Идентификация иммуноактивных участков белка Е вируса клещевого энцефалита штамма Софьин с помощью синтетических пептидов тема автореферата и диссертации по химии, 02.00.10 ВАК РФ
Волкова, Татьяна Даниловна
АВТОР
|
||||
кандидата химических наук
УЧЕНАЯ СТЕПЕНЬ
|
||||
Москва
МЕСТО ЗАЩИТЫ
|
||||
2000
ГОД ЗАЩИТЫ
|
|
02.00.10
КОД ВАК РФ
|
||
|
ВВЕДЕНИЕ.
ГЛАВА I. ОБЗОР ЛИТЕРАТУРЫ.
Иммунобиология вирусов семейства Flaviviridae.
1. Изучение антигенной структуры флавивирусов
1.1 исследование с помощью моноклональных антител.
1.2 гипотетические модели пространственной структуры гликопротеина Е.
1.3 рентгеноструктурный анализ белка Е.
1.4 исследование с использованием синтетических пептидов.
1.5 антителозависимое усиление инфекции.
1.6 исследование с помощью "escape''-мутантов.
2. Рецепторы и рецепторсвязывающие участки флавивирусов
2.1 рецепторсвязывающие участки белка Е.
2.2 рецепторы флавивирусов.
3. Проникновение флавивирусов в клетку путем слияния с клеточной мембраной.
4. Роль неструктурных белков в формировании противовирусного иммунитета.
ГЛАВА II. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ.
1. Изучение антигенной структуры гликопротеина Е
1.1 В ыбор пептидов для синтеза.
1.2 Синтез пептидов.
1.3 Иммуногенные и антигенные свойства пептидов 1-ХШ.
2. Выявление фрагментов в последовательности белка Е, обладающих Т-хелперной активностью.
2.1 Выбор фрагментов.
2.2 Синтез пептидов.
2.3 Иммуногенные и антигенные свойства пептидов XIV-XX.
3. Установление последовательности, являющейся участком слияния вируса клещевого энцефалита с клеточной мембраной.
ГЛАВА III ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ.
ВЫВОДЫ.
Вирус клещевого энцефалита относится к семейству Flaviviridae и является возбудителем серьезного заболевания человека. Восточные субтипы этого вируса, распространенные на территории России, к одному из которых относится исследуемый штамм Софьин, обладают наибольшей патогенностью и для них часты летальные исходы или длительные поражения нервной системы.
Разработка новых методов иммунопрофилактики данного заболевания, а также эффективных подходов к его диагностике требует знаний молекулярных основ функционирования вируса и механизмов формирования противовирусного иммунитета. Незаменимым инструментом в решении этих научных проблем являются синтетические фрагменты вирусных белков, моделирующие иммуноактивные и другие функционально важные участки вирусов. В литературе описано несколько работ по изучению вирусов семейства Flaviviridae с помощью синтетических пептидов, однако для вируса клещевого энцефалита таких исследований не проводилось.
Настоящая работа посвящена выявлению с помощью синтетических пептидов иммуноактивных участков поверхностного белка Е вируса клещевого энцефалита, необходимых для осуществления вирусом своих функций и для индукции противовирусного иммунитета. Данная работа включает: синтез фрагментов белка Е, входящих в состав В-эпитопов белка и вируса; получение противопептидных антител, способных нейтрализовать вирус; выявление фрагментов, индуцирующих образование антител в свободном виде, без конъюгации с белком-носителем и содержащих Т-хелперные эпитопы; установление участка белка, с помощью которого вирус проникает в клетку хозяина и антитела к которому обладают вируснейтрализующими свойствами. Причем вывод о локализации данного участка может быть распространен на все семейство флавивирусов.
Выявление в последовательности белка Е вируса клещевого энцефалита участков, ответственных за формирование противовирусного иммунитета и за проникновение вируса в клетку хозяина, позволяет внести вклад в общее понимание механизмов взаимодействия вируса с организмом хозяина и создает основу для разработки синтетических вакцин и диагностикумов нового поколения.
