Воздействие сейсмической волны на подземные трубопроводы с сосредоточенными параметрами тема автореферата и диссертации по механике, 01.02.04 ВАК РФ
Мухидинов, Султан Сабирович
АВТОР
|
||||
кандидата технических наук
УЧЕНАЯ СТЕПЕНЬ
|
||||
Ташкент
МЕСТО ЗАЩИТЫ
|
||||
1996
ГОД ЗАЩИТЫ
|
|
01.02.04
КОД ВАК РФ
|
||
|
Г-1 АКАДЕМИЯ НАУК РЕСПУБЛИКИ УЗБЕЖТАН
^ ,)
институт механики и сейсмостойкости сооружений
имени М.Т.Уразбаева
На правах рукописи
Мухидинов Султан Сабирович
' УДК 624.07:534.1
ВОЗДЕЙСТВИЕ СЕЙСМИЧЕСКОЙ ВОЛНЫ НА ПОДЗЕМНЫЕ ТРУБОПРОВОДУ С СОСРЕДОТОЧЕННЫМИ ПАРАМЕТРАМИ
01.02.04 - механика деформируемого твердого тела
АВТОРЕФЕРАТ
диссертации на соискание ученой степени кандидата технических наук
ТАНКЕНГ - 1996
Работа выполнена в Ташкентском Государственном Техническом Университете имени А.Р.Беруни.
Научный руководитель - доктор физико-математических наук
профессор Б.Мардонов.
Официальные оппоненты: доктор технических наук,
профессор Г.Х.Хожметов.
Ведущая организация - Ташкентский архитектурно строительный институт.
на заседании специализированного совета £015.18.01 по присуждению ученой степени доктора наук в Институте механики и сейсмостойкости сооружений им.М.Т.Уразбаева АН РУз по адресу: 700143, г.Ташкент-143, Академгородок, Институт механики и сейсмостойкости сооружений АН РУз.
С диссертацией можно ознокомиться в библиотейке ИМиСС имени М.Т.Ураэбаева АН РУз.
Автореферат разослан"'
'¿ГМ&рй 1997г.
Ученый секретг /
специализированного
кандидат физико-математическихт наук, доцент Ш.М.Сибукаев.
Защита состоится
часов
кандидат технические
Л.Каюмов.
ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ
Актуальность темы. Огромный материальный ущерб, причиняемый народному хозяйству страны землетрясениями, требует достаточно обоснованных методов расчета, учитывающих физических и механических свойств исследуемых объектов. 3 настоящее время имеются ряд теорий, по которым можно произвести расчеты конкретных подземных сооружений на сейсмические воздействия. Однако расчеты по этим теориям дают результаты, отличающейся друг от друга существенно. Это по ридкмому можно объяснить тем, что не во всех случаях учитываются конструктивные особенности подземных сооружений.
Проведенный анализ работ других авторов, выполненные по этому направлению, показывают, что существующие решения и теоретические исследования не полностью удовлетворяют потребностям практики при расчетах подземных сооружений на сейсмические воздействия.
При сейсмических воздействиях на подземные трубопроводы одним из наиболее уязвимых мест являются места стыковки трубопроводов к различным узлам. Отсутствие исследовательских работ по изучению колебания трубопровода иди систем трубопроводов с упруго заделанными узлами в грунтовой среде под воздействием сейсмической волны требу. ет исследовательских работ по этому направлению.
Целью работы является разработка метода'решения задач воздействия динамических нагрузок на подземные трубопровод:; с упруго заделанными концами к- различным узлам с учетом нелинейных .свойств контакта на стыке.
Научная новизна. Предложен метод резюния задач воздействия дина мических нагрузок на подземные -.трубопроводы с упруго задедтда'и концами к рззличным узлам с учетом нелинейных свойств контакта на стыке. При этом общая проблема колебаний трубопроводов сведена к система бес- конечных Дифференциальных уравнений '2-порядка для определения функций времени. •■---Исследованы продольтее и поперечные колебания подземных трубопроводов с учетом конечности скоростей действующих волн, неоднородности 'поверхности трубопроводов. Л тзкт.е изучета колебания ссстзвык«: трубопроводов расположенных друг относительно друга произвольные образом и соединенных между собой посредством упругих глементоз и со- . средоточенных масс.
