Асимптотический анализ вероятностей высоких выбросов гауссовских процессов со случайными параметрами тема автореферата и диссертации по математике, 01.01.05 ВАК РФ
Румянцева, Екатерина Владимировна
АВТОР
|
||||
кандидата физико-математических наук
УЧЕНАЯ СТЕПЕНЬ
|
||||
Москва
МЕСТО ЗАЩИТЫ
|
||||
2007
ГОД ЗАЩИТЫ
|
|
01.01.05
КОД ВАК РФ
|
||
|
Московский Государственный Университет им М В Ломоносова Механико-математический факультет
На правах рукописи УДК 519 214 8
Румянцева Екатерина Владимировна
АСИМПТОТИЧЕСКИЙ АНАЛИЗ ВЕРОЯТНОСТЕЙ ВЫСОКИХ ВЫБРОСОВ ГАУССОВСКИХ ПРОЦЕССОВ СО СЛУЧАЙНЫМИ ПАРАМЕТРАМИ
01 01 05 - теория вероятностей и математическая статистика
АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата физико-математических наук
□03064894
Москва 2007
003064894
Работа выполнена на кафедре теории вероятностей механико-математического факультета Московского Государственного Университета имени М В Ломоносова
Научный руководитель:
доктор физико-математических наук, профессор В.И Питербарг Официальные оппоненты:
доктор физико-математических наук, профессор Круглов В M , кандидат физико-математических наук, ст н с Иванов Р В
Ведущая организация:
Институт проблем передачи информации им А.А Харкевича РАН
Защита диссертации состоится 18 мая 2007г в 16 час 15 мин на заседании диссертационного совета Д 501 001 85 в Московском Государственном Университете имени M В Ломоносова по адресу 119992, ГСП-2, Москва, Ленинские горы, МГУ, Механико-математический факультет, аудитория 16-24
С диссертацией можно ознакомиться в библиотеке Механико-математического факультета МГУ (Главное здание, 14-й этаж) Автореферат разослан 18 апреля 2007 года
Ученый секретарь диссертационного совета Д 501 001 85 в МГУ доктор физико-математических наук, профессор
ТП Лукашенко
ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ
Актуальность темы.
Изучение вероятностей высоких выбросов случайных процессов и полей представляет собой важную область в теории вероятностей В настоящее время наибольшее развитие получила теория экстремумов гауссовских процессов (см монографии и обзорные статьи 1 Д 3, 4)
Разработан целый ряд общих методов для исследования больших уклонений гауссовских процессов метод сравненийг, основанный на формуле Райса метод моментов метод двойных сумм х, 5, базирующийся на лемме Пикандса и принципе локализации — выделении малого подмножества в области определения процесса, которое вносит основной вклад в асимптотику Эти методы позволили получить достаточно полную картину асимптотического поведения вероятностей высоких выбросов для гауссовских стационарных процессов.
В то же время в многочисленных задачах математической статистики, теории надежности, теории приближения случайных процессов и ряде других областей помимо стационарных гауссовских процессов и полей возникают в каком-то смысле близкие к ним нестационарные В работе 6 В И Питербарг и В П Присяжнюк изучили вероятности высоких выбросов нестационарного гауссовского процесса, дисперсия которого достигает абсолютного максимума в конечном числе точек, а процесс является локально стационарным в том смысле, что в окрестностях этих точек корреляционная функция процесса близка к корреляционной функции некоторого стационарного процесса. В работе 7 найдена асимптотика ве-
1Piterbarg VI Asymptotic methods m the theory of Gaussian processes and fields — TtansI Math Monogr , AMS, Providence, Rhode Island, 1996
2 Питербарг В И, Фаталов BP Точные асимптотики для вероятностей больших уклонений некоторых используемых в статистике гауссовских полей — Вероятностно-статистические методы исследования/ ред И Г Журбенко, А H Колмогоров M изд-во МГУ, 1983,124-143
3Лифишц M А Вычисление точной асимптотики некоторых гауссовских больших уклонений — Записки научных семинаров ЛОМИ 184,1990, 189-199
4Albeveno S, Ptterbarg V Mathematical methods and concepts for the analysis of extreme events — Extreme Events in Nature and Society Springer Berlin Heidelberg, I, 2006, 47-68
*J Pxckands Upcrossmg probabilities for stationary Gaussian processes, Trans. Amer Math Soc 145, 1969, 51-73
eB И Питербарг, В Присяжнюк Асимптотическое поведение вероятности большого выброса для нестационарного гауссовского процесса Теория вер и мат статист , 18, 121-133, 1978
7 Ptterbarg VI, Stamatomch S On maximum of Gaussian non-centered fields indeixed on smooth manifolds Weierstrass -Institut für Angewandte Analysis und Stochastik Preprint No 449, Berlin 1998, 1-13
роятностей высоких экстремумов гауссовского локально-стационарного процесса, математическое ожидание которого есть непрерывная функция, достигающая максимума в единственной точке и ведущая себя регулярно в ее окрестности
Характерным свойством множества высоких экстремумов гауссовского процесса является отсутствие памяти их величины вместе с расположением асимптотически независимы друг от друга Это обстоятельство уменьшает сферу приложений гауссовских моделей, в частности, чисто гауссовские модели не позволяют прогнозировать высокие экстремумы (например, в случае финансовых временных рядов, которые, как правило, трудно прогнозируемы) Известен эффект Тейлора, когда включение в модель, описывающей высокочастотное движение цен, случайной во-латильности (дисперсии), существенно повышает прогнозируемость (см
V)
В этой связи приобретает значение класс случайных процессов, называемых условно-гауссовскими, к которым, с одной стороны, применима хорошо развитая техника гауссовских процессов, а с другой стороны, в рамках этого класса можно учесть модели с зависимыми экстремумами. Условно-гауссовскими называют процессы вида X(t, ô(t)), t € M, где 0(í)— случайный, возможно векторный, процесс такой, что распределение Х(-, #(•)) в соответствующем функциональном пространстве при фиксированном $(•) является гауссовским В настоящей работе рассматриваются условно-гауссовские процессы вида X(t)rj(t) + £(t), где X(t) и 0(t) — (r}(t), Ç(t)) независимы, X(t)— гауссовский процесс с нулевым средним и r¡(t) > 0. Наиболее известным примером условно-гауссовских процессов является так называемый субгауссовский процесс 10 £(t)VW, где £(£)— центрированный гауссовский случайный процесс, a W— не зависящая от £(í) положительная a/2-устойчивая случайная величина (О < а < 2) с параметрами а — (eos ira/é)2/a, ß = 1, ¡i — 0, которую можно трактовать как случайную среду. Адлер, Самородницкий и Гадрич 11 оценили среднее число пересечений фиксированного уровня субгаус-
8 Ширяев А H Основы стохастической финансовой математики Том 1 Факты и модели Москва, Фазис, 1998
9Andersen TG, Bollerslev T, Dteboli F X, Labys P Modeling and forecasting volatility, Ecooometnca 71, 2003, 579-625
10 G Samorodnitsky, M S Taqqu Stable non-Gaussian Random processes- Chapman & Hall, NY, London, 1994
11J Adler, G.Samorodmtsky, T Gadrich The expected number of level crossings for stationary, hannonizable, symmetric, stable processes The Annals of Applied Probability, 1993, 3, No 2, 553- 575
совским процессом и изучили асимптотическое поведение этой величины при возрастании уровня Результат указанной работы заключается в том, что асимптотическое поведение числа пересечений высокого уровня и имеет порядок и~а. Используя гауссовскую технику, в диссертации получена асимптотика вероятностей высоких экстремумов субгауссовского процесса, порядок которой также составляет и~а.
Указанные процессы в случайной среде оказываются полезными моделями стохастических процессов с предсказуемыми экстремумами Пред-сказумая случайная среда (например, случайная дисперсия) позволяет моделировать экстремумы процессов и другие редкие события Прогнозируя значения дисперсии (волатильности), можно делать выводы о вероятной высоте экстремумов процесса, основываясь на замечании, что высокие экстремумы гауссовского процесса наиболее вероятны в окрестности точек больших значений дисперсии Это обстоятельство реабилитирует гауссовскую модель и может служить стимулом для дальнейшего развития асимптотических методов в теории гауссовских случайных процессов.