выводы
1. Синтезировано 20 пептидных фрагментов белка Е вируса клещевого энцефалита, выбранных на основании данных литературы и теоретических методов анализа В-эпитопов и Т-эпитопов белковых последовательностей.
2. Получены антитела к KLH-конъюгатам потенциальных В-эпитопов белка и показано, что антитела к пептидам 98-113 и 394-403 связываются с белком Е и являются вируснейтрализующими.
3. Установлено, что пептид 35-51 связывается с противобелковыми антителами и является частью конформационно зависимого В-эпитопа белка Е.
4. В ряду потенциальных Т-эпитопов белка выявлены пептиды 48-74, 90-113, 204-224, 275-302 и 377-403, иммуногенные в свободном виде без конъюгации с белком-носителем и содержащие Т-хелперные эпитопы.
5. Установлено, что пептиды 204-224, 275-302 и 377-403 способны эффективно связываться с противовирусной сывороткой человека и входят в состав В-эпитопов вируса. Наиболее высокую активность при связывании с противовирусными антителами проявляет пептид 275-302.
6. На основании исследований по ингибированию слияния вируса с макрофагами, липосомами и с применением специфических моноклональных антител установлено, что фрагмент 98-113 является участком слияния вируса клещевого энцефалита с эндосомальной мембраной клетки-хозяина.
1. Rogers D.J., Parker M.J. (1993). Vector-borne diseases, models and global change. Lancet, V. 342, P. 1282-1284.
2. Stephenson J.R. (1988). Flavivirus vaccines. Vaccine, V. 6, P. 471-480.
3. Rice C.M., Lenches E.M., Dalgarno L„ Eddy S.R., Shin S.J., Sheets R.L., Strauss J.H. (1985). Nucleotide sequence of yellow fever virus: implications of flavivirus gene expression and evolution. Science, V. 229, P. 726-733.
4. Chambers T.J., Hahn C.S., Galler R., Rice C.M. (1990). Flavivirus genome organization, expression and replication. Annu. Rev. Microbiol., V. 44, P. 649-688.
5. Venugopal K., Gritsun Т., Lashkevich V.A., Gould E.A. (1994). Analysis of the sequence of the structural proteins shows Kyasanur Forest disease as a distinct member of the tick-borne encephalitis virus serocomplex. J. Gen Virol., V. 75, P. 227-232.
6. Russel P.K., Brandt W.E., Dalrymple J.M. (1980). Chemical and antigenic structure of flaviviruses. In The Togaviruses, P. 503-529. Edited by R.W. Schlesinger. New York, London: Academic Press.
7. Westaway E.G. (1973) In: Togaviruses: Biology, Structure, Replication, P. 531-581. Edited by R.W. Schlesinger. New York, Academic Press.
8. Lee J.M., Crooks A.J., Stephenson J.R. (1989). The synthesis and maturation of a nonstructural extracellular antigen from tick-borne encephalitis virus and its relationship to the intracellular NS1 protein. J. Gen. Virol., V. 70, P. 335-343.
9. Wengler G., Wengler G. (1993). The NS3 non-structural protein of flaviviruses contains an RNA triphosphatase activity. Virology, V. 197, P. 265-273.
10. Mandl C.W., Heinz F.X., Stockl E., Kunz Ch. (1989). Genome sequence of tick-borne encephalitis virus (western subtype) and comparative analysis of non-structural proteins with other flaviviruses. Virology, V. 173, P. 291-301.
11. Kamer G., Argos P. (1984). Primary structural comparison of RNA-dependent polymerases from plant, animal and bacterial viruses. Nucleic Acids Res., V. 12, P. 72697282.
12. Heinz F.X., Tuma W., Kunz Ch. (1981). Antigenic and immunogenic properties of defined physical forms of tick-born encephalitis virus structural proteins. Infect. Immunol., V. 33, P. 250-257.
13. Trent D.W. (1977). Antigenic characterization of flavivirus structural proteins separated by isoelectric focussing. J. Virol., V. 22, P. 608-618.
