К'у, оказалось очень чувствительным к выбору теплоты адсорбции О
Выбор значения # = 46-, совпадающего с величинои энергии
моль
активации окисления поверхности кремния привел к хорошему соответствию с расчетными данными зарубежных работ по неравновесному теплообмену к поверхности ВКС «Спейс-Шатгл». Наряду с этим значения
Кг , полученные для кварцевых материалов в отечественных опытах Н И
Якушина и А.Ф. Колесникова в диапазоне Т№ > 1700 К, Р<> = 0,1-1 атм, довольно консервативны как по изменению температуры, так и давления
В результате исследования математической модели гетерогенной рекомбинации, удовлетворяющей неравенству (6), было показано, что наиболее сильное влияние на величину теплового потока к поверхности с перекрестной гетерогенной рекомбинацией, по-прежнему, оказывают диффузионные монопотоки диссоциированных атомов кислорода и азота, в то время как влияние поступления молекул N0 с поверхности на величины qw и Г„ оказалось незначительным. Следует также отметить, что эффективные константы каталитической рекомбинации в смеси атомов кислорода и азота отличаются от соответствующих констант в «своих» газах множителями в виде коэффициентов «аккомодации», обусловленных перекрестным взаимодействием
При определенных условиях влияние этих коэффициентов может быть весьма значительным, приводя к различию температур поверхности (по сравнению со случаем в <<моно»-газах) до 100 К
Результаты, изложенные в разделе 5 2.1, основаны на теории адсорбционного слоя Ленгмюра Однако, несмотря на свою простоту и наглядность эта теория имеет ряд существенных недостатков, одним из которых является параметрическое задание числа т н активных центров, на которых протекают гетерогенные реакции В реальности же число активных центров поверхности не остается постоянным, а определяется взаимодействием с молекулами газа, адсорбционного слоя и твердого тела. В конечном счете, их динамика может повлиять на структурную зависимость коэффициентов гетерогенной рекомбинации от определяющих параметров.
В разделах 5 2 2. - 5 2 3 на основе модели динамики активных центров и основного асимптотического неравенства (6) получены
структурные выражения для коэффициентов К1^ кварцевых
поверхностей, обтекаемых струями кислорода или азота Эти зависимости качественно (с погрешностью 30%) согласуются с результатами опытов в высокочастотных плазмотронах, обнаруживших слабую зависимость
коэффициентов К1 кварцевых материалов от давления и температуры
В разделе 5 2 4 рассмотрена задача об определении максимальных величин неравновесных тепловых потоков в критической точке при движении ЛА в атмосфере Земли по траектории планирующего спуска.
Роль основного асимптотического неравенства играет в данном случае приближение т н квазистационарного планирования, согласно которому наклон вектора скорости ЛА к местному горизонту 9 и его изменение по времени cÄ/dt пренебрежимо малы
В силу этого приближения уравнение движения центра масс ЛА сводится к условию статического равновесия веса, подъемной и центробежной сил, действующих на ЛА.
В безразмерной форме данное условие равновесия сил имеет вид Ао Р,
С 5
Здесь р1 =21{У?сту), сгу = м> =КгУ7/, б — вес тела, Су -
коэффициент подъемной силы, Э - площадь миделя ЛА, ау - параметр планирования, V/ - перваякосмическая («круговая») скорость, и рх -скорость и плотность потока, набегающего на ЛА
Параметры р1, ау, А, ,К° оказываются определяющими для всей задачи в целом (здесь А - число Рейнольдса, определенное по толщине вихревого подслоя, введенное В Я Нейландом и Ю Н Ермаком, 1967 г )
Р V3
Анализ на экстремум теплового потока - ^сп (где сн -
безразмерный коэффициент теплообмена) на траектории квазистационарного планирования приводит к следующему ограничению-
При условии —— > 0 величина м>* в точке максимального значения
д* не может быть меньше, чем
Для определения структурной зависимости с# = с# (V/, Ль К^ /V,, К® IV 1), А1 = А(р = рг ) использовались как численные расчеты, так и их последующие аналитические аппроксимации
Результаты последующего анализа величин на экстремум вдоль траектории планирующего спуска, представлены на рис 6 (р, = р1 /рв, ро - значение при Н = 95 км)
Рис. 6. Зависимости максимального теплового потока! д* при фиксированной степени катшштичности стенки от параметра подобия р,.
Видно, что учет химической релаксации в газе и конечной каталитической активности стенки (штрих-пунктир) приводит к значительному отличию значений ц* от равновесных.
В шестой главе рассмотрено влияние неравновесности газового потока на аэродинамические характеристики тонких крыльев, клина, конуса и некоторых других простых тел, моделирующих элементы конструкции ДА.
С теоретической точки зрения исследование невязких релаксационных течений представляет существенную проблему в аэродинамике ввиду сложности исходной системы нелинейных уравнений газодинамики и химической кинетики. В связи с этим в физической газодинамике продолжают развиваться два взаимодополняющих подхода.
Первый основан на упрощении всей исходной системы уравнений и, в первую очередь, уравнений газодинамики при использовании асимптотических теорий, например, теории тонкого ударного слоя Г Г Черного Если же такое упрощение не приводит к простым законам подобия или наглядным аналитическим предельным решениям, то разумнее всего обратиться ко второму подходу, основанному на численном решении всей исходной системы уравнений В главе 6 рассматриваемая проблема решалась в рамках первого подхода -асимптотической теории пространственного тонкого ударного слоя Согласно этой теории, как известно, рассматривается предельная картина гиперзвукового обтекания тела, когда при стремлении числа —* оо, ударная волна приближается близко к поверхности тела, образуя тонкий сильно сжатый слой возмущенного течения газа. При этом естественно возникает малый параметр е, равный отношению плотностей газа на фронте ударной волны г = Л, р~1, и решение задачи ищется в виде асимптотического ряда по этому малому параметру
На языке основного асимптотического неравенства исходная концепция ньютоновской теории тонкого ударного слоя заключается в следующем
Мм» 1, (Л&зша)>>1, £« 1 (7)
Здесь а — угол атаки.
Для случая тонкого тела систему уравнений химической кинетики, с использованием основного неравенства (7), удалось проинтегрировать в общем виде Полученные решения имеют вид функций, зависящих от сдвига координаты £ — % вдоль проекции линии тока
Здесь qa — релаксирующие N компонентов неравновесной смеси, % -координата входа линии тока в ударный слой
Подобные решения для осесимметричных или плоских течений исследовались ранее В В. Луневым, а для частной модели химической неравновесности Р Дж. Столкером.
В разделе 6 2 благодаря «сдвиговой» структуре функций удалось сформулировать метод расщепления, согласно которому решение газодинамической части записывается в аналитическом виде, а кинетическая — рассчитывается независимо от газодинамической и сводится к расчетам изменения плотности в релаксирующем одномерном течении за ударной волной
После нахождения конкретного вида функций я„ и, в частности, величины исходная система уравнений пространственного
неравновесного ударного слоя сводится к замкнутой краевой задаче об определении формы скачка , О
= Г,О- I [1 Ч
Здесь (£ ц, О - ортогональная прямоугольная система координат, ц =¥(£,, С) — уравнение поверхности тела, у/ - составляющая скорости газа вдоль размаха крыла (ось £), %ь — нижний предел интегрирования, зависящий от условий обтекания передней кромки
Ранее для течений совершенного газа подобную задачу рассмотрели в стационарном случае А И Голубинский и В Н Голубкин, а в нестационарном — В И Богатко, А А Гриб, Г А Колтон.
Следует отметить, что для неравновесного течения сведение исходной системы дифференциальных уравнений к краевой задаче
возможно лишь в первом (асимптотическом) подходе, благодаря выполнению основного асимптотического неравенства (7).
Обтекание крыла большого удлинения потоком совершенного газа было впервые рассмотрено А.Л. Гонором (1963 г). В этом случае угол при вершине крыла ф значительно больше угла конуса Маха ц в ударном слое {<р>> ¡1, = = С1»1, а — угод атаки, О - безразмерный
параметр). При этом краевая задача на большей част крыла » ду.) решается до конда и сводится в каждом сечении, параллельном хорде, к обтеканию клина.
Аэродинамические характеристики крыла большого удлинения (О»!) приведены в разделе 6.2.3. В частности, смещение центра давления, нормированное на длину корневой хорды, в потоке с колебательной релаксацией иримерно вдвое больше дога прямоугольного (в шгане) крыла, чем для треугольного. Влияние химической кинетики на смещение центра давления в потоке химически неравновесного воздуха, показанное на рис.,7 (где Ь = Ь/В, Б — характерная длина релаксации, = 3,5 ^ 5, км/с.)
соизмеримо с аналогичным смещением в потоке с колебательной релаксацией и составляет около 0,2% длины хорды.
Рис 7. Смещение центра давления АСа для плоского треугольного крыла, обтекаемого неравновесным воздухом.
Как правило, влияние физико-химических свойств воздуха на давление невелико, однако оно может оказаться достаточным, чтобы изменить, например, балансировочный угол атаки а на 5° - 10°, приводя к существенному изменению траектории полета ЛА
В разделе 6 1 рассмотрена нетипичная в свете вышеизложенного ситуация, когда релаксационные процессы влияют на давление и аэродинамические характеристики уже в главном приближении, т е на их основную величину
В частности, такое влияние показано в разделе 6 11 при рассмотрении неравновесного обтекания двойного клина (те клина со щитком, отклоненным так, чтобы образовалось течение сжатия). Это влияние оказалось монотонным
Немонотонное изменение давления из-за влияния неравновесности представлено в разделе 6 1.2 при исследовании течения расширения, обусловленного противоположным отклонением щитка. В этом случае существуют экстремальные значения для угла отклонения щитка, при которых разность между значениями давлений на щитке в газе с релаксацией и при ее отсутствии максимальна
В разделе 6 13. получено аналитическое решение задачи обтекания выпуклого угла неоднородным релаксирующим потоком газа, когда длина щитка соизмерима с длиной первой характеристики В этом случае поток перед выпуклым углом нельзя считать однородным Анализировался линейный вариант задачи для модели колебательной релаксации с малой величиной энергоемкости колебательных степеней свободы по отношению к полной энтальпии гиперзвукового потока.
В седьмой главе представлены результаты исследований химически неравновесных возвратных течений смеси газов при больших значениях числа Рейнольдса Ые"1 « 1 и произвольных значениях релаксационных
параметров Gk Характерной особенностью неравновесных возвратных течений является наличие в системе исходных уравнений большого числа релаксационных параметров , задающих отношение масштабов (времен) химической релаксации к основному газодинамическому времени Многообразие этих параметров обуславливает многообразие различных асимптотических случаев Ранее автором было показано, что при Re"1—И), Gfc ~ 1 уравнения релаксационной газодинамики имеют периодические возвратные решения. Однако, в практическом отношении наиболее интересным оказался случай следующего основного неравенства
Re1 < Gk « 1, (8)
или в предельном смысле
Re"1—>0, Gfc-»0, ReGfc= const
Обычно в задачах обтекания тел малым значениям релаксационных параметров Gk отвечает замороженное (в главном приближении) течение смеси газов, причем значения концентрации компонент определяются начальным составом в набегающем потоке В рециркуляционных (возвратных) течениях с замкнутыми линиями тока условия на бесконечности отсутствуют Аналогами их в течениях химически нейтрального газа являются интегро-дифференциальные условия, получаемые из равенства нулю циркуляция градиентов энтропии и полной энтальпии вдоль замкнутых линий тока Эти условия для сжимаемого, вязкого и теплопроводного газа были получены В,Я Нейландом в 1970 г В предельном замороженном возвратном течении (Re"1—>0, Gk—>0) концентрации компонентов аи. остаются неизменными вдоль каждой замкнутой линии тока, т.е. аи, - «ыХчО Для определения величин а^ нужны дополнительные условия.