Цель работы.
Целью настоящей работы является нахождение точной асимптотики вероятностей высоких экстремумов условно-гауссовских процессов со случайными параметрами средним и дисперсией.
Научная новизна.
Основные результаты диссертации являются новыми и состоят в следующем
1 Найдены точные асимптотики вероятностей высоких экстремумов условно-гауссовских процессов со случайными постоянными параметрами
(а) Доказано, что в случае, когда случайные параметры имеют степенные хвосты распределений, искомая асимптотика имеет степенной порядок,
(б) Доказано, что в случае, когда правые хвосты распределений случайных параметров зануляются, искомая асимптотика имеет
порядок, определяемый поведением на бесконечности максимума п.н ограниченного гауссовского случайного процесса
2 Получены точные асимптотики вероятностей высоких экстремумов условно-гауссовских процессов, образованных из гауссовских домно-жением (или сложением) на случайную квадратичную или линейную функцию
3 Найдены точные асимптотики вероятностей высоких экстремумов суммы и произведения двух случайных процессов стационарного гауссовского и процесса, удовлетворяющего определенным условиям регулярности
Методы исследования.
В работе используются метод двойных сумм для гауссовских процессов и полей, асимптотический метод Лапласа и его модификации, а также методы точечных случайных процессов.
Теоретическая и практическая ценность.
Работа носит теоретический характер Ее результаты могут быть использованы в теории случайных процессов и теории рисков
Апробация диссертации.
Основные результаты настоящей диссертации докладывались на семинаре "Асимптотический анализ случайных процессов и полей"под руководством проф Булинского А В , проф. Питербарга В И., к ф -м н Шашкина А П в 2004 г, на Ломоносовских чтениях в МГУ им М В Ломоносова в 2006 г, на международной конференции "Statistical Extremes and Environmental Risk", Лиссабон, Португалия, 2007, на Большом Кафедральном семинаре в 2007 г, на семинаре под руководством проф Минлоса Р А в ИППИ РАН в 2007 г Тематика работы была поддержана грантом РФФИ 04-01-00700
Публикации.
Основные результаты диссертации опубликованы в 3-х работах автора, из которых в соавторстве написана одна Их список приведен в конце
автореферата
Структура и объем работы.
Диссертация состоит из введения, трех глав и списка литературы Общий объем диссертации составляет 97 страниц Список литературы включает 44 наименования
КРАТКОЕ СОДЕРЖАНИЕ ДИССЕРТАЦИИ
Во введении изложены основные результаты диссертации, дается обзор результатов других авторов по данной проблематике, обосновывается актуальность выбранной темы и проводится обзор методов теории экстремумов гауссовских процессов и полей
В первой главе найдены точные асимптотики вероятностей высоких экстремумов условно-гауссовских процессов со случайными постоянными параметрами
Пусть £(í),¿ еТ-пн ограниченный гауссовский случайный процесс с нулевым средним, заданный на произвольном параметрическом множестве Т Для таких процессов справедливо неравенство 12
P(max|£(í)| > и) < се~£"\
ГДе 0 < £ < 2mzxJmt) и с = >0
Пусть ip, tj— независимые случайные величины и пара (¡p, r¡) не зависит от процесса £ (i).
В диссертации найдены точные асимптотики вероятностей •
P(max£(t) + r¡ > и), P(max£(í)v? > u), P(max^(í) + r¡ > и) (1)
ÍGT tÇzT tëT
при и 00.
Случай степенных хвостов распределения случайных параметров.
Введем обозначения х+ — тах{ж; 0} и = — min{i¡ 0}. Предложение 1.2. Предположим, что
lim uaPUp > и) = A, lim uaP(ip < -и) = В, (2)
«->00 и-+оо
12 X Fermque Regulante des trajectoires des fonctions aléatoires gaussiennes Ecole d'Eté des Probablites de Samt-Flour,IV-1974, Lecture Notes m Math , Vol 480, Springer, Berlin, 1975, pg 1-96
где А и В- постоянные величины, а > 0 Тогда при и —» оо верно
Р (max Ç(t)ip > и)=
где E(maxt€T £(i))ï <00 и E(m.axteT £(t))- < 00
Для указанного выше субгауссовского процесса получаем в качестве следствия следующую асимптотику при и -» оо
pi^mvw > «) = +«ад,
где Г(-)— гамма функция Тот же порядок асимптотики сохраняется и для среднего числа пересечений уровня (см ранее упоминавшуюся работу 9)
Теорема 1.1. Пусть распределение <р удовлетворяет условию (2), а распределение случайной величины r¡ удовлетворяет условию-Ьшц-хх) г/Р(т? > и) — С, где С — постоянная величина, ¡3 > 0 Тогда
(i) если /3 > а, то при и —» оо имеем соотношение
nr ^ \ AEjmaxter + ВЕ(шаЩеТ P(max<¿>£(i)-H > и) =-----(1+о(1)).
(ii) если ¡3 < а, то при и-+ оо имеем соотношение
P(max<p£(t) + r¡>u) = 1 + о( 1))
(iii) если ¡3 = а, то при и —¥ оо имеем соотношение
P(max (p£(t) + г) > и) =
= ЛЕ(тахкТ + BE(msxteT №)- + + о(1)) иа
Случай правых легких хвостов распределения.
Пусть fv(x)— плотность случайной величины г] и cri = sup{a; :fn(x)> 0} Предположим, что сг\ < оо
Пусть <р— неотрицательная случайная величина с плотностью fv(x) и а2 — sup{x f<p{x) > 0} < 00 Для довольно широкого класса гауссов-ских случайных процессов и полей (см известна асимптотика
Р(пик£(*) > и) = киае-ы2{1 + о( 1)), и У оо, (3)
где h > О, а— некоторые константы, Ь = 2та
В диссертации доказано, что при сделанных предположениях асимптотики вероятностей (1) имеют тот же характер (3)
Теорема 1.2. Пусть для некоторого к — 0,1,2. плотность fn(x) к раз непрерывно дифференцируема слева в точке х — ох, причем /i^(ci) ф О, а при г < к • — 0 Пусть для некоторого I = 0,1,2. плот-
ность ftp(x) I раз непрерывно дифференцируема слева в точке х — <Т2, причем /2^(02) ф 0, а при г < I • f2^(02) = 0. Тогда верна асимптотика
)2
P(max^£(i) + Л > и) = Ки е ^"(1 + о(1)), « оо,
t€T
где К = (-l)k+lhf^k) (<Ti)/|)(a2)(2b)-fc-i-Wi+3i+5-a.
Доказательство утверждений первой главы проводится с помощью асимптотического метода Лапласа 13 и его модификаций
Во второй главе изучаются высокие экстремумы условно-гауссовских процессов, представимых в виде произведения и суммы стационарного гауссовского и случайных квадратичной или линейной функций
Пусть € Ж— стационарный гауссовский случайный процесс с
нулевым средним и корреляционной функцией r(t) такой, что для 0 < а <2 имеем r(<) = 1 - |i|a + o(|i|a) при t 0 и r(t) < 1, Vi > 0
Пусть г) и ( > 0— случайные величины, не зависящие в совокупности от процесса £(t) Пусть f(y,x) = f^v(y,x)— совместная плотность случайных величин, a f^ri(y\x) = f^n(y,x)/fn(x)— условная плотность
Для случайной величины т? с плотностью fn обозначим а — sup{a; • fv(x) > 0}, а для случайной величины С с плотностью /( обозначим — sup{x f({x) > 0} Пусть <Tf < 00 Пусть er < оо и для некоторого к = 0,1, 2, . плотность fv(x) к раз непрерывно дифференцируема слева в точке а, причем (а) = 0 для 1 — 0, , к — 1 и frjk\<r) ф 0. Введем обозначение f(\v{y\cr) = linv-^- f^\r,{y\x)
Асимптотика вероятностей высоких экстремумов условно-гауссовских процессов со случайной дисперсией.