Практическая ценность- Приведенные в работе численные результаты расширяют теоретическую и прикладную базу динамического поведения сооружений, взаимодействующих с грунтом и позволяют, используя возможности вычислительной техники, получить достоверные све-. дения о поведении подземных трубопроводов при сейсмических воздействиях. • ■
Результаты исследования использованы при проектировании и строительстве третьей-Юнусабадской линии Ташкентского метрополитена а также принять к внедрению для моделирования и исследования колебательных процессов многозвенных буровых колонок, которые широко применяются при бурении нефтегазовых надсолевых и подсолевых скважин в Западном Казахстане.
Лостоверность полученных результатов подтверждается применением строгих математических методов, корректностью физико-математической постановки задач, а также решением многих тестовых задач и путем сравнения полуденных результатов с известными решениями, полученных другими авторами.- •
Апробация работы.Основные результаты работы докладывались:
- на 7-Всееокпной конференции по динамике оснований и фундаментов подземных сооружений /Днепропетровск, 1989г./.
- на Всесоюзной школе-семинаре по динамике подземных сооружений и конструкций /Алма-Ата, 1990г./. -
- на городском научном семинаре кафедры "Высшая и прикладная математика" ТАИ /Ташкент, 1991г., 1996г./.
« на ежегодных научных ком^ренииях'посвяшенных к дню рождения акад. М.Т.Уразбаева, проводимых в ИМиСС им.М.Т.Ураыбаева АН РУз. /Ташкент, 1992г., 1993г./.
- на городском научном семинаре кафедры "Математическое моделирование" таИММСХ /Ташкент, 1996г./.
на объединенном семинаре лабороторий отдела сейсмодинамики ИМиСС. им.М.Т.Уразбаева АН РУэ /Ташкент, 1996г./. -
- на научном семинаре кафедры "Высшая метематика Р2" ТГТУ /Ташкент, 1996г./. ' ' ■ »
Публикации. По материалам диссертации опубликовано ? статьей, список которых пзиведен в конце автореферата.
Объем и структура работы. Диссертация состоит из введения, трех глав, двух приложений, выводов и списка литературы из 64;
наименований. Объем диссертации составляет 136 странипы энного текста, включая рисунки и таблицу.
СОДЕРЖАНИЕ РАБОТЫ
Во введении дам обзор исследований по рассматриваемой проблеме. Обоснована актуальность темы, сформулированы цели и задачи диссертационной работы, а также изложено краткое содержание трех глав.
В первой главе исследованы вопросы воздействия нестационарной сейсмической волны на трубопровод с узлами на концах, совершающий только продольные движения. Трубопроводы моделированы упругими стержнями, а узлы сосредоточенными массами, которые упруго заделаны к торцам стержней. Такая система находится в грунтовой среде под воздействием сейсмической водны, фронт которой перпендикулярен к осям трубопроводов /стержней/' и распростроняется с конечной, постоянной скоростью.
Для описания силы сопротивления среды используется экспре-ментально установленная зависимость между^перемещениями сечений стержней и.контактной силой на поверхностях стержней. Эта зависимость подчиняется обобщенному закону Винклера, и в пределах линейно упругой постановки она представим^ а виде: у где
К-Я~2>к'г) 2)' - наружный диаметр трубопровода, - коэффи-цент продольного взаимодействия трубопровода с грунтом, (/■ - относительное продольное перемещение стержня, - контактная сила продольного взаимодействия.
Из-за конечности скорости распространения сейсмической волны рассмотрены "дозвуковой" /Л1<// и "сверхзвуковой" //И>У / режимы
где /У\-#/с, О- - скорость распространения волны в материале трубопровода, С - скорость распространения волны в грунте.
В 1.1 рассматривается одномерная задача о распространении про» дольных волн в длинных, однородны*, расположенных позледовательно и связанных посредством масс и упругих элементов Ю - трубопроводов постоянного сечения под воздействием плоской волны, за фронтом которой смешения частиц грунта изменяется по времени:
-¿.¿г-/*;)
и о- А шо (£-/*})■ е : г=/=
Уравнения движения трубопроводов /стержней/ и сосредоточенных vaco соответственно записывается в виде:
' ■ - V .,■ ш*?
■m2 й щ^Ф^Ñ-Ufo.^[VrM féF)]--O
' i < i • ' < < > i i J i i (~f> f.2)
Решения уравнений ff. / /Л получаются методом Фурье, с введением в точках расположения сосредоточенных жесткостьей разрывных величин производных. Решения однородных уравнений, соответствующих уравнениям //?' J) представляются в виде:
; ; Ui(x.¿h (£{z)-Tc(¿j
Неизвестные 14, \С>/ определяются численным решением
методом усечения, системы бесконечных дифференциальных уравнений 2-порядка.