14. Heinz. F.X., Berger R., Tuma W., Kunz Ch. (1983). A topological and functional model of epitopes on the structure glycoprotein of tick-borne encephalitis virus defined by monoclonal antibodies. Virology, V. 126, P. 525-537.
15. Winkler G., Heinz F.X., Kunz Ch. (1987). Characterization of a disulfide bridge stabilized antigenic domain of tick-borne encephalitis virus structural glycoprotein. J. Gen. Virol., V. 68, P. 2239-2244.
16. Цехановская Н.А., Матвеев Л.Э., Плетнев А.Г., Рубин С.Г., Сафронов И.В., Прессман Е.К. (1991). Локализация антигенного участка белка оболочки вируса клещевого энцефалита с использованием моноклональных антител. Биоорг. Химия, Т. 17, С. 334-342.
17. Peiris J.S.M., Porterfield J.S., Roehrig J.T. (1992). Monoclonal antibodies against the flavivirus West Nile. J. Gen. Virol., V. 58, P. 283-289.
18. Henchal E.A., McCown J.M., Burke D.S., Seguin M.C., Brandt W.E. (1985). Epitopic analysis of antigenic determinants on the surface of dengue-2 virions using monoclonal antibodies. Am. J. Trop. Med. Hyg., V. 34, P. 162-169.
19. Kimura-Kuroda J., Yasui K. (1986). Antigenic comparison of envelope protein E between Japanese encephalitis virus and some other flaviviruses using monoclonal antibodies. J. Gen. Virol., V. 67, P. 2663-2672.
20. Mathews J.H., Roehrig J.T. (1984). Elucidation of the topography and determination of the protective epitopes on the E glycoprotein of Saint Louis encephalitis virus by passive transfer with monoclonal antibodies. J. Immunol., V. 132, P. 1533-1537.
21. Hawkes R.A., Roehrig J.T., Hunt A.R., Moore G.A. (1988). Antigenic structure of the Murray Valley Encephalitis virus E glycoprotein. J. Gen. Virol., V. 69, P. 1105-1109.
22. Roehrig J., Bolin R., Kelly R. (1998). Monoclonal antibody mapping of the envelope glycoprotein of the Dengue 2 virus, Jamaica. Virology, V. 246, P. 317-328.
23. Nowak Th., Wengler G. (1987). Analysis of disulfides present in the membrane proteins of the West Nile flavivirus. Virology, V. 156, P. 127-137.
24. Wengler G., Castle E., Leidner U., Nowak Th., Wengler G. (1985). Sequence analysis of the membrane protein V3 of the flavivirus West Nile virus and of its gene. Virology, V. 147, P. 264-274.
25. Hopp Th.P., Woods K.R. (1981). Prediction of protein antigenic determinants from amino acid sequences. PNAS, V. 78, P. 3824-3828.
26. Mandl Ch., Guirakhoo F., Holzmann h., Heinz F.X., Kunz Ch. (1989). Antigenic structure of the flavivirus envelope protein E of the molecular level, using tick-borne encephalitis as a model. J. Virology, V. 63, P. 564-571.
27. Rey F., Heinz F.X., Mandl Ch., Kunz Ch., Harrison S. (1995). The envelope glycoprotein from tick-borne encephalitis virus at 2 A resolution. Nature, V. 375, P. 291-298.
28. Heinz F.X., Mandl Ch., Holzmann H., Kunz Ch., Harris В., Rey F., Harrison S. (1991). The flavivirus envelope protein E: isolation of a soluble form from tick-borne encephalitis virus and its crystallization. J. Virology, V. 65, P. 5579-5583.
29. Wilson I. A., Skehel J J., Wiley D.C. (1981). Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 A resolution. Nature (London), V. 289, P. 366-373.
30. Varghese J.N., Laver W.G., Colman P.M. (1983). Structure of the influenza virus glycoprotein antigen neuraminidase at 2,9 A resolution. Nature (London), V. 303, P. 3540.