Предположим, что для некоторого е > 0 случайная величина 7? > е п н Положим
Ри,2 = Р{ max ЛШ - Int2) > и), РиД = F(max £(i)(C - rfi) > «),
i6[-a,a] Z i6[0,a]
13ФедорюкМВ Асимптотика Интегралы и ряды M Наука, 1977
где а < 1у/2е/сг£ в первом случае и а < во втором
Введем обозначение Я/(и) = 1 — (1/\/27г) /0°° е~х^2(1х Как известно, Ф(гг) ~ 1/у/2тги~1е~и2/2 при и оо. Здесь и далее мы считаем, что а(и) ~ Ь(и) при и —>• оо, если функции а(и) и 6(гг) такие, что ЗиПц-^оо а(и)/Ь(и) = 1
Теорема 2.1. Предположим, что функция х) непрерывна слева
в точке х = а для любого у € [0, ст^] и существует функция с,(у) такая что у~1/2/<;\г,(у\х) < с{у) и с(у)ёу < оо 1. Пусть а < 2 Тогда
Р„,2 ~ {~1)к^НаЕ2{<7)а-2'а+зш'2^{аУ^-^ч/а), и оо,
гдеЕ2(а) = ^у-У^с]г1(у\а)ёу 2 Пусть а = 2 Тогда
Ри,2 ~ 1'И^Ии-^Ф^), гг оо,
г<?е Дг(ет) = у/{Ът + у)/уЫу\°) йУ
Теорема 2.2. 1. Пусть а > 1. Предположим, что существует е > О, такое, что плотность /^(у, ж) ограничена на [0, ст^] х [а — е,а]. Тогда при « —оо
Ри, 1 ~ (-1)к^м^к\а)и-2-2кПи/а) 2а. Пусть а < 1 Предположим, что функция /^(у, х) непрерывна слева в точке х = а для любого уб[0,(Г(] и существует функция с(у) такая что < с(у) и с{у)йу < оо. Тогда
Ри,г ~ (-1)кНаа6+3к-2/аЕ1(а)/^(а)и2^^2к^(и/а), иоо,
2Ь. Пусть а < 1 Предположим, что функция /^(у, х) непрерывна слева в точке х = а для любого у € [0, и условная плотность /ф(у\г} — х) непрерывна в точке у — О равномерно по всем х £ [сг — е, а] для некоторого е > 0 и /ф(0¡а) > 0 Тогда при и —> оо
За. Пусть а = 1. Предположим, что функция х) непрерывна
слева в точке х = сг для любого у € [0, о^] и существует функция с(у) такая что у"1 /(^(у^) < с(у) и с{у)йу < оо ТЬг<?а при и оо
~ (-1)*^/^И^ИФ^/а),
где Н\{а)— ехр{так(^В(^-(1+у/а)^}/сф\а) ¿у, 0 < Нх{а) < оо,
В{Ь) — стандартное броуновское движение.
ЗЬ. Пусть а = 1 Предположим, что функция ^{у, х) непрерывна слева в точке х = а для любого у € [0, сг^] и условная плотность 1(\1](у\г1 — х) непрерывна в точке у = 0 равномерно по всем х 6 [сг — е, а] для некоторого е > 0 и /^(С^ст) > 0 Тогда при и оо
Асимптотика вероятностей высоких экстремумов условно-гаус-совских процессов со случайным средним.
Положим р+2 = Р(тах,;е[_0]а] > «) и = Р(тах4е[0)О] ф)
Г1~&> и)
Теорема 2.3. Предположим, что функция /^(у, х) непрерывна слева в точке х = а для любого у € [0, сг(] и существует функция с(у) такая что У"1/21(\-п(у\х) < с(у) и с(у)с1у < оо Тогда при 0 < а < 2
Ри,2 ~ - <г), « оо
гдеЕ2(о-) = №у-Ч%Г1(у1а)<1у
Теорема 2.4. Предположим, что функция /^(у, ж) непрерывна слева в точке х = сг для любого у £ [0,
ía. Пусть а <2 и существует функция с{у) такая что }ф]{у\х) < с(у) и с{у)<1у < оо Тогда
РиД - (сг)«2/«-2-^^ - а), « -> оо,
16. Пусть а < 2 и существует е > 0 такое, что условная плотность /(\т)(у\г] — х) непрерывна в точке у — 0 равномерно по всем х € [сг — €, сг] и /С!тг(01сг) > 0. Тогда при и —> оо
Рил ~ (-1)АЯа/с(0к)/^(а)и2^-2~к1оёиЩи - а)
2. Пусть а = 2 и существует функция с(у) такая, что у~г¡^п(у\х) < с(у) и с{у)йу < оо. Тогда при и оо
~ (-1)44к)ИЗД«-*"1^« - а),
ВД - + « <*(*) = Р(£ < *), с-
стандартная нормальная случайная величина
Доказательства утверждений второй главы проводятся с помощью метода двойных сумм и асимптотического метода Лапласа и его обобщений Третья глава посвящена нахождению асимптотик вероятностей высоких выбросов суммы и произведения процессов стационарного гаус-совского и процесса, удовлетворяющего определенным условиям регулярности
Пусть £(i), t б К— гауссовский стационарный процесс с нулевым математическим ожиданием и корреляционной функцией r(t), такой что r(t) = 1 - |i|a + o(|i|a), 0 < о; < 2 при t -ï 0 и r(t) < 1 для всех t > О Пусть î](t), t е R— случайный процесс, не зависящий от Ç(t") Далее предполагаются выполненными нижеследующие условия A,B,C,D.
A. rj(t) — три раза п н непрерывно дифференцируемый и локально ограниченный вместе со своими производными процесс, т е для любого ограниченного В и неслучайного С (В) < оо п н имеет место
в
B. Для любого t € M плотность распределения ft{x, у, z):=fv(t)ivi(t),ri"(ti.%> У, -У вектора (i](t), r}'(t), rf'{t)) существует и для любого ограниченного ScS равномерно ограничена на В х R3
C. Для любого t и для любого х, таких что fv(t)(x) > 0 имеет место
Mmt)(°\x) > О-
Обозначим a{t) = sup{a;. fv{t)(x) > 0} и (îf(t))~ := -mm{ij"(i),0}.
D. Предположим, что a{ri(t)) = a для всех t € [—7, T7 + 7], 7 > 0 Предположим, что точки локального максимума процесса t](i) не вырождены в том смысле, что для некоторого к > 0 условия rf(f) = 0 и rf{t) < 0 влекут rf'(t) < — к Предположим также, что равномерно по eceMt имеет место lirn^-^- fv'(t)\v(t)(0|ж) =. f^(t)\ri(t){0|cr) > 0 ( мы допускаем максимумы любой высоты ) Пусть также равномерно по всем t функция
Et{x) •= E(((V"(t))^2 | „(t) = z,if(t) = 0)
непрерывна в точке а и Et(a) Et{x) > 0 Предположим, что
для любого t и некоторого к = 0,1,2,. , плотность f,,(t) (х) равномерно по всем t к раз непрерывно дифференцируема слева в точке а, причем /$>(") = 0 для I = 0,..., k-lu f%{ а) Ф 0
Теорема 3.1. Если r}(t)— п н положительный случайный процесс, то при а <2
Ит _ЦпМч(*)>«)_ = д.Зк+9/2-2/а.