В 1.2 рассматривается трубопровод длины ¿ , постоянного сечения, на который действует плоская волна, фронт которой перпендикулярен к оси трубопровода /стержня/. На боковую поверхность трубопровода h¿ сечениях закреплены через упругие элементы по все--му контуру поперечные ребра жесткости в виде дисков и концы трубопровода упруго заделаны к конечным массам. "
В I.3 рассматривается задача о колебании подземного трубопровода, упруго заделанными концами к конечным маесем , на который действует внешняя сила, которая представлена в виде тригонометрического ряда. . ;
.'5 .г
В 1.4 решена одномерная задача о распространении продольной волны в длинном однородном стергне под воздействием плоской волны, с учетом нелинейных свойств контакта на стыке с сосредоточенными массами. При решении этой задачи методом Фурье, нелинейные члены отнесены к внешним воздействиям. Собственные функции Ср^/Х) взятьгиз линейной задачи.
На таблице 1.'преведены значения максимальных амплитуд колебаний торца стержня и упруго заделанной массы при различных значениях X / ¿Г - коэффицент нелинейной связи массы УЯ на торцевом сечении стержня/ и / № - частота действующей волны/.
Г/ Со, ¿//0/7- мах 1/f(rj~
О Л/ и/t« Г-9
О / -f,U */* Т- /Я ■f,J 6 Kf» T~fl
0,1 OJ 0,'fS Г-$ 0,4/ •<;>" 2~= $
o,s / ¿¿7 Pflu ~ «у* Г= //
■О,/ 0,09 ирм 7 C, T- &
4 / о, ^ ■ f- -/л
T.'S лиц/1 /
Во второй граве рассматривается длинный однородный трубопровод с узлами на концах, совершавший только поперечные движения. Трубопровод моделирован упругим стержнем, а.узлы сосредоточенными ■массами, которые упруго заделаны к торцам стержня. Такая система : находится в грунтовой среде под воздействием сейсмической волны, фронт которой паралелен к оси трубопровода /стержня/, и распространяющейся с конечной постоянной скоростью.
. • Для описания силы сопротивления среды используется обобщенный закон Винклера и в пределах линейно-упругой постановки сиг пред-стзвима в виде: Р-С, W, где Р - контактная сила поперечного взаимодействия, \V относительные поперечные перемещения селений. . стержня, С\ - коэффицент поперечного взаимодействия боковой поверхности стержня с окружающим грунтом. Рассматривается задачи к?к е линейно-упругой постановке, так и задачи, в которых учитываются нелинейные свойства контакта сосредоточенных масс к тернам зтержнл.
/
В 2Л решается задача поперечного колебания трубопровода с сосредоточенными массами и жесткостьями под воздействием сейсмической волны, за фронтом которой смешения частиц грунта изменяется по времени: \Де> )= Л XV
Для решения задачи использован метод разделения переменных, т.е. решение ищем в виде: г'/- Т(£), , где
Г-г
^ ~^у с° ^ Т, V ~ суть Функции Крылова.
Неизвестные /И, находятся численно, методом усечения из следующей системы бесконечных дифференциальных уравнений 2-порядка:
6
иь у+Ю+аЫ-СТ.Г <р, м 71 ш=е.,
В 2.2 решается задача поперечного колебания трубопровода с сосредоточенными массами и жесткостьями под воздействием сейсмической волны с учетом нелинейных свойств контакта с сосредоточенными массами. Полагая что, контакт "работает" на сжатие и раежатие одинаково, нелинейную зависимость между силой контакта и перемещениями возьмем" в кубической форме. При решении задачи методом разделения переменных, нелинейные члены отнесем к внешным воздействиям.
На рис.2.1 представлены зависимости усилий на контакте от разности смешения торна трубопровода /стержня/ и сосредоточенной массы. Эти кривые позволяют оценить отклонение величины усилий от линейно-упругого случая / "¡^,=0 /, при различных значениях у, .
В 2.3 рассматриваются поперечные колебания трубопровода несущие массы конечных размеров под воздействием сейсмической волны. При атом кроме перемещения этих масс, имеют место и вращателные ■ движения этих масс. Задача решается с учетом нелинейных свойств контакта торпа стержня к этим массам.