31. Bork P., Holm L., Sander C. (1994). The immunoglobulin fold. Structural classification, sequence patterns and common core. J. Molec. Biol., V. 242, P. 309-320.
32. Heinz F.X., Roehrig J.T. (1990). Immunochemistry of viruses, V. 2. The basis for serodiagnosis and vaccines. P. 289-305. Edited by van Regenmortel M.H.V., Neurath A.R. Amsterdam, Elsevier Science, Biomedical Division.
33. Roehrig J.Т., Hunt A.R., Johnson A.J., Hawkes R.A. (1989). Synthetic peptides derived from the deduced amino acid sequence of the E-glycoprotein of Murray Valley encephalitis elicit antiviral antibody. Virology, V. 171, P. 49-60.
34. Roehrig J.T., Johnson A.J., Hunt A.R., Bolin R.A., Chu M.C. (1990). Antibodies to dengue 2 vims E-glycoprotein synthetic peptides identify antigenic conformation. Virology, V. 177, P. 668-675.
35. Roehrig J.T., Risi P.A., Brubaker J.R., Hunt A.R., Beaty B.J., Trent D.W., Mathews J.H. (1994). T-helper cell epitopees on the E-glycoprotein of dengue 2 Jamaica virus. Virology, V. 198, P. 31-38.
36. Норр T.P., Woods K.R. (1981). Prediction of protein antigenic determinants from amino acid sequences. Proc. Natl. Acad. Sci. USA, V. 78, P. 3824-3828.
37. Chou P.Y., Fasman G.D. (1978). Conformational parameters for amino acids in helical, B-sheet, and random coil regions calculated from proteins. Biochemistry, V. 13, P. 211-222.
38. Aaskov J.G., Geysen H.M., Mason T.Y. (1989). Serologically defined linear epitopes in the envelope protein of dengue 2 (Jamaica strain 1409). Arch. Virol., V. 105, P. 209-221.
39. Innis B.L., Thirawuth V., Hemachudha C. (1989). Idenification of continuous epitopes of the envelope glycoprotein of dengue type 2 virus. Amer. J. Trop. Med. Hyg., V. 40, P. 676-687.
40. Hawkes R.A. (1964). Anst. J. Exp. Biol. Med. Sci., V.42, P. 465-482.
41. Trent D.W., Grant J.A., Rosen L., Monath T.P. (1983). Genetic variation among dengue 2 viruses of different geographic origin. Virology, V. 128, P. 271-284.
42. Halstead S.B. (1980). Immunological parameters of togavirus disease syndromes. In the Togaviruses: Biology, Structure, Replication. Schlesinger R.W., ed. Acad. Press, New York, P. 107-173.
43. Burke D.S., Nisalak A., Johnson D.E., Scott R.M. (1988). A prospective study of dengue infections in Bangkok. Am. J. Trop. Med. Hyg., V. 38., P. 172-180.
44. Halstead S.B., O'Rourke E.J. (1977). Antibody-enhanced dengue virus infection in primate leukocytes. Nature (London), V. 265, P. 739-741.
45. Peiris J.S.M., Porterfield J.S., Roehrig J.T. (1982). Monoclonal antibodies against the flavivirus West Nile. J. Gen. Virol., V. 58, P. 283-289.
46. Halstead S.B., O'Rourke E.J. (1977). Dengue virus and mononuclear phagocytes. I. Infection enhancement by nonneutralizing antibody. J. Exp. Med., V. 146, P. 201-217.
47. Peiris J.S.M., Gordon S., Unkeless J.C., Porterfield J.S. (1981). Monoclonal anti-Fc receptor IgG blocks antibody enhancement of viral replication in macrophages. Nature (London), V. 289, P. 189-191.
48. Schlesinger J J., Brandriss M.W. (1981). Growth of 17D yellow fever virus in a macrophage-like cell line, U937: role of Fc and viral receptors in antibody-mediated infection. J. Immunol., V. 127, P. 659-665.
49. Littaua R., Kurane I., Ennis F.A. (1990). Human IgG Fc receptor II mediates antibody-dependent enhancement of dengue virus infection. J. Immunology, V. 144, P. 3183-3186.