«со и2/а-3-ищи/а) a)Ek{*)dt
В случае а — 2 при некоторых дополнительных условиях асимптотика имеет порядок /Ни~2~2к'9(и/(т), О <"Н < оо
Теорема 3.2. При 0 < а < 2
lmi_P(maxse[0ir3 £(s) + ??(s) > «)_=
иУо^-хЩи - а) \a)Et{a)dt
Доказательства теорем 3 1, 3.2 проводятся с помощью методов теории точечных процессов (см 14), метода двойных сумм, а также асимптотического метода Лапласа и его модификаций Доказательство базируется на соображении, что случайный точечный процесс локальных максимумов {(t,T](t),T]"(t)) : r)'(t) = 0,7j"(i)) < 0} регулярный с интенсивностью
v{t,x,z) = |z|Iz<o/4(i),4'(i)lf;''(f)(a;,0,2r).
и только бесконечно малые окрестности локальных максимумов вносят вклад в асимптотическое поведение вероятностей высоких экстремумов Автор приносит глубокую благодарность своему научному руководителю, доктору физико-математических наук, профессору Питербар-гу Владимиру Ильичу за постановку задачи, постоянную поддержку и внимание к работе
РАБОТЫ АВТОРА ПО ТЕМЕ ДИССЕРТАЦИИ
1 Румянцева Е. В Асимптотика вероятности больших уклонений условно-гауссовского процесса со случайной дисперсией - Вестник МГУ. Сер. 1, Математика Механика. 2004 JV® 5, с. 64-65
2 Румянцева Е.В Об асимптотике распределения максимума одного условно-гауссовского процесса - Вестник МГУ. Сер 1, Математика. Механика 2006 № 3, с 57-61
3 Питербарг В И , Румянцева Е В Экстремумы гауссовских процессов со случайными параметрами. - 44 с - Рус -Деп в ВИНИТИ РАН 2007. № 374-В2007
"Robert J Adler The Geometry of Random Fields — John Wiley and Sons, 1981
В статье "Экстремумы гауссовских процессов со случайными парамет-рами"Питербаргу В И. принадлежит идея использования специальной теории точечных случайных процессов в доказательстве Теоремы 1, а также доказательство для случая а = 2 в Теореме 2 и случая а > 1 в Теореме 3 Остальные результаты, а именно Теорема 2 для а < 2, Теорема 3 для а < 1, а также Теоремы 4,5,6 доказаны Румянцевой Е.В.
Введение.
1 Вероятности высоких выбросов условно-гауссовских процессов со случайными постоянными параметрами.
1.1 Случай степенных хвостов распределения случайных параметров.
1.2 Случай ограниченного справа носителя распределения случайных параметров.
2 Вероятности высоких выбросов условно-гауссовских процессов со случайными параметрами в виде квадратичной и линейной функций.
2.1 Асимптотика вероятностей высоких экстремумов условно-гауссовского процесса со случайной дисперсией.
2.1.1 Основные результаты.
2.1.2 Доказательства.
2.2 Асимптотика вероятностей высоких экстремумов условно-гауссовских процессов со случайным средним.
2.2.1 Основные результаты
2.2.2 Доказательства.
3 Вероятности высоких выбросов комбинации двух процессов: стационарного гауссовского и гладкого процесса.
3.1 Асимптотика вероятностей высоких экстремумов произведения процессов.
3.2 Асимптотика вероятностей высоких экстремумов суммы процессов
Изучение вероятностей высоких выбросов случайных процессов и полей представляет собой важную область в теории вероятностей. В настоящее время наибольшее развитие получила асимптотическая теория экстремумов гауссовских процессов (см. монографиии и обзорные статьи: [1], [2], [3],
4], И, И)
Разработан целый ряд общих методов для исследования больших уклонений гауссовских процессов. К ним относятся метод сравнений [1], [7], метод моментов [1], [8], а также метод двойных сумм [1]. Эти методы дали возможность получить достаточно полную картину асимптотического поведения вероятностей высоких выбросов.
Дадим краткое описание перечисленных выше методов. Метод моментов. Этот метод основан на формуле Каца-Райса для среднего числа пересечений уровня случайным процессом (см. [9]). Обозначим Nu(0, h) число пересечений снизу вверх уровня и процессом X за время [0, h]. Тогда во многих случаях можно показать, что
PJh) := P(max X(t) > и) ~ ENJO, h) при и -> оо. (1)
Физический смысл этого асимптотического соотношения состоит в том, что выходы за высокий уровень случаются крайне редко, поэтому можно наблюдать не более одного пересечения высокого уровня за фиксированный промежуток времени [0, h]. Напомним, что согласно формуле Каца-Райса
Поо ypt{u,y)dydt, где pt— совместная плотность распределения X'(t)). Более того, формула
Pu(h) « ENU{0, h) + Р{Х{0) > и) (2) часто является довольно точным приближением и позволяет получить второй член в асимптотическом разложении Pu{h) при и —> оо. Существует также и физическое обоснование этого приближения. Может случиться как правило, с маленькой вероятностью), что Х(0) > и, в то время как Nu(0,h) = 0. Этот метод был детально разработан для гауссовских процессов. Дальнейшее развитие метода Райса для гауссовских и близких к гауссовским процессов связано с именами Ж. Азаиза, В. Питербарга, И. Рыхлика, М. Вшебора.
Метод сравнения. Метод сравнения был развит только для гаус-совского случая и широко обсуждалось его применение для гауссовских полей. Математическая сторона метода состоит в изучении геометрических свойств множества {t: X(t) >и},и £ R. Пусть Xo(t) и X(t), t е [0, Т\— два независимых гауссовских стационарных центрированных процесса, имеющих гладкие траектории, единичную дисперсию и равные значения дисперсий их производных. Тогда, при некоторых дополнительных условиях невырожденности и гладкости, существует р, 0 < р < 1 такое, что при и —у оо
Р( max Xi(s) > и) - Р( max X0(s) > и)| = se[0,T} «€[0,21
Таким образом, вычисляя асимптотическое поведение Ри для "простого "гауссовского процесса, получаем вероятность больших уклонений для других гауссовских процессов, имеющих корреляцию, близкую к нулю, вплоть до экспоненциального порядка малости.
Аналогичные выводы можно получить и в случае гауссовских полей (см. [1], глава 1).
Метод двойных сумм. Замечание, сделанное выше, о том, что для реальных случайных процессов пересечения высокого уровня случаются редко, в некотором смысле является решающим. Кроме того, выбросы (т.е. часть траектории над уровнем) обычно очень короткие. Подобные наблюдения, примененные к процессам с негладкими траекториями приводят к мощному методу оценки асимптотического поведения РПш Пикандс (см. [10], [11]) был первым, кто действительно использовал этот факт в случае недифференцируемых процессов. Пусть X(t)— гауссовский стационарный центрированный процесс с корреляционной функцией rt. Предположим также, что для некоторого 0 < а <2 rt = l-|t|° + o(|f|e), 0. (3)
Тогда для любого Л > 0 и h = \и~2/а,
Ри(\и-2'а) ~ На(Х)Р{Х{0) >и),и-> оо, где На(Х) = Е exp(max[0jA](v/2SQ/2(^) -f")) и Ba/2(t)— дробное броуновское движение с параметром Херста а/2.
Этот локальный результат генерирует много интересных следствий не только для гауссовских процессов. Разбивая интервал [0, h) на маленькие интервалы длины Ли~2/а, и доказывая, что одновременный выход за уровень и на двух интервалах случается с маленькой вероятностью (согласно неравенству Бонферони), получаем
Pu(h) ~ Hahu2/aP(X{0) > и) при и —> оо, (4) где На = limA->oo На(Х)/Х с Нае (0, оо).
Метод Пикандса оценки вероятностей P(maxte[0,r] X{t) > и) основан на принципе локализации— выделении в параметрическом множестве Т малых подмножеств, поведение на которых случайного процесса и определяет асимптотику вероятностей. В процессе развития и уточнения этого метода оказалось,что в определенном смысле он является аналогом асимптотического метода Лапласа (см. [12]). При этом имеют место следующие два обстоятельства. Во-первых, траектория гауссовского процесса превышает высокий уровень и, как правило, на одном из выделенных бесконечно малом при и —У оо интервале. Во-вторых, эти множества малого диаметра распределены равномерно по всему параметрическому множеству Т в случае стационарного или близкого к стационарному процессам, а в нестационарном случае концентрируются в области, где дисперсия процесса X близка к максимальной. Позже в работах В.И. Питербарга (см. [1], глава 2), Ю.К. Беляева и В.И. Питербарга ([13]), К. Кволса и X. Ватанабе
14], [15] метод Пикандса был обобщен на случай гауссовских стационарных полей, включая процессы и поля, определенные на бесконечномерных параметрических множествах.