У/(с,т>- У,(Г)
В третьей главе рассматриваются колебания систем составных подземных, длинных трубопроводов с сосредоточенными Массами и жест-костьями под воздействием сейсмической волны. Трубопроводы друг относительно друга могут: распологаться как паралельно, так и перпендикулярно. Следовательно, часть трубопроводов системы под действием волны могуть совершать толко продольные колебания, а часть только поперечные колебания.
В 3.1 рассматривается задача о распространении продольных волн в системе , состоящей из двух трубопроводов длины ё , конш которых упруго заделаны к массивным телам /п, и 11.
В 3.2 рассмотрена задача о распространении продольных волн в системе состоящей из трех паралельных трубопроводов длины С , связанных между собой через сосредоточенные массы, упруго заделанных к торизм и серединным сечениям стердней, Полагается, что у-г второй стержень и массам., упруго заделанным к серединным сечениям стержней, сейсмические воздействия непосредственно не действуют, а возмущения передаются лишь через упругие связи.
В 3.3 рассматривается задача о воздействии сейсмической вольы на систему состоящей из взаимно перпендикулярных четырех трубопроводов, связанных между собой через упруго заделанную сосредоточенную массу и несущие на концах упруго заделанные сосредоточенные массы, При а®ом учитываются нелинейные свойства контакта между тор-пами стержней и сосредоточенными кассами.
В заключении сформулированы основные научные результаты, полученные в работе, сводящейся к следующим выводам:
, ¡.Разработана методика расчета упругих, однородных, подземных, составных трубопроводов постоянного сечения длины ¿i с упруго заделанными концами к конечным узлам /массам/"на сейсмические воздействия. При этом фронт сейсмической волны может быть как перпендикулярным, так и ларалельным к осям трубопроводов. Рассмотрены задачи, при,которых учитываются нелинейно-упругие свойства контакта сосредоточенных масс к торцам трубопроводов и с учетом нелинейнс упругого отпора грунта на сосредоточенные массы.
2.Изучено колебание подземной конструкции, моделируемой линейно-упругими стержнями конечной длины,'-несущими на концах упруго заделанные конечные массы под воздействием сейсмической волны, фронт которой перпендикулярен к осям стержней. Установлено, что, характер колебания торца стержня и сосредоточенннй массы сильно зависить от безразмерных параметров Ж,j?<', ¿л . Роль числа М зависить от частоты действующей волны №о . При низкочастотных воздействиях fc¿¡> ¿ / / результаты при М-а г и /у!-2 близки друг другу, чего нельзя сказать при высокочастотных воздействиях ¡w* ^ /, Установлено также, при высокочастотных воздействиях повышаются амплитуды и частоты колебаний торца стержня к масс.
3.Исследованы волновые процессы в стержне с поперечными ребрами жесткости в-виде упруго заделанных дисков. Обнаружено что, наличие ребер жесткостей приведет к высокочастотным колебаниям малой амплитуды. Обнаружено, что с повышением частоты действующей волны повышается и роль числа М - . Максимальные концентрация напряжений возникают в сечениях приложения сосредоточенных факторов и вблизи них. .'.';•''"■'"■•'.1 ■ -. ' .
Л. Установлено, что- характер колебательного процесса трубопровода и сосредоточенных масс существенно зависит от £."<> величины и знака коэффицента нелинейно-упругой связи p't , а также несущественно зависит от числа. М и от величины, и знака коэффи- -цента - fci (i~/,¿J . /fa -коэффицен? нелинейно-упругого отпора грун та на мйссч riu /. При этом нелинейные 'эффекты колебания проявляются при начиная с Jí&pS , а при начиная уже с X¿>/0,/ . Установлено также, что при мягкой характеристике/7? ^' У^се/ независимо ни от числа М , ни от ¿Tí/' амплитуды колебаний торца и массы начинают со временем возрастать. При жесткой характеристике I'J'i /"<■'< / амплитуды колебаний торца н массы умен
паются относительно линейному закону. В Обоих случаях с повышением с значения , повышается влияние /< .
£ Рассмотрена задача о поперечном колебании стержня с учетом вращения сосредоточенной массы. Установлено, что при вращении массы разница результатов при "жесткой" и "мягкой" характеристиках незначительна. Обнаружено, что величина и знак коэффицента /<• / -коэффииент нелинейно-упругой связи на кручения массы ¿т / на колебания торца стержня и массы влияет слабо. Максимальные значения перерезывающих сил возникают в сечениях приложения сосредоточенных масс.