Оказалось, что они имеют локальный дифференциальный характер и могут быть записаны в виде'
40)vX+4'Va,- « = о (9)
ы
Здесь V =(V/,V„), координата 2 отсчитывается вдоль линии тока у,
ТЛ J1
координата п - по нормали к ней, с(р = i-^dl, cf - A(VnpDk + V,pDk)—,
v 1 pv
Dk - коэффициент диффузии, - концентрация "k"-ro компонента
смеси, Fkp), R[p) - проинтегрированные с весом — по длине линии тока
pv
L скорости прямой и обратной реакции, %кр) = Re G^Sck (Sck - число Шмидта), £,(к) — число Дамкелера
При выполнении этих условий распределение концентраций в возвратном невязком предельном течении (Re-1—»0, Gk—>0) будет таким же, как и в релаксирующем рециркуляционном потоке с очень малыми, но конечными значениями параметров Re"1 и Gk В зависимости от соотношения малых параметров Re"1« 1 и Gk« 1 их относительной скорости стремления к нулю (Re"1—»0, Gk—>0), что выражается значением безразмерного числа Дамкелера ^ - возможны различные предельные случаи
1 » 1 — Существенной особенностью этого режима является наличие тонких слоев химической релаксации толщиной Ак, в которых происходит изменение величин концентраций от некоторых краевых значений в свободных вязких слоях до значений ак(у), удовлетворяющих условиям равновесия в «среднем»: Fkp) -R[p) Эти слои толщиной Ак содержат в
себе вязкие пограничные слои толщиной 6, причем ДсГ1 пв1/2,Ск« 1
2 ~ 1. — Течение с неоднородным распределением по линиям тока у концентрации аи, , определяемой из локальных дифференциальных условий (9). Этот случай представляет определенный интерес для приложений Действительно, в рециркуляционных течениях низкотемпературной плазмы, когда локальные равновесные значения концентрации электронов пе лежат значительно ниже уровней, обусловленных содержанием ионизированных компонент в периферийных струйных вязких слоях, имеются характерные неравновесные уровни концентрации электронов, определяемые из условия (п») ~ 1
и* = Р Р~1\(р М6 Не""1., см"3
* 00 О 00 00, й
Здесь Р„„ Рь - значения давления в набегающем потоке и донной области, Пе«^ - характерное число Рейнольдса, определенное по масштабу донной области Ь
Данное соотношение может рассматриваться также и как приближенный закон подобия для неравновесной концентрации электронов в донной области
Интегральные условия, получаемые из равенства нулю циркуляции градиентов энтропии и полной энтальпии вдоль произвольной замкнутой линии тока при выполнении основного асимптотического неравенства (8) могут быть также упрощены
Как показано в разделе 7 3 1, использование этого неравенства наряду с приближенным методом В Я Нейланда (1970 г) для расчета
рециркуляционных течений с малой величиной завихренности, позволяет сформулировать следующую теорему
Условия для распределения давления торможения по линиям тока рециркуляционного течения в случае Ке''—*0, б*—*0 не зависят явно от скоростей химических реакций и определяются вязкой диссипацией импульса этого течения
Ранее для химически нейтрального газа общие интегро-дифференциальные условия были проанализированы и упрощены в работе ЭТ. Шифрина (1976 г.)
В разделе 72,. представлены результаты численного анализа рециркуляционного течения с объемным горением модельной горючей смеси (водород-кислородная смесь, разбавленная гелием).
На рис. 8 представлены графики температуры и концентрации шрючеш Р(у).
Т.?
Рис 8 Распределение f}(\j/) при T(yi) ф const.
Температура Т нормирована на величину 103 К, Тв - означает температуру, заданную на границе области = 1, а — коэффициент избытка окислителя.
В восьмой главе рассмотрена задача о сверхзвуковом разгоне тела в прямоточном ускорителе — замкнутой трубе с горючей смесью Предполагалось, что тело поступает в трубу с некоторой начальной скоростью, достаточной для возникновения горения в кольцевом пространстве между его поверхностью и поверхностью трубы В качестве наполнителя ускорителя рассматривалось водородное или углеводородное топливо
Идею о разгоне тел в ускорителе со сверхзвуковым или детонационным горением выдвинули за рубежом (AIAA paper, N 87-2152, 1987) Оказалось, что концепция ускорителя тесно связана с проблемой воздушно-космической авиации — разработкой перспективного гиперзвукового воздушно-реактивного двигателя (ГПВРД) При этом обе концепции объединены как общими конструктивными элементами -стенки канала ускорителя играют роль обечайки ГПВРД — так и сущностно Поэтому обе проблемы в зарубежных численных исследованиях обычно рассматриваются параллельно с использованием одних и тех же вычислительных алгоритмов
В главе 8 показано, что в квазиодномерном приближении при реализации режимов сверхзвукового или детонационного горения (на боковой поверхности тела), решение задачи может быть получено аналитически
Основное асимптотическое неравенство, определяющее общность обеих проблем можно записать в виде
(4-^яКя«! (Ю)
здесь 1и , 1„ — удельные импульсы потока на входе и выходе из соответствующих агрегатов (в ускорителе — это носовое и кормовое сечения, перемещающиеся вместе с телом)
В идеальном двигателе или ускорителе без волновых и диссипативных потерь положительная величина разности (1а - /#) > О как раз и составляет тягу, обусловленную эффектом тепловыделения при горении топлива Непосредственным следствием основного неравенства (10) является сверхзвуковой режим истечения продуктов сгорания в выходных сечениях (Ма > 1), если во входных сечениях поток был гиперзвуковым (Мя » 1) и между сечениями удалось избежать больших волновых потерь (например, прямых скачков уплотнения) Вследствие этого, как показано в разделе 8 2, для длины и скорости разгона тела можно получить аналитические выражения, справедливые для горючей смеси произвольного состава Аналитическая форма решения позволяет проанализировать влияние ряда факторов формы и массы тела, параметров рабочей смеси, а также интегральной диссипации полного импульса и полной энтальпии потока Существенно, также, что влияние этих факторов представимо в универсальной форме — в виде зависимостей от безразмерных параметров подобия
ЗАКЛЮЧЕНИЕ
Главным итогом диссертационной работы является разработка перспективного асимптотического подхода в теоретической физике высокотемпературных неравновесных явлений, связанного с различными фундаментальными и прикладными проблемами авиационно-космической техники, лазерной газодинамики и химической технологии
Сущность этого подхода состоит
1 В формулировке кинетической теории поступательно и химически неравновесной структуры фронтов ударных волн, вязких ударных или пограничных слоев
2 В упрощении исходной громоздкой системы уравнений движения неравновесной среды, содержащей большое число релаксационных параметров, осуществляемом на основе фундаментального асимптотического неравенства или асимптотических оценок, отвечающих конкретному содержанию каждой задачи
3 В поиске критериев подобия, универсальных зависимостей, аналитических и полуаналитических методик решения рассматриваемых задач
В результате применения разработанной теории удалось получить
1. Универсальные граничные условия (и соответствующую теорему единственности) уравнений физической газодинамики, описывающих движение газа около поверхностей с обобщенным зеркально-диффузным рассеянием молекул газа, моделирующим протекание ряда физико-химических процессов
2 Нелинейную структуру реологических соотношений, замыкающих уравнения гиперзвукового движения газа в вязких ударных или пограничных слоях
3 Поступательно-неравновесные константы скоростей химических реакций неаррениусовского типа, протекающих внутри вязких фронтов ударных волн, возникающих в гиперзвуковых высокоэнталышйных потоках воздуха
4 Условия эффективной передачи внутренней колебательной энергии, запасенной в неравновесно возбужденных частицах аэрозоля, молекулам газа, а также систему критериев подобия и аналитические решения уравнений движения многотемпературной дисперсной среды с поуровненвой неравновесностью.
5 Методику эффективного моделирования неравновесного теплообмена газа с мало каталитическими покрытиями при минимальной ошибке эксперимента; структурные зависимости коэффициентов гетерогенной каталитической рекомбинации при учете динамики активных центров поверхности, алгоритм для определения максимальных неравновесных тепловых потоков к мало каталитическим покрытиям в критической точке ЛА, движущегося по траектории планирующего спуска и представить их в виде универсальных зависимостей от соответствующих критериев подобия
6. Аналитическое представление аэродинамических характеристик тонких крыльев большого удлинения, обтекаемых гиперзвуковыми потоками с колебательной и химической неравновесностью; аналитические решения некоторых задач с неравновесными течениями сжатия и расширения, где учет неравновесности при определении давления необходим уже в главном приближении.
7. Классификацию неравновесных рециркуляционных течений с замкнутыми линиями тока и приближенные законы подобия для неравновесных уровней концентрации электронов в таких течениях
8. Приближенное аналитическое решение задачи о разгоне тел в сверхзвуковом прямоточном ускорителе, учитывающее потери на аэродинамическое сопротивление и теплопередачу
СПИСОК ОСНОВНЫХ ПУБЛИКАЦИЙ ПО ТЕМЕ
1 Кузнецов М.М Об аналитическом решении уравнения Больцмана в кнудсеновском слое //ПМТФ. 1971. №4 с 135-139.
2 Кузнецов М М Кнудсеновский слой в течении с двухтемпературной релаксацией //ПМТФ 1972 №6. с 38-^3
3. Кузнецов ММ. О нестационарном скольжении газа вблизи бесконечной плоскости при диффузно-зеркальном отражении молекул //ПМТФ 1975. №6, с 19-25
4. Кузнецов В М, Кузнецов М М. Граничные условия для течений многоатомных газов. //ПМТФ. 1975. №4 с. 93-102
5 Кузнецов ММ Поверхностные явления при обтекании тел // Аэрогазодинамика и физическая кинетика, СО АН СССР ИПТМ Новосибирск 1977 с.66-81
6 Кузнецов В.М., Кузнецов ММ Некоторые вопросы взаимодействия аэрозоля с неравновесным потоком колебательно-возбужденной среды //ПМТФ 1979 №6 с 52-60
7. Агафонов В П., Кузнецов М.М О моделировании неравновесных тепловых потоков к каталитической поверхности // Ученые записки ЦАГИ 1979 т 10. №4 с 66-78
8 Кузнецов В М, Кузнецов М М Многотемпературные модели в задачах неоднородных течений релаксирующего газа //ЧММСС Новосибирск. СО АН СССР ИТПН 1980 т И.№3 с 65-77
9 Жигулев В.Н, Кузнецов ММ. Проблема граничных условий в кинетической теории газов // Молекулярная газовая динамика Наука 1982 с 90-99.
10. Кузнецов М М Об одной модели кинетических граничных условий на поверхности с неравновесной колебательной релаксацией //ЧММСС 1980. т 13 №6. с. 63-68
11 Агафонов В.П, Кузнецов ММ. Особенности моделирования каталитических свойств поверхности в дозвуковом и гиперзвуковом потоках.//Ученые записки ЦАГИ 1982. т XIII. №3 с 21-31
12. Кузнецов ММ., Никольский ВС. Асимптотический анализ течений многоатомного газа в тонком ударном слое на основе обобщенного уравнения Больцмана // Деп. в ВИМИ, № Д 05247 от 6 мая 1983г
13 Кузнецов ММ О нестационарном пространственном обтекании тонкого крыла гиперзвуковым потоком релаксирующего газа. //Доклады АН СССР 1982 т. 226 №5 с 1090-1093.