Вместе с тем, в многочисленных задачах математической статистики, теории надежности, теории приближения случайных процессов и многих других областях помимо стационарных гауссовских процессов возникают гауссовские процессы и поля, не являющиеся стационарными, хотя в некотором смысле и близкие к ним. Речь идет о так называемых локально-стационарных процессах и полях. Впервые такой процесс с постоянной дисперсией исследовал С.Берман [16]. В работе [17] В.И. Питербарг и В.П. Присяжнюк изучили вероятности высоких выбросов гауссовского локально-стационарного процесса, дисперсия которого достигает абсолютного максимума в конечном числе точек и регулярно ведет себя в окрестностях этих точек. Локальная стационарность в данном случае означает, что в указанных окрестностях корреляционная функция процесса близка к корре-ляционнй функции некоторого стационарного процесса. В статье [18] найдена асимптотика больших уклонений максимума гауссовского локально-стационарного процесса, математическое ожидание которого есть непрерывная функция, достигающая максимума в единственной точке и ведущая себя регулярно в ее окрестности. В работе В.Р. Фаталова [19] найдены точные асимптотики для вероятностей больших уклонений локально-стационарных гауссовских полей, дисперсия которых достигает своего максимума на произвольном компактном множестве в Rn.
Среди других результатов в этом направлении можно отметить пуассо-новскую предельную теорему для числа выходов гауссовского стационарного процесса за высокий уровень, полученную Ю.К. Беляевым [20] и Г. Крамером [21], а также предельную теорему для максимума гауссовской стационарной последовательности (С. Берман, [16]). В дальнейшем изучению асимптотических свойств гауссовских процессов была посвящена обширная литература (см., например, работы [22], [23], [24]).
В работе Ю.Хюслера [25] вводится массив гауссовских стандартных случайных переменных (£ш,г > 0,п > 0), таких, что (£ш,г > 0)— стационарная нормальная последовательность для каждого п > 0. При некоторых условиях на корреляцию между элементами массива найдены оценки для распределения максимума элементов последовательности. Такие массивы из гауссовских последовательностей использовались далее для получения асимптотических оценок вероятностей достижения максимума непрерывного гауссовского процесса.
В работе Ю. Хюслера и В.И. Питербарга [26] найдены асимптотики для экстремальных значений дробного броуновского движения и гауссовских процессов с трендом. В доказательствах использовались результаты, полученные в работе X. Бракера [27].
Метод Пикандса развивается не только для гауссовских процессов. Работы П. Албина [28] и других авторов содержат результаты для диффузионных и некоторых других процессов.
Характерным свойством множества высоких экстремумов гауссовского процесса является "отсутствие памяти": высоты этих максимумов вместе с их расположением асимптотически независимы друг от друга. Это обстоятельство уменьшает сферу приложений гауссовских моделей. В частности, чисто гауссовсие модели не позволяют прогнозировать высокие экстремумы (например, в случае финансовых временных рядов, которые, как правило, трудно прогнозируемы). Известен эффект Тейлора, когда включение в модель высокочастотного движения цен случайной волатильности (дисперсии), существенно повышает прогнозируемость (см. [29], [30], [31], [32], [33], [34]).
В этой связи приобретает значение класс случайных процессов, называемых условно-гауссовскими, к которым, с одной стороны, применима хорошо развитая гауссовская техника, а с другой — в рамках этого класса можно учесть модели с зависимыми экстремумами. Процессы вида X(t, 0(t)), t € R, где 0(t)— случайный, возможно векторный, процесс, называются условногауссовскими, если распределение Х(-,0(-)) при фиксированном в(-) является гауссовским. В настоящей работе рассматриваются условно-гауссовские процессы вида X(t)<p(t) + rj(t), где X(t) и 6(t) = (p(t),r}(t)) назависимы, X(t)— гауссовский процесс с нулевым средним и <p(t) > 0. Наиболее известным примером условно-гауссовских процессов является субгауссовский процесс (см. [35]).
Дадим определение субгауссовского процесса. Для этого нам потребуется ряд вспомогательных определений.
Определение. Случайная величина X распределена по устойчивому закону, если найдутся числа 0 < а < 2, <т > 0, — 1 < /3 < I и (i такие, что характеристическая функция X имеет следующий вид:
Случайную величину X, распределенную по устойчивому закону, обозначают X rsj Sa(cr, (3,ц). В случае а = 2 получаем Е ехр г9Х = ехр{—<j292+ г//0}. Это характериситическая функция гауссовской случайной величины со средним ц и дисперсией 2а2.
Понятно, что если X, распределенная по устойчивому закону, является симметричной случайной величиной, то параметры /i равны нулю. Верно и обратное утверждение. Для симметричных устойчивых случайных величин вводят обозначение X ~ SaS.
Утверждение. Пусть X ~ Sa>S(a, 0,0), где 0 < а' < 2 и пусть 0 < а < а'. Пусть W ~ Sa/ai((cos^)a'/a, 1,0) и преобразование Лапласа случайной величины W имеет вид
Еехр (-7Ж) = ехр{-7°/а'}, 7 > 0.
Предположим также, что X uW независимы. Тогда
Z = W1/a'X ~ Sa(c7,0,0).
Отсюда следует, что если центрированная гауссовская случайная величина £ ~ N(0,cг2) и W— положительная а/2- устойчивая случайная величина (0 < а < 2), не зависящая от т.е. W ~ 5Q/2((cos 1,0), то
Z = Ж1/2£ - SaS.
Случайную величину Z называют субгауссовской.
Заметим. что каждая SaS случайная величина является условно-гаус-совской.
Теперь обобщим это определение на случайные векторы. Выберем положительную случайную величину W ~ 5a/2((cos ™)2y,a, 1,0), а < 2 так, что ее преобразование Лапласа равно
Еехр (-7W) = ехр{-7а/2}, 7 > 0.
Пусть далее £ = (£ьцентрированный гауссовский случайный вектор в Rd, не зависящий от W. Тогда случайный вектор называется субгауссовским SaS случайным вектором в Rd с образующим гауссовским вектором
Аналогично определяем субгауссовский процесс.
Пусть £(t),t £ Т— центрированный гауссовский процесс и положительная случайная величина W ~ Sa/2((cos ^)2//q, 1,0), где а < 2 такая, что ее преобразоние Лапласа имеет вид Еехр (—7W) = ехр{—7Q/2}, 7 > 0. Предположим, что W не зависит от £(t),t 6 Т. Тогда SQS процесс {Z{t) = Wll2£{t), t еТ] называется субгауссовским процессом с образующим гауссовским процессом £(£),£ Е Т. Его конечномерные распределения , , d> 1— субгауссовский случайный вектор, введенный выше.
Адлер, Самородницкий и Гадрич в работе ([36]) оценили среднее число пересечений фиксированного уровня субгауссовским процессом и изучили асмиптотическое поведение этой величины при возрастании уровня, которое, как оказалось, имеет порядок и~а. Используя гауссовскую технику, в диссертации найдена асимптотика вероятностей высоких экстремумов суб-гауссовского процесса, порядок которой также составляет и~а.
Указанные процессы в случайной среде оказываются полезными моделями стохастических процессов с предсказуемыми экстремумами. Предсказу-мая случайная среда (например, случайная дисперсия) позволяет моделировать экстремумы процессов и другие редкие события. Прогнозируя значения дисперсии (волатильности), можно делать выводы о вероятной высоте экстремумов процесса, основываясь на замечании, что высокие экстремумы гауссовского процесса наиболее вероятны в окрестности точек больших значений дисперсии. Это обстоятельство реабилитирует гауссовскую модель и может служить стимулом для дальнейшего развития асимптотических методов в теории гауссовских случайных процессов.