6.Изучено воздействие волны на систему составных стержней, несущих сосредоточенные массы с упругими элементами. Обнаружено, что торда стержня и массы непосредственно не взаимодействующие с грунтом при линейно-упругом контакте,'.совершают гармонические колебания. Учет нелинейности контакта в этом случае приведет к колебаниям мало отличающимся от колебаний торца и массы линейно-упругого случая, т.е. значительно уменшаются роль нелинейно-упругих связей.
Основные результаты диссертации отражены в следующих публикациях :
I .Мардонов Б.,Рашидов Л.Т., Мухидинов С.С. Воздействие сейсмической волны на трубопровод с распределенными,параметрами, сосредоточенными массами и жесткостьями.//Изв.АН,УзССР СТН, 1988, И, стр.19-22.
2.Мардонов Б.,Мухидинов С.С. Воздействие сейсмической волны на систему паралельных трубопроводов с сосредоточенными массзми и жесткостьями.//ДДН УзССР, 1988, №10, стр.15-17.
3.Мардонов В..Мухидинов С.С, Воздействие сейсмической волны на систему трубопроводов с сосредоточенными массами и жесгкостьями., //Динамика оснований, фундаментов и подземных сооружений. Тезисы докладов 7-Всесоюзной конференции ДОФ-89, Днепропетровск, 25-27 сентября 1989г., стр.231-232.' : ""
4.Мухидинов С.С. Колебание упругого подземного трубопровода с со-средоточенкши массами и кесткостьями.//Тезисы школы-семинара "Динамика подземных сооружений и конструкций"*. Алма-Ата, Меде о, 5-9 декабря 1990г., стр.35-39.
5.Мухидинов С.С. Воздействие сейсмгческой волны на тр"бопровод с
'поперечными ребрами жесткостьи.//Изв.АН УзССР СТН, 1951, К, стр.35-39.
6.Мухидинов С. С. Поперечные колебания подземного трубопровода с
• сосредоточенными параметрами под воздействием сейсмической волны. //Узб.журнал "Механика муаммолари""1992г., №3-4, стр.42-46.
7.Мухидинов С.С. Изучение колебания'трубопровода с сосредоточенными параметрами при воздействии произвольной сейсмической волны. //Сб.научных трудов "Математическое модилирование и численные методу решения задач прикладной математики". ТГТУ, Ташкент 1992г.,
стр.85-88. - • . с ' * -
Мужассамлашган параметрли ер ости 1^увурларига сейсмик тулцин таъсирини тадци^ига дойр.
Мухидинов С.С.
Вир жнисли, узун, чизичли-эластик, мужассамлашган массаларга ва ^атти^ликларга эга булган ер ости цувурларига сейсмик тул^ин таъсири масаласи царалган. Бунда, мужассамлашган массаларнинг цу-вурлар четига махкамлашда, махкамлрлшинг чизицсиз хоссалари хам царалган. Мухитнинг царшилик кучини ифодалашда, Винклернинг умум-лашган цонунидан фойдаланилган. Мужассамлашган параметрли ер ости кувурдарига динамик тудцик таъсири масаласики ечиш усули таклиф этилган. Бунда, ^увурлар тябранишининг умумий муаммоси, ва^тга бог-лиц функшяни топишучун, 2-тартибли, чексиэ диффереишал -тенгла-малар системасини ечишга келтирилган.
Та-ъсир этувчи тулцин тезлигининг чеклилигини инобцтга олиб, . ер ости кувурларининг буйлама ва кундаланг тебранишлари тадци^ этилади. Бир-бирларига нисбатан ихтиёрий тарзда жойлашган, хамда мужассамлашган массалар ва эластик элементлар ёрдамида туташтирил-ган 1{увурлар системасининг тебранишлари урганилган.
Influence of a seismic wave over underground pipelines with concentrated parameters Mukhidinov S.S.
There has been considered the problem about influence of a seismic wave over underground, extended, homogeneous, linear — elastic pipelines with concentrated masses and cruelties in view of nonlinear properties of contact of concentrated masses by end faces of pipelines. For the description of force of resistance of environment there has been used generalized Winkler's law. A method of the solution of problems of influence of dynamic loads over underground pipelines with concentrated parameters is offered. Thus the general problem of oscillations of pipelines was brought to the system of the infinite differential equations of the 2nd order with the purpose of determination oí time functions.
Longitudinal and cross oscillations of underground pipelines with the account of extremity of speeds of acting waves were investigated. And also there has been investigated oscillations of compound pipelines, located from each other arbitrarily and connected among themselves by means of elastic elements and concentrated masses.
- -