14 Бормашенко Б Д, Кузнецов М.М , Кузнецов В.М. Неравновесная система газ - поверхность - твердое тело в задачах релаксационной газовой динамики. И ПМТФ 1983 №2. с 3-13
15 Кузнецов ММ К теории гиперзвукового пространственного обтекания тонкого крыла произвольного удлинения нестационарным потоком релаксирующего газа //ПМТФ 1983 № 5 с. 88-93.
16 Кузнецов ММ Неравновесные рециркуляционные течения в области с угловыми точками. // Проблемы физической газовой динамики М, 1983 ,вып 2177 с 102-117
17 Кузнецов М М, Никольский ВС О кинетической модели тонкого ударного слоя // Физическая механика неоднородных сред СО АН СССР ИТПН. Новосибирск 1984. с 101-110
18 Кузнецов М М, Никольский В С. Кинетический анализ гиперзвуковых вязких течений многоатомного газа в тонком трехмерном ударном слое И Ученые записки ЦАГИ 1985. т 16 №3 с 38-49
19 Егоров ИВ, Кузнецов ММ., Нейланд В Я. Определение максимальных неравновесных тепловых потоков //Ученые записки ЦАГИ 1988 т XIX № 4 с. 1-9
20 Колесников А Ф , Кузнецов В М, Кузнецов М.М, Якушин М И. О модели процессов каталитической гетерогенной рекомбинации атомов на кварце // Гагаринские чтения по космонавтике и авиации 1988 г М Наука, 1989 с 89-98
21 Кузнецов М.М, Полянский ОЮ О гиперзвуковых предельных течениях релаксирующего газа с изменением давления в главном приближении // Физическая газодинамика М ЦАГИ. 1990. вып 2424, с 150-164
22 Егоров И В, Кузнецов М М, Нейланд В Я Неравновесная теплопередача в окрестности критической точки затупленных тел // Физическая газодинамика М ЦАГИ 1990. вып 2424 с. 254-270
23 Кузнецов В М, Кузнецов М М, Товбин Ю К О влиянии физико-химических свойств поверхности и состава газа на структуру коэффициента гетерогенной рекомбинации //Физическая газодинамика М. ЦАГИ 1990 вып. 2424 с 269-282
24 Кузнецов М.М, Садовский В С Исследование модели неравновесного объемного горения в рециркуляционной зоне. //
Труды XVIII научных чтений по космонавтике, посвященных памяти выдающихся ученых-пионеров освоения космического пространства Фазис М 1994 с 27-29
25. Кузнецов В М., Кузнецов ММ Исследование разгона тел в горючих смесях //ПМТФ 1998 т 30. №5 с. 6-10
26 Кузнецов М М Кинетические эффекты в предельных гиперзвуковых течениях вязкого газа // Сб тр XV сессии Междунар школы по моделям механики сплошной среды. СПб СПб ун-т 2001 с 55-65
27. Горелов В А., Комаров В Н, Кузнецов М М., Юмашев В J1 О влиянии поступательной неравновесности на скорость молекулярной диссоциации в гиперзвутсовой ударной волне. // ПМТФ. 2001 т 42 №2. с 42-51.
28 Горелов В А., Кузнецов М.М, Юмашев В JI Численное моделирование течения с химическими реакциями в сильной ударной волне с приближенным учетом поступательной неравновесности. // ПМТФ. 2002 т. 43. №4 с. 75-86
29. Горелов В А, Комаров В Н, Кузнецов М М, Юмашев В JI Численное моделирование процессов поступательной и химической неравновесности во фронте сильной ударной волны // ТОХТ 2003 т 37 № 1 с.25-31
30 Кузнецов М.М Асимптотический анализ гиперзвукового течения газа в криволинейной ударной волне. //Вестник МГОУ 2005 №2 с 11-22
31 Кузнецов М М, Яламов Ю И Кинетическая модель гиперзвуковых течений вязкого газа в тонком ударном слое. //Вестник МГОУ 2005 №2 с 5-10
32 Кузнецов М.М., НЕдамов Ю.И. О замыкании уравнений движения разреженного газа нелинейными соотношениями молекулярного переноса. //Вестник МГОУ. 2006.№1. с. 34-41.
33. Кузнецов М.М. Влияние поступательной неравновесяости на скорость химических реакций во фронте сильной ударной волны. //Вестник МГОУ. 2007. Ш, с. 63-70.
34. Яиамов Ю.И., Кузнецов МЖ Об эффектах нелинейного молекулярного переноса при поступательно-неравновесном обтекании тел. //Вестник МГОУ. 2007. №2, с. 6-15.
35. Кузнецов М.М., йшамов Ю.1. Аналог теоремы Правдам — Бэтчелора для неравновесных течений с замкнутыми линиями тока. // Вестннк МГОУ. 2007. №2, с. 16-21.
36 Кузнецов ММ., Липатов И .И., i Никольский B.C. Реология течения разреженного газа в шнерзвуковом ударном и пограничном слоях. // Известия РАН. Механика жидкости и газа. 2007. №5. сЛ 187.
В заключение хотелось бы искренне поблагодарить моего научного консультанта, заслуженного деятеля науки РФ, доктора физико-математических наук, профессора Ю И Яламова за постоянное внимание к работе, обсуждение результатов и полезные рекомендации.
Введение
1 Асимптотический анализ граничных условий для уравнений физической аэродинамики
1.1 Общая постановка асимптотической задачи неравновесного обтекания тел в кинетической теории многоатомных газов.
1.2 Анализ макроскопических граничных условий.
1.3 Граничные условия смешанного типа.
1.4 О необходимых и достаточных условиях установления ло-кально-максвелловского распределения в слое Кнудсена.
2 Гиперзвуковой ньютоновский предельный переход при асимптотическом исследовании решений уравнения Болыдмана
2.1 Обоснование нарушения режима течения сплошной среды при кинетическом описании тонкого вязкого ударного слоя.
2.2 Реология течения разреженного газа в кинетическом режиме тонкого, вязкого, гиперзвукового, ударного слоя.
2.3 Исследование решений уравнений кинетического вязкого ударного слоя с нелинейными процессами переноса.
2.3.1 Гиперзвуковое ньютоновское обтекание затупленных
2.3.2 Гиперзвуковое ньютоновское обтекание тонких тел на примере обтекания полубесконечной пластины с острой передней кромкой.
3 Исследование влияния поступательной неравновесности в ударной волне на скорости химических реакций
3.1 Модели гиперзвуковой ударной волны: Навье-Стокса, Тамма-Мотт-Смита, «8» - модель Грэда, «пучок - сплошная среда».
3.1.1 Оценка толщины ударной волны в гиперзвуковом течении газа.
3.1.2 Толщина скачка в предельном навье-стоксовском течении газа.
3.1.3 Оценка толщины скачка при бимодальном представлении функции распределения в ударной волне.
3.1.4 Оценка толщины ударной волны в предельном «5»-ре-шении Г. Грэда.
3.1.5 Структура прямой ударной волны в модели «пучок -сплошная среда».
3.2 Модель «пучок - сплошная среда» с учетом диссоциации двухатомных молекул внутри фронта ударной волны.
3.3 Модель «пучок - сплошная среда» и ее применение к диссоциации воздуха внутри фронта ударной волны.
3.3.1 Постановка задачи и система уравнений.
3.3.2 Аналитическое представление поступательно-неравновесных констант химических реакций.
3.3.3 Алгоритм численного решения задачи.
3.3.4 Результаты численного эксперимента.
4 Движение многотемпературной газовой среды с колебательно неравновесной конденсированной фазой
4.1 Решение задачи о смешении колебательно-возбужденного азота и аэрозоля углекислоты.
4.2 Влияние колебательной неравновесности сверхзвукового потока на скорость испарения частиц аэрозоля, их время жизни и глубину проникновения в поток.
4.3 Перераспределение энергии в неоднородной среде газ-поверхность-твердое тело.
4.3.1 О физических механизмах, создающих многотемпературную поверхность аэрозоля.
4.3.2 Передача колебательной энергии от аэрозоля газу при отсутствии фазового перехода на его поверхности.
4.3.3 Передача колебательной энергии от аэрозоля газу с учетом фазового перехода на его поверхности.
4.3.4 Расчет коэффициента аккомодации колебательной энергии молекул газа при резонансном обмене квантами с частицами молекулярного кристалла.
5 Исследование вероятностей гетерогенной каталитической рекомбинации и ее влияния на максимальный нагрев космических аппаратов
5.1 Моделирование неравновесных тепловых потоков к поверхности с каталитической активностью.
5.1.1 Уравнение неравновесного теплового баланса в квазибинарной смеси газов.
5.1.2 Аналитическая зависимость коэффициентов гетерогенной каталитической рекомбинации от давления и температуры по теории Ленгмюра.
5.1.3 Моделирование суммарной величины натурного теплового потока qw.
5.1.4 Моделирование qw с учетом минимума ошибки химической составляющей теплового потока qd.
5.1.5 О минимуме относительной ошибки при определении вероятности гетерогенной каталитической рекомбинации.
5.116 Эффект преобладания газофазной рекомбинации атомов азота над поверхностной и проблема моделирования тепловых потоков.
5.2 Перекрестные процессы гетерогенной каталитической рекомбинации и их влияние на удельные тепловые потоки.
5.2.1 Скорость образования молекул окиси азота на каталитической поверхности по теории Ленгмюра.
5.2.2 Структурная зависимость коэффициентов каталитической рекомбинации атомов кислорода на кварцевой поверхности с активными центрами.
5.2.3 Структурная зависимость коэффициентов каталитической рекомбинации атомов азота на кварцевой поверхности с активными центрами.
5.3 Влияние процессов каталитической рекомбинации на максимальные значения тепловых потоков при планирующем спуске космических аппаратов.
6 Асимптотическая ньютоновская теория неравновесных обтеканий тонких крыльев 163 0.1 Об изменении ньютоновского давления в главном приближении при аэродинамическом воздействии на гиперзвуковой поток релаксирующего газа.
6.1.1 Неравновесное обтекание двойного клина.
6.1.2 Обтекание выпуклого угла предельным гиперзвуковым потоком релаксирующего газа.
6.1.3 Линейная теория предельного гиперзвукового обтекания выпуклого угла неоднородным релаксирующил: потоком газа.
6.2 Определение поправки к ньютоновскому давлению в потоке релаксирующего газа.
6.2.1 О нестационарном пространственном обтекании тонкого крыла гиперзвуковым потоком релаксирующего газа.
6.2.2 Предельное пространственное обтекание тонкого крыла с отошедшим скачком потоком релаксирующего газа
6.2.3 О применении правила полос к расчету аэродинамических характеристик в неравновесном гиперзвуковом потоке.
6.2.3.1 Распределение давления на клине и конусе в гиперзвуковом неравновесном потоке газа.
6.2.3.2 Аэродинамические характеристики тонких крыльев в неравновесном гиперзвуковом потоке газа.
6.2.3.3 Положение центра давления на треугольном крыле в гиперзвуковом неравновесном потоке газа.
7 Асимптотическая теория неравновесных рециркуляционных течений с замкнутыми линиями тока 203.
7.1 Структура неравновесных рециркуляционных течений.
7.1.1 Асимптотическое состояние неравновесного рециркуляционного потока при Re —»со, G* —> 0.
7.1.2 Закон подобия для неравновесной концентрации электронов в донной области тел.
7.1.3 Асимптотическое представление коэффициентов дифференциальных уравнений.
7.1.4 Предельное состояние потока при Re —> оо, GlP) = const.
7.1.5 Основные режимы неравновесных возвратных течений.
7.2 Исследование модели неравновесного объемного горения в рециркуляционной зоне.
7.3 Аналог теоремы Прандтля — Бэтчелора для неравновесных течений с замкнутыми линиями тока.
7.3.1 Вывод уравнения для функции тока ц/ рециркуляционного течения с малой величиной завихренности со.