50. Perussia В., Dayton E.T., Lazarus R., Fanning V., Trinchieri G. (1983). Immune interferon induces the receptor for monomeric IgG on human monocytic and myeloid cells. J. Exp. Med., V. 158, P. 1092-1113.
51. Kontny U., Kurane I., Ennis F.A. (1988). Interferon gamma augments Fc,, receptor-mediated dengue virus infection of human monocytic cells. J. Virol., V. 62, P. 3928-3933.
52. Kurane I., Innis B.L., Nisalak A., Hoke C., Nimmannitya S., Meager A., Ennis F.A. (1989). Human T cell responses and interferon gamma production. J. Clin. Invest., V. 83, P. 506-513.
53. Leisveld LL., Abboud C.N., Looney R. J., Ryan D.H., Brennan J.K. (1988). Expression of IgG Fc receptors in myeloid leukemic cell lines: effect of colony-stimulating factors and cytokines. J. Immunol., V. 140, P. 1527-1533.
54. Cardosa M.J., Porterfield J.S., Gordon S. (1983). Complement receptor mediates enhanced flavivirus replication in macrophages. J. Exp. Med., V. 185, P. 258-263.
55. Takeda A., Tuazon C.U., Ennis F.A. (1988). Antibody-enhanced infection by HIV-l via Fc receptor-mediated entiy. Science, V. 242, P. 580-583.
56. Ochiai H., Kurokawa M., Hayashi K., Niwayama S. (1988). Antibody-mediated Growth of influenza A NWS virus in macrophage cell lineP388Dl. J. Virol., V. 62, P. 20-26.
57. Inada Т., Mims C.A. (1985). Ia antigens and Fc receptors of mouse peritoneal macrophages as determinants of susceptibility to lactic dehydrogenase virus. J. Gen. Virol., V. 66, P. 1469-1477.
58. Peiris J.S.M., Porterfield J.S. (1982). Antibody-dependent plaque enhancement: its antigenic specificity in relation to Togaviridae. J. Gen. Virol., V. 58, P. 291-296.
59. Hal stead S.B., Venkateshan C.N., Gentry M.K., Larsen L.K. (1984). Heterogeneity of infection enhancement of dengue 2 strains by monoclonal antibodies. J. Immunol., V. 132, P. 1529-1532.
60. Brandt W.E., McCown J.M., Gentry M.K., Russel P.K. (1982). Infection enhancement of dengue type 2 virus in U-937 human monocyte cell line by antibodies to flavivirus cross-reactive determinants. Infect. Immunol., V. 36, P. 1036-1041.
61. Mady В.J., Erbe D.V., Kurane I., Fanger M.W., Ennis F.A. (1991). Antibody-dependent enhancement of dengue virus infection mediated by bispecific antibodies against cell surface molecules other than Fc gamma receptors. J. Immunol., V. 147, P. 139-144.
62. Venugopal K., Gould E.A. (1994). Towards a new generation of flavivirus vaccines. Vaccine, V. 12, P. 966-975.
63. Tardieu M., Epstein R.L., Weiner H.L. (19820. Interaction of viruses with cell surface receptors. International Review of Cytology, V. 80, P. 27-61.
64. Steinman R.M., Mellman I.S., Muller W.A., Cohn Z.A. (1983). Endocytosis and recycling of plasma membrane. J. Cell Biology, V. 96, P. 1-27.
65. Hase Т., Summers P.L., Eckels K.H. (1989). Flavivirus entry into cultured mosquito cells and human peripheral blood monocytes. Arch. Virol., V. 104, P. 129-143.
66. Holland J.J. (1961). Receptor affinities as major determinants of enterovirus tissue tropism in humans. Virology, V. 15, P. 312-326.
67. Holmes K.V. (1981). The biology and biochemistry of cellular receptors for enveloped viruses. In: Virus receptors, part 2. Eds. Lonberg-Holm I., Phillipson L. London. Chapman and Hall Ltd., P. 87-111.