Перейдем к описанию содержания диссертации.
В первой главе находятся асимптотики высоких экстремумов условно-гауссовских процессов со случайными постоянными параметрами: средним и дисперсией.
Пусть £(£),£ € Т- гауссовский случайный процесс с нулевым средним, заданный на произвольном параметрическом множестве Т и п.н. ограничен в смысле следующего определения
Определение. Гауссовский процесс называется п.н. ограниченным, если P(sup^T |£(£)| < оо) = 1.
Для таких процессов справедливо неравенство (см. [37])
P(sup|f(f)| > и) <се~£и\ teT
ГДе 0 < £ < 2шаИ С = С(£) > 0
Пусть </?, 7]— независимые случайные величины и пара rj) не зависит от £(£),£ € [О,Т]. В первой главе найдены асимптотики вероятностей
P(max£(i) + т] > и), P(max£(t)<p > и), P(max<p£(t)+tj > и) (5) t£T t€T t&T при и —У оо. Изучены два типа распределений хвостов случайных параметров: тяжелые (степенные) и имеющие ограниченные справа носители.
Случай степенных хвостов распределения параметров условно-гауссовского процесса.
Доказано, что в случае степенных (тяжелых) хвостов распределения случайных параметров (р, г) изучаемые асимптотики вероятностей (5) имеют степенной порядок.
Обозначим max{:r, 0} и := — minjrz, 0}.
Предложение 1.1. Пусть поведение на бесконечности случайной величины <р удовлетворяет следующим условиям lim uaP{ip >и) = А, lim uaP(ip < -и) = В, (6) u-too u->oo где А и В- постоянные величины, а > 0. Тогда при и —> оо верно следующее соотношение
1Л где E(ma,xteT £{t))+ < оо и #(тах$ет £(£))" < оо.
Для субгауссовского процесса, т.е. процесса вида £(t)y/W, где W — положительная |-устойчивая случайная величина (0 < а < 2) с параметрами а = (cos2^)», /? = 1, fi = 0 получаем в качестве следствия следующую асимптотику и) = + о(1)), « - ос, где Г(-)— гамма функция.
Предложение 1.2. Пусть поведение на бесконечности случайной величины г] удовлетворяет условию: lim и^Р(г] > и) = С, (7)
U-+00 где С > 0— постоянная величины, /3 > 0. Тогда при и оо верно соотношение
Р{тахф) + г] > и) = Си~р{ 1 + о(1)).
Теорема 1.1. Пусть распределение <р удовлетворяет условию (6), а распределение случайной величины г] удовлетворяет условию (7). Тогда i) если (3 > а, то при и оо имеем соотношение
Р/ сил, ^ л AE(maxteT№)a+ + ВЕ(max^ft))^ , ii) если (3 < а, то при и —> оо имеем соотношение
P(max^W + х\ > и) = Си~р( 1 + о(1)); tQ.7 iii) если (3 = а, то при и -» оо имеем соотношение
Р(шах (£>£(£) + г] > и) = АЕ{тпэхкт Z(t))% + BE{maxteTm)a- + С +
XL
Случай ограниченных справа носителей параметров условно-гауссовского процесса.
Пусть fv(x)~ плотность случайной величины г) к сг\ = supja; : f^x) > 0}. Предположим, что а\ < оо.
Пусть ср— неотрицательная случайная величина с плотностью fip{x) и сг2 = sup{:c: f<p{x) > 0}. Пусть а г < оо.
При таких типах распределения случайных параметров ip,r) для нахождения асимптотик вероятностей (5) необходимо знать поведение при и оо вероятности P(supteT |£(£)| > и). Такая асимптотика получена для весьма широкого класса гауссовских случайных процессов и полей (см. [1]). Как правило, она имеет вид
P(sup£(*) > и) = Ыае-ы\ 1 + о(1)), и^ оо (8) teT где h > 0, а— некоторые константы, b = 2sup *
Доказано, что в случае, когда правые хвосты распределений случайных параметров ip, 77 зануляются, асимптотики вероятностей (5) имеют тот же порядок, что и в (8).
Итак, пусть удовлетворяет свойству (8).
P(max£(t) + V > и) = h{2b)-1fv{al)ua-1e-b(u-a^(l + о( 1)).
Предложение 1.3. Пусть /^(ж) непрерывна слева в точке х = а\ и fr)(&i) > 0- Тогда при и —> оо верно следующее соотношение rV^iK-V6^)2
Предложение 1.4. Пусть fv(x) имеет разложение fv(x) = d(ai - х)а + о((а\ - z)Q) при х -»• (7Ь где а > 0 и d > 0. Тогда при и —> оо еермо
Р(тахей + гу > и) = dh(2b)-1F(a + + о( 1)),
Г(-)~ гамма-функция.
Предложение 1.5. Пусть f^{x) непрерывна слева в точке х = причем /<Д<г2) > 0. Тогда при и оо верно следующее соотношение
Р(тзхф)<р >и) = h{2b)-1aa2+3U(a2)na-2e-bu2^(l + о{ 1)). Предложение 1.6. Пусть fip{x) имеет разложение fv(x) = d(o2 - х)а + о(((Т2 - х)а) при х (J2, где а > 0 и d > 0. Тогда при и —> оо
Р(тшт? > «) = + 0(1)), (9) где Г(-)- гамма-функция.
Теорема 1.2. Пусть для некоторого к — 0,1, 2. плотность f^x) к раз непрерывно дифференцируема слева в точке х = <ji, причем ri) Ф 0, а при i < k : /^(ci) = 0. Пусть для некоторого I = 0,1,2. плотность fpix) I раз непрерывно дифференцируема слева в точке х = 02, причем /2^(02) ф 0, а при г <1: /2^(02) = 0. Тогда при и -У оо верна асимптотика
Р(тах (р£ (t) + r/>u) = Kua-k-2l~ze~bi^?L( 1 + о(1)), teT где К =
Доказательства утверждений первой главы проводятся с помощью асимптотического метода Лапласа (см. [12]) и его модификаций.
Во второй главе изучаются асимптотики вероятностей высоких экстремумов условно-гауссовских процессов, представимых в виде произведения и суммы стационарного гауссовского и случайных квадратичной и линейной функций.
Пусть £(t),t Е R— стационарный гауссовский случайный процесс с нулевым средним и корреляционной функцией r(t), такой, что для 0 < а < 2 имеет место r(t) = 1 - \t\a + o{\t\a) при t -)► 0 и r(t) < 1 для всех t > 0.
Пусть т] и ( > 0— случайные величины такие, что пара (??,£) не за~ висит от процесса £(£). Пусть f(x,y) = fTl^(x,y)— совместная плотность случайных величин, а /ф{у\х) = /С;Г?(у, x)/fv(x).
Для случайной величины г/ с плотностью fv обозначим а = sup{a; : /г)(х) > 0}, а для случайной величины ( с плотностью обозначим а^ = supjar : fc(x) > 0}. Пусть а^ < оо, а < оо и для некоторого к = 0,1,2, плотность frj(x) к раз непрерывно дифференцируема слева в точке а, причем = 0 для I < к и $\а) ф 0.
Введем обозначение у\а) := lim^. f(\r,{y\x).
Асимптотики вероятностей высоких экстремумов условно-гауссовских процессов со случайной дисперсией.
Предположим, что для некоторого е > 0 случайная величина т? > е. п.н.
Положим
PUi2 = Р{ max №{ri - let2) > и), Рв>1 = Р( max ОД (г/ - (t) > и), где а < в случае параболы и а < е/а^ в случае прямой.
Введем обозначение Ф(м) = Р(£ > и), где стандартная нормальная случайная величина. Как известно 4f(u) ~ (1/у/2тг)и~1е~и2!2 при и оо. Здесь и далее мы считаем, что а(и) ~ Ь{и) при и —> оо, если функции а(и) и Ь(и) такие, что lim^oo а{и)/Ь{и) = 1.