7.3.2 Обобщение теоремы Прандтля-Бэтчелора для неравновесных рециркуляционных течений с малыми значениями релаксационных параметров ~ Re"1.
7.3.3 Условия для концентраций компонент химически реагирующей смеси и решение для конвективной скорости рециркуляционного потока Vj( у/, т).
8 Исследование проблем гиперзвукового двигателя с детонацией в наклонных скачках
8.1 Сверхзвуковой разгон тел при заданной скорости продуктов сгорания.
8.2 Сверхзвуковой разгон с учетом волновых и диссипативных потерь.
ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ
В настоящее время асимптотические методы в теории движения неравновесных сред являются едва ли не самым надежным средством в понимании как механизмов различных физико-химических процессов на молекулярном уровне, так и определении влияния этих процессов на движение газа в целом (макроуровне).
В связи с этим уместно отметить, что основополагающее уравнение движения поступательно-неравновесной среды — уравнение Больцмана — получено именно асимптотическими методами из фундаментального теоретического базиса механики - уравнения Лиувилля.
В настоящей диссертационной работе приведены результаты применения асимптотических подходов как к выводу замкнутых систем уравнений для макроскопических параметров движения газа из уравнения Больцмана (или эквивалентной ему бесконечной системы уравнений моментов), так и к их последующему анализу и решению, получению критериев подобия, разработке эффективных аналитических и полуаналитических методик решения задач неравновесного гиперзвукового обтекания тел, исследованию некоторых граничных задач кинетической теории газов и физической газовой динамики.
В работе дано продвижение асимптотического ньютоновского подхода с традиционного Эйлеровского или Навье-Стоксовского уровня решения задач гиперзвукового обтекания тел на структурно более сложный - кинетический уровень и получение благодаря этому фундаментальной замкнутой системы уравнений движения, позволяющей в рамках сплошносредового подхода учесть влияние эффектов разреженности. При этом выявлены решения гиперзвукового обтекания тел, когда эффекты разреженности проявляют себя не только традиционно: в граничных условиях скольжения и температурного скачка, но и в нелинейных по градиенту скорости (компоненту вихря) законах трения и теплопередачи (аналогично турбулентным законам сопротивления).
В работе рассмотрены также движения разреженной среды с различными типами неравновесности: поступательной, колебательной, химической и выявлены механизмы их взаимодействия с газодинамическими процессами.
Актуальность темы.
В диссертационной работе большое внимание уделено различным прикладным задачам физической газовой динамики, связанным с решением ряда проблем современной авиационно-космической техники и химической технологии: созданием газодинамических устройств непрерывного действия (т.е. лазеров, гиперзвуковых прямоточных воздушно-реактивных двигателей (Г11ВРД), прямоточных сверхзвуковых ускорителей тел, высокоэнтальпийных аэродинамических труб), прохождением радиоволн через плазменные образования, гетерогенным катализом.
Дели работы:
Вывод методами кинетической теории газов замкнутой системы граничных условий для уравнений физической аэродинамики и доказательство соответствующей теоремы единственности.
Построение асимптотической теории гиперзвуковых течений вязкого газа на основе кинетического уравнения Больцмана.
Исследование влияния эффектов поступательной неравновесности на термодинамические и термохимические параметры высокоэнтальпийного потока воздуха во фронте сильной ударной волны.
Анализ механизмов «накачки» внутренних степеней свободы газа многотемпературными частицами аэрозоля в адсорбционном газодинамическом лазере.
Формулировка принципов и эффективных методик моделирования неравновесного теплообмена при гиперзвуковом обтекании тел с каталитически активной поверхностью.
Исследование структур коэффициентов гетерогенной каталитической рекомбинации с учетом динамики активных поверхностных центров.
Разработка эффективных численно-аналитических методик расчета аэродинамических характеристик тонких крыльев, обтекаемых потоком релаксирующего газа.
Исследование структуры неравновесных рециркуляционных течений в областях с замкнутыми линиями тока и процессов горения в них. в Исследование влияния потерь на аэродинамическое сопротивление и теплопередачу при разгоне тел в сверхзвуковом прямоточном ускорителе.
Научная новизна работы:
1. Для уравнений физической аэродинамики установлен универсальный «смешанный» тип граничных условий на поверхностях с различными физико-химическими процессами, моделируемых обобщенным законом зеркально-диффузного взаимодействия. Доказана соответствующая теорема единственности решения уравнения Больцмана в слое Кнудсена в полном диапазоне изменения коэффициентов аккомодации. Ранее эта теорема была известна лишь для случая газа, практически полностью аккомодированного к условиям поверхности.
2. На основе асимптотического анализа уравнения Больцмана определены пределы применимости континуальной ньютоновской теории вязких ударных или пограничных слоев. Найдены законы трения и теплопередачи, нелинейные по величине вихря скорости в таких слоях и исследовано их влияние на параметры течения вблизи некоторых тел.
3. Известная модель «пучок — сплошная среда» модифицирована на случай течения многоатомного газа с физико-химическими реакциями. Простота «пучковой» модели позволила распространить методику вычисления констант поступательно-неравновесных реакций, практически, на любую сложную систему реакций, используемых в различных приложениях.
4. При исследовании адсорбционного газодинамического лазера, принцип действия которого был разработан в работах A.M. Прохорова и В.К. Конюхова, установлено влияние теплообмена по внутренним степеням свободы на скорость испарения аэрозоля, а также оценено время испарения и глубина проникновения частиц аэрозоля в поток газа. При некоторых упрощающих предположениях дано аналитическое решение задачи в целом. В модельной постановке (одномерный потенциал) решена задача о расчете коэффициента аккомодации колебательной энергии при резонансном обмене квантами в поле адсорбционных сил.
5. Приведена методика моделирования неравновесного теплового потока к поверхностям с каталитической активностью, которая была одна из первых в период начала разработки теплозащитных покрытий воздушно-космических самолетов многоразового действия (80-е годы).
6. Исследован эффект «перекрестной» поверхностной рекомбинации, приводящий к существенному отличию коэффициентов гетерогенной рекомбинации в воздухе, от соответствующих коэффициентов в отдельных парциальных газах (азот, кислород).
7. Разработана модель гетерогенной каталитической рекомбинации, учитывающая динамику поверхностных активных центров.
8. Выделены параметры подобия и соответствующие универсальные зависимости, определяющие максимальные значения тепловых потоков на теплонапряженном участке траектории планирующего спуска JIA.
9. На основе асимптотической ньютоновской теории тонкого ударного слоя сформулирован метод расщепления задачи неравновесного обтекания тонкого крыла на две последовательно рассматриваемые части. При этом газодинамическая часть задачи представляется в аналитическом виде, а кинетическая — сводится к расчетам изменения плотности в релаксирующем одномерном течении за ударной волной.
10. Дана асимптотическая классификация неравновесных рециркуляционных течений с замкнутыми линиями тока, когда характерное значение числа Рейнольдса Re —» оо. Для рециркуляционных течений низкотемпературной плазмы установлено существование характерных неравновесных уровней концентрации электронов. Для возвратных течений с выделением энергии (горением) показано существование узких по толщине областей с большими градиентами температуры и концентраций, расположенных вблизи внешней границы рециркуляционной зоны.
Научная и практическая значимость работы
Научная значимость работы заключается в разработке достаточно простых асимптотических моделей движения неравновесных сред, полученных из фундаментальных принципов кинетической теории газов.
Строгость исходной теоретической базы обуславливает научную состоятельность разработанных моделей, а их относительная газодинамическая простота позволяет усложнять их при необходимости практически неограниченным набором различных физико-химических процессов. При этом усложненная математическая модель остается все еще доступной для обозримого аналитического или (достаточно экономного по затратам машинного времени) численного исследования.
Практическая важность этого подхода обусловлена его непосредственным применением к решению ряда актуальных проблем гиперзвуковых неравновесных течений, связанных с разработкой перспективных воздушно-космических аппаратов и газодинамических устройств непрерывного действия, таких как адсорбционные лазеры и гиперзвуковые воздушно-реактивные двигатели, а также проблем неравновесного гетерогенного катализа.
На защиту выносятся следующие результаты
- Теорема единственности решения f уравнения Больцмана в слое Кнудсена, совпадающего в главном приближении по числу Кнудсена К 0 (или 4К ^ 0 в пограничном слое) с термодинамически и механически сильно неравновесной локально-максвелловской функцией распределения молекул u,T). Существенно отметить, что в отличие от обычных, асимптотически малых условий скольжения
А и г а« ^ ^ .„ГаТ ^ 0 и температурного скачка AT —> О Г И
V® У J справедливых в области значений соответствующих коэффициентов аккомодации порядка единицы, в области малых значений этих коэффициентов (~ макропараметры газа вблизи стенки и и Т могут отличаться от параметров самой стенки и = О, Т =TW на свою характерную величину.
- Продвижение асимптотического ньютоновского подхода к решению задач вязкого гиперзвукового обтекания тел с континуального на структурно более сложный кинетический уровень. Определение условий, при которых вязкие ударные или пограничные слои становятся кинетическими, т.е. требующими учета эффектов разреженности в виде нелинейных по компоненте вихря законов трения и теплопередачи. Исследование нелинейных явлений переноса при решении задач гиперзвукового обтекания затупленных и тонких тел.
- Модификация асимптотической гиперзвуковой " 8" — модели^ ударной волны Грэда в ее простейшем варианте - «пучок - сплошная среда» на случай течения разреженного газа с физико-химическими процессами. Определение на основе этой модели констант поступательно-неравновесных химических реакций неаррениусовского типа.
- Постановка и принципиальное решение задачи, связанной с возможностью передачи колебательной энергии в газ от конденсированной фазы с одновременным учетом наиболее существенных физических механизмов, происходящих в газе, на поверхности и внутри частиц. Определение условий, необходимых для осуществления эффективного смешения аэрозольных частиц углекислоты с потоком колебательно-возбужденного азота, а также времен жизни частиц и глубины проникновения их в газовую фазу.
- Принципы моделирования неравновесного теплообмена при обтекании поверхностей с каталитической активностью.
- Эффекты гетерогенного и гомогенного взаимодействия компонентов диссоциированной смеси газов при обтекании ими каталитически активных поверхностей.
- Модель гетерогенной каталитической рекомбинации, учитывающей динамику активных центров поверхности.
- Параметры подобия и соответствующие универсальные зависимости, - определяющие максимальные значения неравновесных тепловых потоков при движении их в атмосфере Земли по траекториям планирующего спуска.
- Асимптотическая методика расчета распределения давления и аэродинамических характеристик клина, конуса и тонких крыльев, обтекаемых колебательно и химически неравновесными потоками воздуха.
- Аналитическое исследование задач обтекания двойного клина и выпуклого угла гиперзвуковыми потоками релаксирующего газа.
- Классификация, структура и параметры подобия неравновесных рециркуляционных течений.
Апробация работы
Результаты диссертационной работы доложены и обсуждены на:
- Международной научно-технической конференции «Фундаментальные проблемы высокоскоростных течений» (г. Жуковский, 2004 г).
- Международной научной конференции по механике «Четвертые Поляховские чтения» (СПб-ГУ, 2006 г).
-Всероссийском семинаре «Физико-химическая кинетика в газовой динамике» под руководством профессора С.А. Лосева и профессора А.И. Осипова (НИИМех МГУ, 2006 г)
- XXV Международном симпозиуме по динамике разреженных газов (Репино, 2006 г.).
Публикации
По теме диссертации автором лично и в соавторстве опубликовано свыше 36 печатных работ, в том числе 18 статей в журналах, рекомендованных ВАК.
Структура и объем диссертации
Диссертация состоит из введения, 8 глав, содержащих 51 фигуру и 6 таблиц, заключения и списка литературы, состоящего из 264 наименований. Полный объем 252 страницы.