68. Tyler K.L., Fields B.N. (1996). Pathogenesis of viral infections. P. 173-217. In: Fields virology. Eds. Fields B.N., Knipe D.M., Howley P.M. 3rd ed Lippincott-Raven, Philadelphia.
69. Theiler M., Smith H.H. (1937). Effect of prolonged cultivation in vitro upon pathogenicity of yellow fever virus. J. Exp. Medicine, V. 65, P. 767-786.
70. Hardy F.M. (1963). The growth of Asibi strain yellow fever virus in tissue cultures. II. Modification of virus and cells. J. Infect. Diseases, V. 113, P. 9-14.
71. Hearn H.J.Jr., Soper W.T., Miller W.S. (1965). Loss in virulence of yellow fever virus serially passed in HeLa cells. Proceedings of the Society for Experimental Biology and Medicine, V. 119, P. 319-322.
72. Hearn H.J.Jr., Chappell W.A., Dmchak P., Dominic J.W. (1966). Attenuation of aerosolised yellow fever virus after passage in cell culture. Bacteriological Reviews, V. 30, P. 615-623.
73. Converse J.L., Kovatch R.M., Pulliam J.D., Nagle S.C.Jr., Synder E.M. (1971). Virulence and pathogenesis of yellow fever virus serially passaged in cell culture. Applied Microbiology, V. 21, P. 1053-1057.
74. Barret A.D.T., Monath T.P., Cropp C.B., Adkins J.A., Ledger T.N., Gould E.A., Schlesinger J.J., Kinney R.M., Trent D.W. (1990). Attenuation of wild-type yellow fever virus by passage in HeLa cells. J. Gen. Virol., V. 71, P. 2301-2306.
75. Gould E.A., Buckley A., Cane P. A., Higgs S., Cammack N. (1989). Use of a monoclonal antibody specific for wild-type yellow fever virus to identify a wild-type antigenic variant in 17D vaccine pools. J. Gen. Virol., V.70, P. 1889-1894.
76. Gould E.A., Buckley A., Cammack N., Barrett A.D.T., Clegg J.C.S., Ishak R., Varma M.G.R. (1985). Examination of the immunological relatonships between flaviviruses using yellow fever virus monoclonal antibodies. J. Gen. Virol., V. 66, P. 1369-1382.
77. Gibson C.A., Wills M.R., Gould E.A., Sanders P.G., Barrett A.D.T. (1990). Effect of administration of sodium aurothiomalate on the virulence of yellow fever viruses in adult mice. Vaccine, V. 8, P. 590-594.
78. Ryman K.D., Xie H., Leidger T.N., Campbell G.A., Barrett A.D.T. (1997). Antigenic variants of yellow fever virus with an altered neurovirulence phenotype in mice. Virology, V. 230, P. 376-380.
79. Lobigs M., Dalgarno L., Schlesinger J.J., Weir R.C. (1987). Location of a neutralization determinant in the E protein of yellow fever virus (17D Vaccine Strain). Virology, V. 161, P. 474-478.
80. Ryman K.D., Ledger T.N., Weir R.C., Schlesinger J.J., Barrett A.D.T. (1997). Yellow fever virus envelope protein has two discrete type-specific neutralizing epitopes. J. Gen. Virol., V.78, P. 1353-1356.
81. Sumioshi H., Tignor G.H., Shope R.E. (1995). Characterization of a highly attenuated Japanese encephalitis virus generated from molecularly cloned cDNA. J. Infectious Diseases, V. 171, P. 1144-1151.
82. Hasegawa H., Yoshida M., Shiosaka Т., Fujita S., Kobaejashi Y. (1992). Mutation in the envelope protein of Japanese encephalitis virus affect entry into cultured cells and virulence in mice. Virology, V. 191, P. 158-165.
83. Cecilia D., Gould E.A. (1991). Nucleotide changes responsible for loss of neuroinvasiveness in Japanese encephalitis virus neutralization-resistant mutants. Virology, V. 181, P. 70-77.