Теорема 2.1. Предположим, что функция /^(у, я) непрерывна слева в точке х = а для любого у Е [0, crj и существует функция с{у) такая что y1/2fc\v(y\x) < с(у)и Г c(y)dy <
1. Пусть а <2. Тогда
Рщ2 ~ (-l)kyfaHaE2(a)a-2/a+3k+9'2fW(ст)и2^-2к^(и/а), и^ оо, sdeE2((T) = ^y-1f%tl(y\cr)dy.
2. Пусть а = 2. TWa где Ё2(а) = tf >/(2a + y)/y/c,4(y^)dy.
Теорема 2.2. 1. Пусть а > 1. Предположим, что существует е > О, такое, что плотность fcv(y,x) ограничена на [0, crj х [<т — €, а]. Тогда при и —У оо
Ри,1 ~ (-1 )ka3k+3fW(<r)u-2-2kV(u/a).
2а. Пусть а < 1. Предположим, что функция непрерывна слева в точке х = и для любого у Е [0, сг^] и существует функция с(у) такая что у'1 f(\v{y\x) < с(у) и c(y)dy < оо. Тогда
Рщ1 ~ (-^^«^-^^(^/fH^-4-2^^), и —> 00, где £i(cr) = jrVcfofak) dy.
2b. Пусть а < 1. Предположим, что функция /^п(у,х) непрерывна слева в точке х — а для любого у Е [0,<т^]; условная плотность fclv{y\rj — х) непрерывна в точке у — 0 равномерно по всем х Е [а — б, и] для некоторого е > 0 и /ф(0|сг) > 0. Тогда при и —> оо
Ри>1 ~ 2(-l)kHaa5+sk-2/af^\a)fW{a)u2'a-A-2k\ogu ■ Ъ(и/а).
За. Пусть а = 1. Предположим, что функция f^{y-,x) непрерывна слева в точке х — а для любого у Е [0, а^] и существует функция с(у) такая что у-1/^(ylx) < с(у) и c(y)dy < оо. Тогда при и -» оо
Ри,1 ~ (-lj^+VfW^iWtt-2-2^^), где Н\(о)= Eexp{max{V2B(t)-{l+y/a)t)}fQr](y\a) dy, 0 < Н^а) < оо,
0,оо]
B(t)— стандартное броуновское движение.
ЗЬ. Пусть а = 1. Предположим, что функция /()Т/(у, я) непрерывна слева в точке х = и для любого у Е [0,0(\ и условная плотность /с^Ы7/ — х) непрерывна в точке у = 0 равномерно по всем х Е [с — е, а] для некоторого е > 0 и > 0. Тогда при и оо
РиЛ ~ 2(-l)V+3*/f M/cl4(0|<7)U-2-2*logU • Ф(«/<г).
Асимптотики вероятностей высоких экстремумов условно-гаус-совских процессов со случайным средним.
Положим
Ры+ = Р( max m + V - kt2 > «), Р+! = P(max £(t) + r, - (t > u).
Теорема 2.3. Предположим, что функция f^r,(y,x) непрерывна слева в точке х = а для любого у Е [0, и существует функция с(у) такая что 1с\ч{у\х) < с(у) и Jo** c{y)dy < оо. Тогда при 0 < а < 2
К2 ~ и)к^НаЕ2(а)^к\а)и2^2-кЦи -а), и оо sdeE2(<T) = fZ<y-1%n(y\*)dy.
Теорема 2.4. Предположим, что функция f^(y,x) непрерывна слева в точке х — и для любого у Е [0,<j^].
1а. Пусть а < 2 и существует функция с(у) такая что y~lf^\q{y\x) < с(у) и c{y)dy < оо. Тогда
Pi - (-1 fHaE^fW^u^-^iu -а), и^ оо, где Ei(a) = y~lfC\v(yW) dy. lb. Пусть a <2 и существует e > 0 такое, что условная плотность f^T]{y\r}=x) непрерывна в точке у = 0 равномерно по всем х Е [<т - е,сг] и /с|7?(0|<т) > 0. Тогда при и оо
К1 - H)fe#a/c(OH/f (a)u2^-2-klogu . Щи - а).
2. Пусть а = 2 и существует функция с(у) такая, что у 1f^T](y\x) < с(у) и c(y)dy < оо. Тогда при и оо
1 - (-i)Vf MSi- а),
ВД = + « <ВД = ПИ < х), стандартная нормальная случайная величина.
Доказательства утверждений второй главы проводятся с помощью метода двойных сумм (см. [1]) и асимптотического метода Лапласа и его модификаций.
Третья глава посвящена нахождению асимптотик вероятностей высоких экстремумов суммы и произведения стационарного гауссовского и процесса, удовлетворяющего определенным условиям регулярности.
Пусть £(£), t G R— гауссовский стационарный процесс с нулевым математическим ожиданием , E£(t) = 0 и корреляционной функцией r(t), такой что r(t) = 1 - \t\a + o(|t|a), 0 < а < 2 при t 0 и r(t) < 1 для всех t > 0.
Пусть rj(t), t € R— случайный процесс, не зависящий от £(£). Далее предполагаются выполненными нижеследующие условия А, В, С, D.
A. r](t) — три раза п.н. непрерывно дифференцируемый и локально ограниченный вместе со своими производными процесс, т.е. для любого ограниченного В и неслучайного С (В) < оо п.н. имеет место неравенство sMm\+w"m<c(B). в
B. Для любого t € Ж плотность распределения ft(x, у, z) := 1ф),г]'(г),т)"{г){х, У?z) вектора (r}(t),r]'(t),r]"(t)) существует и для любого ограниченного В С I равномерно по £ € Б ограничена на R3.
C. Для любого t и для любого х, таких что !ф){х) > 0 имеет место fmm(°\x) >
D. Предположим, что a(t) := sup{x : fv(t)(x) > 0} = а для всех t E [—7, T + 7], 7 > 0. Предположим, что точки локального максимума процесса r}(t) не вырождены, т.е. для некоторого е > 0 условия r)'(t) = 0 и r]"(t) < 0 влекут rf'{t) < —к. Предположим также, что lim /т7'(%(г)(0|ж) —: fr)'(t)\r](t){Qк) > 0 равномерно по всем t (мы допускаем максимумы любой высоты). Предположим, что для любого t и некоторого к = 0,1, 2,. плотность (ж) равномерно по всем t к раз непрерывно дифференцируема слева в точке а, причем /^(с) = 0 для I < к и /^(с) ф 0.
Обозначим (rf'(t))- = - mm{rj"(t), 0}. Тогда в указанных выше условиях имеют место следующие утверждения:
Теорема 3.1. Пусть T}{t) — п.н. положительный случайный процесс.
1. Пусть равномерно по всем t функция
Et(x) := Я(((т/'й)-)1/2 | V(t) = х, гi(t) = 0) (10) непрерывна в точке а и Et{u) := lim^^- Et(x) > 0. Тогда при а <2 lim--= оо иуа-г-пцф) /,Ш0( омедя
2. Пусть равномерно по всем t функция fn"(t))\ri(t),ri'{t{z\x^) непрерывна слева в точке х = и для любого z Е [—С, —/с] и ограничена сверху функцией c(z), т.ч. Jqc(z) dz < 00. Тогда при а = 2
ИтP(maxmT]^{t)ri{t) > и)= pZk+з и™и-2-2кЩи/а) (a)fmT]{t)(0\a)E}(a)dt и функция Е}(х) :=е( y/(rf'(t)J)(2x + v"(t)-) Ф) = х, rf(t) = о) непрерывна слева в точке а, а Е}(а) := lim x-ta— Е}(х) > 0.
Теорема 3.2. Пусть равномерно по всем t функция
Et(x) :=E((r]'l(t)^2\V(t)=x,r]'(t) = 0) непрерывна в точке а и Et{cr) > 0. Тогда при любом 0 < а < 2 lim^(тах8б[0|п^(а) + ту(а)>ц)=
Доказательства Теорем третьей главы проводятся с помощью методов теории точечных процессов (см. [38]), метода двойных сумм, а также асимптотического метода Лапласа и его модификаций.