ЗАКЛЮЧЕНИЕ
Главным итогом диссертационной работы является разработка перспективного асимптотического подхода в теоретической физике высокотемпературных неравновесных явлений, связанного с различными фундаментальными и прикладными проблемами авиационно-космической техники, лазерной газодинамики и химической технологии.
Сущность этого подхода состоит:
1. В формулировке асимптотической кинетической теории поступательно и химически неравновесной структуры фронтов гиперзвуковых ударных волн, вязких ударных или пограничных слоев.
2. В упрощении исходной громоздкой системы уравнений движения неравновесной среды, содержащей большое число релаксационных параметров, осуществляемом на основе фундаментального асимптотического неравенства или асимптотических оценок, отвечающих конкретному содержанию каждой задачи.
3. В поиске критериев подобия, универсальных зависимостей, аналитических и полуаналитических методик решения рассматриваемых задач.
В результате применения разработанной теории удалось получить:
1. Универсальные граничные условия (и соответствующую теорему единственности) уравнений физической газодинамики, описывающих движение газа около поверхностей с обобщенным зеркально-диффузным рассеянием молекул газа, моделирующим протекание ряда физико-химических процессов.
2. Нелинейную структуру реологических соотношений, замыкающих уравнения гиперзвукового движения газа в вязких ударных или пограничных слоях.
3. Поступательно-неравновесные константы скоростей химических реакций неаррениусовского типа, протекающих внутри вязких фронтов ударных волн, возникающих в гиперзвуковых высокоэнтальпийных потоках воздуха.
4. Условия эффективной передачи внутренней колебательной энергии, запасенной в неравновесно возбужденных частицах аэрозоля, молекулам газа, а также систему критериев подобия и аналитические решения уравнений движения многотемпературной дисперсной среды с поуровненвой неравновесностью.
5. Методику эффективного моделирования неравновесного теплообмена газа при минимальной ошибке эксперимента в определении степени каталитичности; структурные зависимости коэффициентов гетерогенной каталитической рекомбинации при учете динамики активных центров поверхности; алгоритм для определения максимальных неравновесных тепловых потоков к мало каталитическим покрытиям в критической точке JIA, движущегося по траектории планирующего спуска и представление их в виде универсальных зависимостей от соответствующих критериев подобия.
6. Аналитическое представление аэродинамических характеристик тонких крыльев большого удлинения, обтекаемых гиперзвуковыми потоками с колебательной и химической неравновесностью; аналитические решения ряда задач с неравновесными течениями сжатия и расширения, где учет неравновесности при определении давления необходим уже в главном приближении.
7. Классификацию неравновесных рециркуляционных течений с замкнутыми линиями тока и приближенные законы подобия для неравновесных уровней концентрации электронов в таких течениях.
8. Приближенное аналитическое решение задачи о сверхзвуковом разгоне тел в прямоточном ускорителе с учетом диссипативных и волновых потерь.
9. Асимптотическую общность решений ряда граничных задач кинетической теории газов и физической газовой динамики с несколькими малыми параметрами, когда эти решения зависят от относительной скорости стремления малых параметров к своим предельным значениям.
1. Боголюбов Н. Н. Проблемы динамической теории в статистической физике. — М.: Гостехиздат, 1946.
2. Чепмен С., Каулинг Т. Математическая теория неоднородных газов. — М.: ИЛ, 1960.
3. Жигулев В.Н. Об уравнениях физической аэродинамики. // Инж. ж., 1963, T.III, вып. I, с.137.
4. Струмгмский В.В. Об одном методе решения кинетического уравнения Больцмана. //ДАН СССР, 1964, т. 158, № 2.
5. Шидловский В.П. Введение в динамику разреженного газа. — М.: Наука, 1965.
6. Осипов АЖ. Неравновесное распределение энергии по поступательным степеням свободы в газах. //ФГВ, №4, 1966, с. 42-61.
7. Яламов ЮЖ. Теория движения аэрозольных частиц в неоднородных газах, //докт. дисс. М. ИФХ АН СССР, 1968.
8. Жигулев В.Н., Кузнецов В.М\ Некоторые проблемы физической аэродинамики. //Труды ЦАГИ, 1969, вып. 1136.
9. Галкин B.C. Вывод уравнений медленных течений газа из уравнения Больцмана. // Ученые записки ЦАГИ, 1974, т. 5, № 4, с. 40-47.
10. Галкин B.C., Коган М.Н., Макашев Я.К. Обобщенный метод Чепмена — Энскога. //ДАН СССР, 1975, т. 220, № 2, с. 304-307.
11. Мацук В.А., Рыков В.А. О методе Чепмена — Энскога для смеси газов. //ДАН СССР, 1977, т. 233, № 1, с. 49-51.
12. Валландер С.В., Нагнибеда Е.А., Рыдалевская М.А. Некоторые вопросы кинетической теории химически реагирующей смеси газов. — Л.: Изд-воЛГУ, 1977.
13. Колесниченко Е.Г., Лосев С.А. Кинетика релаксационных процессов в движущихся средах. //Химия плазмы, Вып. 6, — М.: Атомиздат, 1979.
14. Жданов В.М. Явления переноса в многокомпонентной плазме. — М.: Энергоиздат, 1982.
15. Алексеев Б.В. Математическая кинетика реагирующих газов. — М.: Наука, 1982.
16. Коган М.Н. Динамика разреженного газа. — М.: Наука, 1967.
17. Бобылев А.В., Веденяпин В.В. Преобразование Фурье интегралов столкновения Больцмана и Ландау. // Препринт ИПМ АН СССР №125 за 1981 г.
18. Григорьев Ю.Н. Класс точных решений одного нелинейного кинетического уравнения. // Динамика сплошной среды. СО АН СССР. Ин-т гидродинамики.1976, Вып.26, с.30-43.
19. Галкин B.C., Шавалиев М.Ш. Газодинамические уравнения высших приближений метода Чепмена-Энскога. // Изв. АН СССР, МЖГ, 1998, №4, с.3-28.
20. Шахов Е.М. Метод исследований движений разреженного газа. — М.: Наука, 1974,208 с.
21. Кошмаров Ю.А., Рыжов Ю.А. Прикладная динамика разреженного газа. — М.: Машиностроение, 1974.
22. Жук В.Н. Некоторые асимптотические свойства макропараметров разреженного газа при расширении в вакуум. // ПММ, 1977, т.41, с.72-78.
23. Хонъкин А.Д. Об уравнениях гидродинамики быстрых процессов. // Докл. АН СССР, 1973, т.210, №5.
24. Филиппов Б.В., Хантулева Т.А. Граничные задачи нелокальной гидродинамики. Из-во ЛГУ, 1984.
25. Рудяк В.Я. Статистическая теория диссипативных процессов в газах и жидкостях. Новосибирск: Наука, 1987.
26. Эндер А.Я., Эндер И.А. Интеграл столкновений уравнения Больцмана и моментный метод. Из-во СПб У нив., 2003.
27. Богданов А.В., Дубровский Г.В. К выводу кинетических уравнений в рамках приближения статистической Т — матрицы. // ТМФ, 1976, т.28, №1, с.80-91.
28. Jlyifem М.О. О течении релаксирующего газа вблизи твердой поверхности. // ПМТФ, 1973, №4, с.33-39.
29. Маркеев Б.М. Об изотермическом течении газа между параллельными плоскостями при произвольной аккомодации тангенциального импульса.
30. Мусанов С.В. Аналитическое исследование полей свободно-молекулярного течения в районах передней и задней кромки пластины. // Изв. АН СССР, МЖГ, 1978, №1, с.171-176.
31. Freedlertder O.G. On thermal — stress gas flows. // Arch. Mech. 1990. V.42. N 4-5. p.475-482.
32. Филиппов Б. В. Аэродинамика тел в верхних слоях атмосферы. — Л : Изд-во ЛГУ, 1973.
33. Барапцев Р.Г. Взаимодействие разреженных газов с обтекаемыми поверхностями. — М.: Наука, 1975.
34. Пярнпуу А. А. Взаимодействие молекул газа с поверхностями. — М : Наука, 1974.
35. Черный Г\ Г. Течения газа с большой сверхзвуковой скоростью. — М.: Физматгиз, 1959.
36. Лунев В. В. Гиперзвуковая аэродинамика. — М.: Машиностроение, 1975.
37. Хейз У. Д., Пробстин Р. Ф. Теория гиперзвуковых течений.— М.: Изд. иностр. лит., 1962.
38. Гонор AJL, Остапенко Н.А. Гиперзвуковое обтекание крыла конечной толщины. // Изв. АН СССР, МЖГ, 1970, №3, с.46-55.
39. Тирский ГА. К теории гиперзвукового обтекания плоских и осесимметричных затупленных тел вязким химически реагирующим многокомпонентным потоком газа при наличии вдува. // Научные труды Инст. механики, Изд-во МГУ, 1975, №39, с.5-38.
40. Нейланд В. Я. Асимптотические задачи теории вязких сверхзвуковых течений. //Труды ЦАГИ, 1974, вып. 1529.
41. ГогишЛ.В., Нейланд В.Я., Степанов ПО. Теория двумерных отрывных течений. //Итоги науки и техники, ВИНИТИ, М., т. 8, 1975.
42. Черемисин Ф.Г. Численные методы прямого решения кинетического уравнения Больцмана. // ЖВМ и МФ. 1985. т.25. №12. с.1840-1855.
43. Перепухов В.А. О сопротивлении плоской пластины в потоке сильно разреженного газа. // ЖВМ и МФ. 1961. т.1. №4. с.680-686.
44. Власов В.PI. Улучшение метода статистических испытаний (Монте-Карло) для расчета течений разреженных газов. // ДАН СССР. 1966. т. 167. №65. с.1016-1018.
45. Белоцерковский О.М., Яницкий В.Е. Статистический метод частиц в ячейках. //ЖВМ и МФ. 1975. т.15. №5. с.6-23; №6. с.1553-1567.
46. Елизарова Т.Г., Четверугикин Б.Н. Об одном вычислительном алгоритме для расчета газодинамических течений. //Докл. АН СССР, 1984, т.279, №1, с.80-83.
47. Ерофеев A.PL О моделировании межмолекулярного взаимодействия при решении уравнения Больцмана методом Монте-Карло. // Изв. АН СССР,МЖГ, 1977, №6.
48. Хлопков Ю.И. Статистический метод решения приближенного кинетического уравнения. // Ученые записки ЦАГА, 1973. тЛУ. №4. с.108-113.
49. Горелов CJ7. Термофорез и фотофорез в разреженном газе. // Изв. АН СССР, МЖГ, 1976, №5, с. 178-182.
50. Иванов М.С. Исследование изменения функции распределения в процессе поступательной релаксации смеси газов. // Физическая механика неоднородных сред. Новосибирск, СО АН СССР, ИТПМ, 1984, с.86-92.
51. Куликов С.В. Эволюция хвостов распределений скоростей для газовых смесей во фронте ударной волны и влияние неравновесности на реакцию Н2 с 02. // Мат. мод. 1999. т.11, №3, с.96-103.
52. Аристов В.В. Изучение неоднородных релаксационных течений с помощью интегрирования уравнения Больцмана. // Тр. X Всес. конф. по ДРГ. — М.: Изд-во МАИ, 1991, т.1, с. 109-114.
53. Кузнецов ММ Об аналитическом решении уравнения Больцмана в кнудсеновском слое. //ПМТФ. 1971. №4. с.135-139.
54. Кузнецов ММ Кнудсеновский слой в течении с двухтемпературной релаксацией. //ПМТФ. 1972. №6. с.38-43.
55. Кузнецов ММ Кинетический анализ феноменологических схем баланса потока на поверхности тел. //Численные методы механики сплошной среды. Новосибирск, СО АН СССР, 1974, т. 5, № 3, с. 54-63.
56. Кузнегрв В.М., Кузнегрв ММ Граничные условия для течений многоатомных газов. //ПМТФ, 1975, №4, с. 93-102.
57. Кузнецов ММ О нестационарном скольжении газа вблизи бесконечной плоскости при диффузно-зеркальном отражении молекул. //ПМТФ. 1975. №6, с. 19-25.
58. Егоров Б. В., Жигулев В. Я., Кузнецов М М Исследование некоторых проблем механики сплошной среды на основе принципов кинетической теории газов.// Численные методы механики сплошной среды, 1976, т. 7, № 3, с. 104-130.
59. Кузнецов ММ Поверхностные явления при обтекании тел. //В сб.: Аэрогазодинамика и физическая кинетика, СО АН СССР ИПТМ, 1977, с. 66-81, Новосибирск.
60. Жигулев В.Н., Кузнецов ММ О единственности решения уравнения Больцмана для течения газа в слое Кнудсена. //В кн.: Численные методы механики сложной среды. Новосибирск, 1978, т. 9, № 3, с 8191.
61. Жигулев В. II., Кузнецов В.М., Кузнецов ММ Кинетическая теория неравновесных процессов. // Численные методы механики сплошной среды, 1981, т. 12, № 1.
62. Жигулев В.Н., Кузнецов ММ Проблема граничных условий в кинетической теории газов. //В кн.: Молекулярная газовая динамика, 1982, с. 90-99, Изд-во Наука.
63. Тирский Г.А. Условия на поверхностях сильного разрыва в многокомпонентных смесях. // ПММ, 1961, T.XXV, вып.2, с.196-208.
64. Черный Г.Г. Ламинарные движения газа и жидкости в пограничном слое с поверхностью разрыва. // Изв. АН СССР, ОТН, 1954, №12, с.38-67.
65. Maxwell J.C. On stresses in rarefied gas arising from inequilitis of temperatures, appendix: The Scientific paper of J.C. Maxwell, Paris, 1927, vol.II, p.681-712.
66. Гиро Ж.П. Газовая динамика с точки зрения кинетической теории. // Сб. пер. Механика, 1974, №3, с.53-75.
67. Москалев О.Б. Н — теорема Больцмана для газа в термостате. // Докл. АН СССР, 1977, т.232, №3, с.521-523.
68. Кузнецов ММ, Никольский B.C. Асимптотический анализ течений многоатомного газа в тонком ударном слое на основе обобщенного уравнения Больцмана. // Деп. в ВИМИ, № Д 05247 от 6 мая 1983г.
69. Ky3Heifoe М.М., Никольский B.C. О кинетической модели тонкого ударного слоя.// Физическая механика неоднородных сред. СО АН СССР. ИТОН. Новосибирск. 1984. с. 101-110.
70. Кузнецов М.М., Никольский B.C. Кинетический анализ гиперзвуковых вязких течений многоатомного газа в тонком трехмерном ударном слое. // Ученые записки ЦАГИ. 1985. т.16. №3. с. 38-49.
71. Кузнецов М.М., Никольский B.C. Теория предельных гиперзвуковых вязких течений. // Труды 8-ой Всесоюзной конференции по динамике разреженных газов. Численные и Аналитические Методы в Динамике Разреженного Газа, 1986, с.23-27.
72. Кузнецов ММ Кинетические эффекты в предельных гиперзвуковых течениях вязкого газа.// Сб. тр. XV сессии Междунар. школы по моделям механики сплошной среды. СПб. СПб ун-т. 2001. с. 55-65.
73. Кузнецов ММ, Никольский B.C. Эффекты нелинейного переноса при гиперзвуковом обтекании затупленных тел. — М.: МФТИ, Вопросы динамики неустойчивостей. Межведомственный сборник, 1995, с.72-80.
74. Кузнецов ММ, Яламов Ю.И. Кинетическая модель гиперзвуковых течений вязкого газа в тонком ударном слое. //Вестник МГОУ. 2005. №2. с. 5-10.
75. Кузнецов М.М., Яламов Ю.И. О замыкании уравнений движения разреженного газа нелинейными соотношениями молекулярного переноса. //Вестник МГОУ. 2006. №1. с. 34-41.
76. Яламов Ю.И., Кузнег(ов М.М. Об эффектах нелинейного молекулярного переноса при поступательно-неравновесном обтекании тел. //Вестник МГОУ. 2007. №2, с. 6-15.
77. Кузнецов ММ, Липатов И.И., Никольский B.C. Реология течения разреженного газа в гиперзвуковом ударном и пограничном слоях. // Известия РАН. Механика жидкости и газа. 2007. №5. с.180-187.
78. Cheng Н.К. The Viscous Shock Layer Problem Formulation Revisited // International Conference of Research in Hypersonic Flows and Hypersonic Technologies, Sept. 19-21,1994, Zhykovsky, Russia, Book of Abstracts.
79. Cheng KK, Lee С J., WongE.Y. and Yang H.T. Hypersonic Slip Flows and Issues on Extending Continuum Model Beyond the Navier-Stokes Level // AIAA Paper, 1989, N89-1663.
80. Cheng H.K., Wong E. Y. and Dogra V.K. A Shock-Layer Theory Based on Thirteen-Moment Equations and DSMC Calculations of Rarefied Hypersonic Flows // AIAA Paper, 1991, N91-0783.
81. Великодный В.Ю. О влиянии движения газа на кинетику физико-химических превращений. //ЖТФ. 1989. Т. 59. Вып. 12. С. 126-129.
82. Grad Н. Singular and Nonuniform Limits of the Boltzman Equation. // Transport Theory, SIAM-AMS Proceed., 1969, vol. I, p.269-308.
83. Turcotte D.L., Scholnick I.M. Structure of Strong Shock Waves // Phys. Fluids. 1969. V.12. N5, pt.2. P.80-82.
84. Зельдович Я.Б., Генич А.П., Манелис Г.Б. Особенности поступательной релаксации во фронте ударной волны в газовых смесях. //ДАН СССР, 1979, т. 248, № 2, с. 349-351.
85. Козлов П.В., Лосев С.А. Романенко Ю.В., Шаталов О.П. Поступательная неравновесность во фронте ударной волны в аргоне. — М.: Препринт № 27-97, РАН Институт механики МГУ, 1997.
86. Горелов В.А., Комаров В.Н., Кузнег^ов М.Ы., Юмашев ВЛ. О влиянии поступательной неравновесности на скорость молекулярной диссоциации в гиперзвуковой ударной волне. // ПМТФ. 2001. Т. 42, №2, С. 42-51.
87. Иванов М.С. Численное исследование влияния моделей межмолекулярного взаимодействия на характеристики течений разреженного газа. // Численные и аналитические методы в динамике разреженного газа. Тр. VIII Всес. конф. по ДРГ. — М.: 1986, с. 18-22.
88. Boyd I.D., Candler G. V., Levin D.A. Dissociation modeling in low density hypersonic flow of air // Phys. Fluids. 1995. V.7. P.1757-1763.
89. Kot S.C., Turcotte D.L. Beam-Continuum Model for Hypersonic flow over a Flat Plate // AIAA J. 1972. V.10, N3. P.291-296.
90. Артамонов A.K., Архипов B.H. Обтекание сферы гиперзвуковым потоком разреженного газа. // Изв. АН СССР. Механика жидкости и газа. 1979. №6. С.85-90.
91. Тамм М.Е. О ширине ударных волн большой интенсивности. // Тр. ФИАН, 1965 (работа выполнена в 1947 г.), т. ХХ1ХХ, с.237-249.
92. Mott-Smith Н.М. The Solution of the Boltzmann Equation for a Shock Wave. 11 The Physical Review, 1951, vol. 82, N 6, p.885-892.
93. Горелов В.А., Кузнецов М.М., Юмашев В.Л. Численное моделирование течения с химическими реакциями в сильной ударной волне с приближенным учетом поступательной неравновесности. // ПМТФ. 2002. Т. 43, №4, С. 75-86.
94. Горелов В.А., Комаров В.Н., Кузнецов М.М., Юмашев В.Л. Численное моделирование процессов поступательной и химической неравновесности во фронте сильной ударной волны. // ТОХТ. 2003. Т. 37. № 1. С.25-31.
95. Кузнецов М.МВлияние поступательной неравновесности на скорость химических реакций во фронте сильной ударной волны. //Вестник МГОУ, №1, с. 63-70, Изд-во МГОУ 2007.
96. Куликов С.В., Терновая О.Н., Черегинев С.Л. Специфика поступательной неравновесности во фронте ударной волны в однокомпонентном газе. // Химическая физика. 1993. Т.12. №3. С.340-342.
97. Куликов С.В., Терновая О.Н., Череишев С.Л. Специфика эволюции распределения молекул однокомпонентного газа по относительным скоростям во фронте УВ. // ФГВ. 1993. Т.ЗО. №4. С.140-144.
98. Куликов С.В. Поступательная неравновесность трехкомпонентного газа во фронте ударной волны. //Известия РАН, МЖГ. 1997. №4. С. 171-177.
99. Рыдалевская М.А. Об определении сечений столкновений по известным скоростям химических реакций. // Вестник Ленинградского университета, 1967, №19, с.131-138.
100. Конюхов В.К. Прохоров A.M. О возможности создания адсорбционно-газодинамического квантового генератора. // «Письма ЖЭТФ», 1971, т. 13, вып.4, с.216-218.
101. Кузнецов В. М., Кузнег(ов М. М. Об одной газодинамической модели двухфазного течения с сильной уровневой неравновесностью. Сб. Проблемы физической газовой динамики. // Проблемы физической газовой динамики. М., ЦАГИ, 1978, вып. 1932, с. 116-125.
102. Бирюков А.С., Марченко В.М., Прохоров A.M. , Энергетические характеристики газодинамических С02 — лазеров на смешение потоков колебательно-возбужденного азота и аэрозоля углекислоты. //Препринт ФИАН, № 64, 1976.
103. Конюхов В.К., Файзулаев В.Н. Кинетика колебательной релаксации молекул в системе газ-аэрозоль и лазеры на двухфазных средах. //Квантовая электроника, 1978, т. 5, №7.
104. Агафонов В.П., Вертугикин В.К, Гладков А.А., Полянский О.Ю. Неравновесные физико-химические процессы в аэродинамике. — М.: Машиностроение, 1972.
105. Коган М.Н. Динамика разреженного газа. — М.: Наука, 1967.
106. Богданов А.В., Горбачев Ю.Е., Дубровский Г.В., Павлов В.А. Неупругое взаимодействие молекул с поверхностью твердого тела. // Механика неоднородных систем. СО АН СССР. ИГ11М, Новосибирск, 1985, с. 210-235.
107. Киселев В.Ф. Поверхностные явления в полупроводниках и диэлектриках. — М.: Наука, 1970.1 \ 2.Киселев В.Ф., Крылов О.В. Адсорбционные процессы на поверхночти полупроводников и диэлектриков. — М.: Наука, 1978.
108. Киселев В.Ф., Крылов О.В. Электронные явления в адсорбции и катализе на полупроводниках и диэлектриках. — М.: Наука, 1979.
109. Крылов О.В., Киселев В.Ф. Адсорбция и катализ на переходных металлах и их оксидах. — М.: Химия, 1981.
110. Бутягин П.Ю. Механохимия. Катализ. Катализаторы. //Кинетика и катализ, 1987, вып. 1, т.28, с. 5-19.
111. Томас Дж., Томас У. Гетерогенный катализ. — М.: Мир, 1969.
112. Словецкгт Д.И. Механизмы химических реакций в неравновесной плазме. — М.: Наука, 1980.