Автор приносит глубокую благодарность своему научному руководителю, доктору физико-математических наук, профессору Питербаргу Владимиру Ильичу за постановку задачи, постоянную поддержку и внимание к работе.
1. Piterbarg V.1. Asymptotic methods in the theory of Gaussian processes and fields — Transl. Math. Monogr., AMS, Providence, Rhode Island, 1996.
2. Питербарг В.И., Фаталов В.Р. Точные асимптотики для вероятностей больших уклонений некоторых используемых в статистике гауссовских полей.— Вероятностно-статистические методы исследования/ ред. И.Г.Журбенко, А.Н.Колмогоров. М.: изд-во МГУ, 1983, 124-143.
3. Лифшиц М.А. О распределении максимума гауссовского процесса.— Теория вероятностей и ее применения. 31, 1 (1986) 134-142.
4. Лифшиц М.А. Вычисление точной асимптотики некоторых гауссовских больших уклонений,— Записки научных семинаров ЛОМИ. 184, 1990, 189-199.
5. Albeverio S., Piterbarg V. Mathematical methods and concepts for the analysis of extreme events.— Extreme Events in Nature and Society. Springer Berlin Heidelberg, I, 2006, 47-68.
6. Leadbetter M.R., Rootzen H. Extremal theory for stochastic processes.— Ann. Probab. 16, (1983) 431-478.
7. Питербарг В.И., Конаков В.Д. Скорость сходимости распределений максимальных уклонений гауссовских процессов и эмпирических плотностей. I.— Теория вероятностей и ее применен., 1982, 27, 4, 707-724. 1.
8. Питербарг В.И. Метод Райса для гауссовских случайных полей — Фунд. и прикл. матем. 1996. 2. 187-204.
9. Н. Cramer and MR Leadbetter, Stationary and Related Stochastic Processes. Wiley, 1967.
10. J. Pickands, Asymptotic properties of the maximum in a stationary Gaussian process, Trans. Amer. Math. Soc. 145 (1969) 75—86.
11. Pickands J., Upcrossing probabilities for stationary Gaussian processes, Trans. Amer. Math. Soc. 145 (1969) 51-73.
12. Федорюк M.B. Асимптотика: Интегралы и ряды.М.: Наука, 1977.
13. Беляев Ю.К., Питербарг В.И. Асимптотика среднего числа А-точек выбросов гауссовского поля за высокий уровень.— Выбросы случайных полей/ ред. Ю.К.Беляев. М.: Изд-во МГУ, 1972. 62-89.
14. Quails С., Watanabe Н. Asymptotic properties of Gaussian processes-Ann. Math.Statist. 43, (1972) 580-596.
15. Quails C., Watanabe H. Asymptotic properties of Gaussian random fields.- Trans. Amer. Math. Soc. 177, (1973) 155-171.
16. Berman S.M. Limit theorems for the maximum term in the stationary sequences Ann. Math. Statist. 35, (1964)502-516.
17. В.И. Питербарг, В. Присяжнюк. Асимптотическое поведение вероятности большого выброса для нестационарного гауссовского процесса. Теория вер. и мат. статист., 18, 121-133, 1978.
18. Piterbarg V.I., Stamatovich S. On maximum of Gaussian non-centered fields indexed on smooth manifolds. Weierstrass -Institut fur Angewandte Analysis und Stochastik. Preprint No. 449, Berlin 1998, 1-13.
19. Фаталов В.P. Точные асимптотики вероятностей больших уклонений гауссовских случайных процессов и поле.— Канд. диссер., 1990.
20. Беляев Ю.К. О числе пересечений уровня гауссовским случайным процессом.— Теория вероятностей и ее применения, I, II. 11 1 (1996) 120-128; 12, 3 (1967) 444-457.
21. Cramer Н. On the intersections between the trajectories of a normal stationary stochastic process and a high level.— Arkiv. Mat., 6, (1965) 1656-1663.
22. Берман С. Выбросы стационарного гауссовского процесса за высокий движущийся барьер.— В сб. "Случайные процессы. Выборочные функции и пересечения М.: "Мир", 1978, 133-164.
23. Берман С. Времена пребывания и экстремумы гауссовских процессов.— В сб. "Случайные процессы. Выборочные функции и пересечения М.: "Мир", 1978, 165-203.
24. Крамер Г., Лидбеттер М.Р. Стационарные случайные процессы. М.: Мир, 1969.
25. Huesler J. Extremes of a Gaussian Processes and the Constant Ha — Extremes. 2, 1 (1999) 59-70.
26. Huesler J., Piterbarg V.I. Extremes of a certain class of Gaussian processes — Stochastic Processes and their Applications , 83, 2 (1999), 257-271.
27. Braker H.U. High boundary excursions of locally stationary Gaussian processes — Proceedings of the Conference on the Extreme Value Theory and Applications. Gaitherburg, MA, 3, (1993) 69-74.
28. Albin J.M.P. Some properties of a normal process near a local maximum-Ann. Math. Statist. 41, 1870-1883.
29. Ширяев A.H. Основы стохастической финансовой математики. Том 1. Факты и модели. Москва, Фазис, 1998.
30. Andersen T.G., Bollerslev Т., Diebold F. X., Labys P. Modeling and forecasting volatility, Econometrica 71, 2003, 579-625.
31. Dacorogna, M.M., R. Gencay, U. Muller, R.B. Olsen, Pictet O.V. , An introduction to high-frequency finance, Academic Press, San Diego, 2001.
32. Calvet, L., and Fisher, A. Multifractality in Asset Returns: Theory and Evidence. The Review of Economics and Statistics 84, 2002, 381-406.
33. A. Mora-G'alan, A. P'erez, Ruiz E. Stochastic volatility model and the Taylor effect, Working Paper, Universidad Carlos III de Madrid, 2004.
34. Carmen Broto, Esther Ruiz Estimation methods for stochastic volatility models: a survey Journal of Economic Surveys 18 (5), 2004,613-649.
35. G.Samorodnitsky, M.S.Taqqu Stable non-Gaussian Random processes. Chapman & Hall, N.Y., London, 1994.
36. J.Adler, G.Samorodnitsky, T.Gadrich The expected number of level crossings for stationary, harmonizable, symmetric, stable processes. The Annals of Applied Probability, 1993, vol 3, No. 2, 553- 575.
37. X.Fernique Regularite des trajectoires des fonctions aleatoires gaussiennes. Ecole d'Ete des Probablites de Saint-Flour,IV-1974, Lecture Notes in Math., Vol 480, Springer, Berlin, 1975, pg 1-96.
38. Robert J. Adler The Geometry of Random Fields, John Wiley and Sons, 1981.
39. Бородин A.H., Салминен П. Справочник по броуновскому движению: Факты и формулы — СПб.: Лань,2000.
40. Колмогоров А.Н., Фомин С.В. Элементы теории функций и функционального анализа.
41. Румянцева Е.В. Асимптотика вероятности больших уклонений условно-гауссовского процесса со случайной дисперсией. Вестник МГУ. Сер. 1, Математика. Механика. 2004. № 5, с. 64-65.
42. Румянцева Е.В. Об асимптотике распределения максимума одного условно-гауссовского процесса. Вестник МГУ. Сер. 1, Математика. Механика. 2006. № 3, с. 57-61.
43. Hiisler Jiirg , Piterbarg Vladimir, Rumyantseva Ekaterina. Extremes of gaussian processes in random environment. Statistical Extremes and Environmental Risk (SEER 2007), CEAUL/FCUL, Lissabon, pp. 23-25.Тезисы доклада.
44. Питербарг В.И., Румянцева Е.В. Экстремумы гауссовских процессов со случайными параметрами. 44 с. - Рус.-Деп. в ВИНИТИ РАН № 374-В2007, 2007.