113. Лавренко В.А. Рекомбинация атомов на поверхности твердых тел. // Наукова думка, Киев, 1973.
114. Wise H.r Wood B.J. Reactive Collisions between Gas and Surface Atoms/1 I Advances in Atomic and Molecular Physics, Acad. Press, New York — London, 1967, v.3, p. 291-348.
115. Глэсстон С., Лейдлер К, Эйринг Г. Теория абсолютных скоростей реакций. Изд-во иностр. Лит., М., 1948.
116. Воробьев В.П., Ковтун В.В., Кудрявцев Н.Н. Влияние дегидроксилирования поверхности кварца на рекомбинацию атомов кислорода. //Хим. физ. 1990,т.9,№12, с. 1708-1712.
117. Колесников А.Ф., Кузнецов В.М., Кузнецов М.М., Якушин М.И. О модели процессов каталитической гетерогенной рекомбинации атомов на кварце. //XVIII-ые Гагаринские чтения по космонавтике и авиации, 1988 г., с. 89-98,-М.: Наука, 1989.
118. Кузнецов В.М., Кузнегрв М.М., Товбгш Ю.К. О влиянии физико-химических свойств поверхности и состава газа на структуру коэффициента гетерогенной рекомбинации. //В сб.: Проблемы физической газодинамики. Труды ЦАГИ., 1990, вып. 2424, с. 269-282.
119. Кузнецов М.М., Никольский B.C., Чернова А.А. Исследование обтекания поверхности с каталитическим покрытием. //Труды Х-ой юбилейной н.-т. конференции, ЦАГИ, 18-20, V, 1988г., изд-во ЦАГИ, 1990.
120. Годияк Г.В., Короленко И.В., Мороков Ю.Н. Локальная плотность электронных состояний р — SiO в объеме и на поверхности. //Поверхность. Физика, химия, механика, 1988, № 2, с. 82-90.
121. Шайтан КВ. Динамическая теория ударной рекомбинации атомов водорода на металлах. // Журн. физ. хим. 1977, т.51, №3, с. 586-591.129 .Шайтан КВ. К вопросу об эффективности рекомбинации мигрирующих атомов. // Журн. физ. хим. 1977, т.51, №7, с. 1586-1590.
122. Агафонов В.П., Кузнецов М.М. О моделировании неравновесных тепловых потоков к каталитической поверхности. // Ученые записки ЦАГИ, 1979, т. 10, №4.
123. Агафонов В.П., Кузнецов М.М. О влиянии механизмов гетерогенных каталитических реакций на тепловой поток при гиперзвуковом обтекании затупленного тела. //В кн.: Молекулярная газовая динамика. -М.: Наука, 1982, с. 203-208.
124. Ъ2.Ковалев В.Л., Суслов О.Н. Модель взаимодействия частично ионизованного воздуха с каталитической поверхностью. //Исследования по гиперзвуковой аэродинамике и теплообмену с учетом неравновесных химических реакций. Изд-во МГУ. М., 1986, с. 58-69.
125. Алферов В.И., Ковалев В.Л., Суслов О.Н., Суходольский С.Л., Тирский Г.А. Обтекание тел вязким газом в режиме неравновесного протекания гомогенных и гетерогенных реакций. // Механика неоднородных систем. СО АН СССР. ИПТМ. Новосибирск, 1985, с. 255-280.
126. Ъ6.Ковалев В.Л. Гетерогенные каталитические процессы при входе в атмосферу. М.: Изд-во ЦПИ при механ.-матем. фак. МГУ, 1999.137 .Ковалев В.Л. Гетерогенные каталитические процессы в аэротермодинамике. — М.: Физматгиз, 224 е., 2002.
127. Дорошенко В.М., Кудрявцев Н.Н., Новиков С.С., Сметатт В.В. Влияние на теплопередачу образования колебательно-возбужденных молекул азота при рекомбинации атомов в пограничном слое. // Докл. АН СССР, 1988, т.301, №5, с.1131-1135.
128. Ъ9. Беркут В.Д., Кудрявцев Н.Н., Новиков С.С. Влияние реакций электронно-возбужденных молекул кислорода в погранслое на теплоперенос к поверхности, обтекаемой сверхзвуковым потоком диссоциированного воздуха. //Хим. физ., 1988, т.7, №7, с.979-985.
129. Агафонов В.П., Бормашенко БД., Кузнецов М.М. Моделирование неравновесного теплового потока при учете, зависимости коэффициентов каталитической рекомбинации от давления и температуры. // Ученые записки ЦАГИ, 1980, т. XI, № 4, с. 46-55.
130. Коган М.Н., Макашев НК. Моделирование каталитических свойств поверхности. // Ученые записки ЦАГИ, 1980, т. XI, № 5, с. 47-52.
131. Агафонов В.П., Никольский B.C. Взаимодействие газофазных и поверхностных реакций при течении сильно диссоциированного воздуха в пограничном слое. //Ученые записки ЦАГИ, 1980, т. XI, № 2, с. 46-53.
132. Воронкгт В.Т., Залогин Г.Н. О механизме рекомбинации атомарного азота вблизи каталитической поверхности, обтекаемой диссоциированным воздухом. //Известия АН СССР, МЖГ, 1980, № 3, с. 156-158.
133. Ермак Ю.Н., Нейланд В.Я. К расчету теплопередачи на лобовой поверхности затупленного тела в гиперзвуковом потоке. // Известия АН СССР, МЖГ, 1967, № 6, с. 153-156.
134. Егоров И.В., Кузнецов М.М., Нейланд В.Я. Определение максимальных неравновесных тепловых потоков. //Ученые записки ЦАГИ, 1988, т. XIX, № 4, с. 1-9.
135. Егоров И.В., Кузнецов М.М., Нейланд В.Я. Неравновесная теплопередача в окрестности критической точки затупленных тел. // В сб.: Физическая газодинамика. Труды ЦАГИ., вып. 2424, Изд-во ЦАГИ, 1990.
136. Столкер Р.Дж. Обтекание треугольных крыльев неравновесным потоком воздуха с отошедшими ударными волнами. //Аэрокосмическая техника, 1983, т. 1, № 7, с. 3.
137. Кузнецов М.М. О нестационарном пространственном обтекании тонкого крыла гиперзвуковым потоком релаксирующего газа. //Доклады АН СССР, 1982, т. 226, № 5, с. 1090-1093.
138. Кузнецов М.М. К теории гиперзвукового пространственного обтекания тонкого крыла произвольного удлинения нестационарным потоком релаксирующего газа. //ПМТФ, 1983, № 5, с. 88-93.
139. Кузнецов М.М. О неравновесном обтекании тонкого крыла гиперзвуковым потоком газа. //В сб.: Проблемы физической газовой динамики, Труды ЦАГИ, вып. 2177, с. 77-95, Изд-во ЦАГИ, 1983.
140. Голубинский А.И., Голубкин В.Н. О пространственном обтекании тонкого крыла гиперзвуковым потоком газа. // Доклады АН СССР, 1977, т. 234, № 5, с. 1032-1034.
141. Богатко В.И., Гриб А.А., Колтон ГА. Нестационарное обтекание тонкого крыла конечного размаха гиперзвуковым потоком газа. // Доклады АН СССР, 1978, т. 240, № 5, с. 1040-1041.
142. Гонор A.J1. Обтекание конических тел при движении газа с большой сверхзвуковой скоростью. //Известия АН СССР, ОТН, Механика и машиностроение, 1963, № 4, с. 31-41.
143. Кузнецов М.М., Полянский О.Ю. О применении правила полос к расчету аэродинамических характеристик в неравновесном гиперзвуковом потоке. //В сб.: Проблемы физической газовой динамики, Труды ЦАГИ, 1983, вып. 2177, с. 63-76.
144. Гилинский С М., Хайкин М.М. Применение метода пограничного слоя к решению задач о движении газовых смесей с экзотермическими реакциями. //Труды инст. механики МГУ, 1971, № 11, с. 110-126.
145. Коул Ж, Брайнерд Ж. Обтекание тонких крыльев гиперзвуковыми потоками при больших углах атаки. //В сб.: Исследование гиперзвуковых течений, с. 233-247, — М.: Мир, 1964.
146. Антонов А.Н., Хейз У.Д. Расчет обтекания тупоносых тел гиперзвуковым потоком газа. //ПММ, 1966, т. 30, вып. 2, с. 347-352.
147. Hayes W.D., Probstein R.G. Hypersonic flow theory, u.l. — Inviscid Flow, 1966.
148. Кузнецов М.М. О предельном пространственном обтекании тонких тел сверхзвуковым потоком реального газа. // Ученые записки ЦАГИ, 1989, т. XX, №3, с. 101-105.
149. Авдуевский B.C. Расчет трехмерного пограничного слоя на линиях растекания. //Известия АН СССР, ОТН, Механика и машиностроение, 1962, № 1, с. 32-41.
150. Кузнецов М.М. Неравновесное обтекание трехмерных заостренных тел с отошедшим скачком предельным гиперзвуковым потоком газа. //Всб.: Проблемы физической газовой динамики, Труды ЦАГИ, 1990, вып. 2424, с. 122-142, Изд-во ЦАГИ.
151. Кузнецов ММ Структура неравновесных рециркуляционных течений. // Проблемы физической газовой динамики, Труды ЦАГИ, 1978, вып. 1932, с. 201-220.
152. Киотъко В. Б. Оценка температуры и концентрации компонент в донной облети за телом с учетом неравновесных физико-химических процессов. // Изв. АН СССР, МЖГ, 1979, №1, с.187-191.
153. Негшанд В.Я. К асимптотической теории плоских стационарных сверхзвуковых течений со срывными зонами. // Известия АН СССР, МЖГ, 1970, № 3, с. 22-32.
154. Пб.Шнфрнн Э.Г. К теореме Бэтчелора о рециркуляционной области. // Известия АН СССР, МЖГ, 1976, № 1, с. 140-143.
155. Knowlen С., Bruckner А.Р., Bogdanojf D.W.,Hertzberg A. Performance Capabilities of the Ram Accelerator // N. Y., AIAA paper, N 87-2152, 1987.
156. Жигулев В.Н. Об одном методе решения кинетических уравнений, содержащих малый параметр. // Проблемы физической газовой динамики, 1980, с. 106-127. (работа выполнена в 1964 г.)
157. Хейз У. Д., Пробстин Р. Ф. Теория гиперзвуковых течений.— М.: Изд. иностр. лит., 1962.
158. Cheng Н.К. The blunt body problem in hypersonic flow at low Reynolds number // Inst. Aerospace Sciences Paper, 1963, N63-92, p.l00.
159. Bush W.B. On the viscous hypersonic blunt body problem // J. Fluid Mechanics, 1964. Vol. 20, part 3, p. 353-367.
160. Ермак Ю.Н., Нейланд В.Я. К расчету теплопередачи на лобовой поверхности затупленного тела в гиперзвуковом потоке. // Известия АН СССР, МЖГ, 1967, № 6, с. 153-156.
161. Ермак Ю.Н., Нейланд В.Я. Влияние вязкости на отход ударнгой волны при обтекании цилиндра гиперзвуковым потоком. // Ученые записки ЦАГИ, 197,1т. II, № 6, с. 41-47.
162. Магомедов КМ. Гиперзвуковое обтекание тупых тел вязким газом. // Известия АН СССР, МЖГ, 1970, № 2, с. 45-56.
163. Авдуевскгш B.C., Иванов А.В. Течение разреженного газа вблизи передней критической точки затупленного тела при гиперзвуковых скоростях. // Известия АН СССР, МЖГ, 1968, № 3.
164. Галкин B.C. О границах применимости механики сплошной среды для описания течения в окрестности критической точки при больших сверхзвуковых скоростях. // Труды ЦАГИ, 1959, вып. 784.
165. Кузнецов М.М. Асимптотический анализ гиперзвукового течения газа в криволинейной ударной волне. //Вестник МГОУ. 2005. №2. с. 11-22.
166. Wang Chang C.S., Uhlenbeck G.E., de Boer J. The heat conductivity and viscosity of polyatomic gases // Studies in statistical mechanics, Amsterdam, 1964,v.2, p.241-268.
167. Morse T.F. Kinetic model for gases with internal degrees of freedom // The Physics of Fluids, 1964, v.7, N2, p.159-169.
168. Петухов И.В. Численный расчет двумерных течений в пограничном слое. // Численные методы решения дифференциальных и интегральных уравнений и квадратичные формулы, — М.: Наука, 1964, с.З04-325.
169. Василевский С.А., Тирский Г.А., Утюжников С.В. Численный метод решения уравнений вязкого ударного слоя //Журнал вычислительной математики и математической физики, 1987, т.27, №5, с. 741-750.
170. Cruxiel G.T., Pool L.A. Knudsen layer characteristics for a highly cooled blunt body in hypersonic rarefied flow I IAIAA Paper, 1983, N1424, p. 9.
171. Parker J.G. Rotational and vibrational relaxation in diatomic gases // Physics of Fluids, 1959, v.2, N4, p.449-462.
172. Cruxiel G.T., Lewis C.H., Sugimura T. Slip effects in hypersonic rarefied flow // Rarefied Gas Dynamics. Progress in astronautics and aeronautics, 1981, v.74, part 2, p.l 040-1054.
173. Pull in D.I., Harvey J.K. A Numerical Simulation of the Rarefied Hypersonic Flat-Plate Problem. // J. Fluid Mech., 1976, vol.78, Part 4, p.689-707.
174. Ступоченко E. В., Лосев С. А., Осипов А. И. Релаксационные процессы в ударных волнах. — М.: Наука, 1965.
175. Gorelov V.A., Gladyshev М.К., Kireev A.Yu., et al. Experimental and numerical study of Nonequilibrium ultraviolet NO and iV/ emission in shock layer. // J. Thermphys. Heat Transfer, vol.12, N2, p.172-180, 1998.
176. Киреев А.Ю., Юмашев В.Л. Численное моделирование вязкого неравновесного течения воздуха за сильной ударной волной. //Ж. вычислительной матем. и матем. физики, т. 40, № 10, с. 1563-1570, 2000.
177. Gilbarg £>., Paolucci D. The structure of shock waves in continuum theory of fluids. // J. Rat. MechAnal., v. 2, N 4, pp. 617-642,1953.
178. Ziering S., Ek E. Mean-free-path definition in the Mott-Smith shock wave solution. // The Physics of Fluids, v. 4, N 6, p. 765-766, 1961.
179. Narasimha R., Deshpande S.M. Minimum error solutions of the Boltzmann equation for shock structure. //Journal of Fluid Mechanics, v/ 36, part 3, p. 555-569, 1969.
180. Янке У.Ф., Эмде Ф., Леш Ф. Специальные функции, пер. с немецкого // -М.: Наука, 1968.
181. Bopootcifoe И.И., Юмашев В.Л. Об аппроксимационных свойствах одной неявной разностной схемы для уравнений газовой динамики. // Ж. вычислительной матем. и матем. физики, т. 30, № 7, с. 1093-1102, 1990.
182. КорнГА., Корн Т.М. Справочник по математике. — М.: Наука, 1970.
183. Гершензон Ю.Н., Розенштейн В.Б., Уманскнй С.Я. Гетерогенная релаксация колебательной энергии молекул. // Препринт, Черноголовка, 1975, с. 1-37.
184. Кузнецов В.М., Кузнецов М.М. Исследование тепло — и массообмена аэрозоля углекислоты в неравновесном потоке колебательно-возбужденного азота. // Проблемы физической газовой динамики. Труды ЦАГИ., 1980, вып. 2043, с. 102-117.
185. Ламсден Д.И., Мостинский И.Л. Об испарении капли, тормозящейся в среде горячего газа. //ТВТ, № 6, 1975.
186. Фукс Н.А. Испарение и рост капель в газообразной среде. — М.: Изд-во АН СССР, 1958.
187. Кукалович МЛ., Алтунин В.В. Тепло физические свойства двуокиси углерода. — М.: Атомиздат, 1965.
188. Бирюков А.С., Марченко В.М., Прохоров A.M. О возможности использования газодинамического пиролиза для создания активных сред лазеров. // Квантовая электроника, т. 7, №10, 1980.
189. Heifeemawioe Е.М., Стасенко А.А. Численное исследование динамики частиц в газовых струях с учетом фазовых переходов. //Труды ЦАГИ, вып. 1804,1976.
190. Кузнецов В.М., Селиверстов С.Н. К обтеканию пластинки вязким потоком неравновесного газа. //Изв. АН СССР, МЖГ, 1967, №1, с. 1419.
191. Бормашенко БД., Кузнецов М.М., Кузнецов В.М. Неравновесная система газ — поверхность — твердое тело в задачах релаксационной газовой динамики. // ПМТФ, 1983, №2.
192. Фукс Н.А. Испарение и рост капель в газообразной среде. — М.: Изд-во АН СССР, 1958.
193. Кузнецов М.М. Об одной модели кинетических граничных условий на поверхности с неравновесной колебательной релаксацией. //Численные методы механики сплошной среды, т. 13, № 6, с. 63-68, 1982.
194. Шайтан КВ. Многофононные процессы и динамика адсорбции атомов. //ЖФХ, т. 1, №1, 1977.
195. Goulard R. On catalytic recombination rates in hypersonic stagnation on heat transfer // Jet Propuis., 1958, v.28, N11, p. 737-745.
196. Anderson L.A. Effect of surface catalytic activity on stagnation heat transfer rates // AIAA J., 1973, v.l 1, N5, p. 649-656.
197. Кучеров Р.Я., Рикепгпаз Н.Э. К вопросу об измерении коэффициента конденсации. //ДАН СССР, т. 133, № 5, с. 1130-1131, 1960.
198. Макашев Н.К Испарение, конденсация и гетерогенно химические реакции при малых значениях числа Кнудсена. // Ученые записки ЦАГИ, т. 5, №» 3, с. 49-62,1974.
199. Rakich J. V., Martin J. Lanfranco. Numerical computation of space shuttle heating and surface Streamlines 11AIAA, 1976, Pap N76-464.
200. Лыков А Л. Теория теплопроводности. — M.: Высшая школа, 1967.
201. Агафонов В.П. О моделировании неравновесного теплового потока к поверхности гиперзвукового JIA. //В сб.: Проблемы физической газовой динамики. Труды ЦАГИ., вып. 2042, с. 77-83, 1980.
202. Агафонов В Л., Кузнщов М.М. О моделировании числа Дамкелера для поверхностей с умеренной каталитичностыо. // В сб.: Проблемы физической газовой динамики, Труды ЦАГИ, вып. 2177, с. 138-143, 1983.
203. Кузнецов М.М., Никольский B.C. О влиянии каталитических свойств поверхности и состава газа на тепловой поток при гиперзвуковом обтекании затупленных тел. //В кн.: Молекулярная газодинамика и механика неоднородных сред. — М.: Наука, 1989.
204. Гордеев А.Н., Колесников А.Ф., Якушин М.И. Влияние каталитической активности поверхности на неравновесный теплообмен в дозвуковой струе диссоциированного азота. //Известия АН СССР, МЖГ, 1985, № 3, с. 166-172.
205. Полянский О.Ю., Кузнецов М.М., Меньшикова В.Л., Никольский B.C., Короленко Т.М. Влияние свойств реального газа на аэродинамические и тепловые характеристики гиперзвуковых J1A. //Обзор ОНТИ ЦАГИ, с. 676, 1987.
206. Detra JW., Kemp N.H., Riddeie F.R. Addendum to heat transfer to sattelite vehicles Re entering the atmosphese.//Jet Propulsion, 1957, v. 27, N12.
207. Кузнецов M.M., Полянский О.Ю. О гиперзвуковых предельных течениях релаксирующего газа с изменением давления в главном приближении. //В сб.: Проблемы физической газовой динамики, Труды ЦАГИ, вып. 2424, с. 105-109, Изд-во ЦАГИ, 1990.
208. Маус Ж.Р. и др. Влияние гиперзвуковых чисел Маха и свойств реального газа на аэродинамику КС «Спейс Шаттл». //ВИНИТИ, экспресс — информация, серия «Астронавтика и ракетодинамика», № 9, с. 17-27, 1984.
209. Пантелеев И.М., Полянский О.Ю. Влияние эффектов реального газа на балансировочный угол атаки некоторых самобалансирующихся профилей // Ученые записки ЦАГИ, т. 11, №6,1980.
210. Кузнецов М.М., Полянский О.Ю. О положении центра давления на треугольном крыле в гиперзвуковом неравновесном потоке воздуха. // Ученые записки ЦАГИ, т. 14, №5, с. 97-99,1983.
211. Гладков А.А. Об изменении плотности в сильных ударных волнах. // Труды ЦАГИ, вып. 1007, 1966.
212. Стулов В.П. Обтекание выпуклого угла идеально диссоциирующим газом с учетом неравновесности. // Известия АН СССР, ОТН Мех. и маш., №3,1962.
213. Clarke J.F. The liberalized flow of dissociating gas. // J. of Fluid Mechanics, 1960, v.7, part 4.
214. Жигулев В. П. Об эффекте релаксационного пограничного слоя. //ДАН СССР, т. 144, № 6, с. 1251-1254, 1962.
215. Кузнецов М.М., Полянский О.Ю. Аэродинамические характеристики тонких крыльев в неравновесном гиперзвуковом потоке газа. // Ученые записки ЦАГИ, T.XIII, №5, с. 131-136, 1982.
216. Полянский О.Ю., Меньшикова В.Л. О роли неравновесных процессов в задачах аэродинамики. // «Молекулярная газовая динамика», сборник научных трудов. Ч. III. Ин-т теплофизики СО АН СССР, Новосибирск, 1980.
217. Lirt S., Teare J.D. Rate of ionization behind shock waves in air. P. II. Theoretical Interpretations. // The Physics of Fluids III, 1963, v. 6, N 3.
218. ГОСТ 4401 — 73 Стандартная атмосфера. // M.: Гос. Ком.стандартов Сов. Мин. СССР, 1977.
219. Prandtl L. Uber Fltissigkeitsbewegung bei sehr kleiner Reibung. // III Intern. Math. Kongr., Heidelberg, 1904, s.484-491.
220. Batchelor G.K. On steady laminar flow with closed streamlines at large Reynolds number/// J. Fluid Mechanics, 1956, Vol. 1, p.177-190.
221. Нейланд В.Я., Сычев B.B. К теории течений в стационарных срывных зонах. // Ученые записки ЦАГИ, т.1, №1, с.14-23, 1970.
222. Левин В.А., Марков В.В. Возникновение детонации при концентрированном подводе энергии. // Физика горения и взрыва, 11(4), с. 623-633, 1975.
223. Кузнецов М.М., Яламов Ю.И. Аналог теоремы Прандтля — Бэтчелора для неравновесных течений с замкнутыми линиями тока. //Вестник МГОУ, №2, с. 16-21, Изд-во МГОУ 2007.
224. Цянъ Сюэ-сень. Уравнения газовой динамики // Основы газовой динамики.-М.: ИЛ, с. 9-63, 1963.
225. Кларк Дж., Макчесни М. Динамика реальных газов. — М.: Мир, 1967, 567 с.
226. Бартльме Ф. Газодинамика горения. — М.: Энергоиздат, 1981.