84. Ni H., Barrett A.D.T. (1998). Attenuation of Japanese encephalitis virus by selection of its mouse brain membrane receptor preparation escape variants. Virology, V. 241, P. 30-36.
85. Lobigs M., Usha R., Nestorowicz A., Marshall I.D., Weir R.C., Dalgarno L. (1990). Host cell selection of Murray Valley encephalitis virus variants altered at a RGD sequence in the envelope protein and in mouse virulence. Virology, V. 176, P. 587-595.
86. Pletnev A.G., Bray M., Lai C.-J. (1993). Chimeric tick-borne encephalitis and dengue type 4 viruses: effects of mutations on neurovirulence in mice. J. Virology, V. 67, P. 4956-4963.
87. Holzmann H., Heinz F.X., Mandl Ch.W., Guirakhoo F., Kunz Ch. (1990). A single amino acid substitution in envelope protein E of tick-borne encephalitis virus leads to attenuation in the mouse model. J. Virology, V. 64, P. 5156-5159.
88. Jiang W.R., Lowe A., Higgs S., Reid H., Gould E.A. (1993). Single amino acid codon changes detected in louping ill virus antibody-resistant mutants with reduced neurovirulence. J. Gen. Virol., V. 74, P. 931-935.
89. Gao G.F., Hussain M.H., Reid H.W., Gould E.A. (1994). Identification of naturally occurring monoclonal antibody escape variants of louping ill virus. J. Gen. Virol., V. 75, P. 609-614.
90. Guirakhoo F., Hunt A.R., Lewis J.G., Roehrig J.T. (1993). Selection and partial characterization of dengue 2 virus mutants that induce fusion at elevated pH. Virology, V. 194, P. 219-223.
91. Johnson A.Y., Guirakhoo F., Roehrig J.T. (1994). The envelope glycoproteins of dengue 1 and dengue 2 viruses grown in mosquito cells differ in their utilization of potential glycosylation sites. Virology, V. 203, P. 214-249.
92. Kawano H., Rostapshov V., Rosen L., Lai C.Y. (1993). Genetic determinants of dengue type 4 virus neurovirulence for mice. J. Virology, V. 67, P. 6567-6575.
93. Henchal E.A., Putnak J.R. (1990). The dengue viruses. Clin. Microbiol. Rev., V. 3, P. 376-396.
94. Chen Y., Maguire Т., Marks R.M. (1996). Demonstration of binding of dengue virus envelope protein to target cells. J. Virology, V. 70, P. 8765-8772,
95. Andrews B.S., Theofilopoulos A.N., Peters C.J., LoskutofFD.J., Brandt W.E., Dixon F.J. (1978). Replication of dengue and Junin viruses in cultured rabbit and human endothelial cells. Infect. Immunol., V. 20, P. 776-781.
96. Imbert J.L., Guevara P., Ramos-Castaneda J., Ramos C., Sotelo J. (1994). Dengue virus infects mouse cultured neurons but not astrocytes. J. Med. Virol., V. 42, P. 228-233.
97. Srivastava A.K., Morita K., Matsuo S., Igarashi A. (1990). Immunoreactive peptides cleaved by cyanogen bromide from Japanese virus envelope glycoprotein E. Acta Virol., V. 34, P. 228-238.
98. Srivastava A.K., Morita K., Matsuo S., Tanaka M., Igarashi A. (1990). Japanese encephalitis virus fusion protein expressed in Escherichia coli confers protective immunity in mice. Microbiol. Immunol., V. 35, P. 863-870.
99. Seif S.A., Morita K., Matsuo S., Hasebe F., Igarashi A. (1995). Finer mapping of neutralizing epitope(s) on the C-terminal of Japanese encephalitis virus E-protein expressed in recombinant Escherichia coli system. Vaccine, V. 13, P. 1515-1521.
100. Ruoslahti E., Pierschbacher M.D. (1987). New perspectives in cell adhesion: RGD and integrins. Science, V. 238, P. 491-497.
101. Суровой А.Ю., Иванов В.Т., Чепуркин А.В., Иванющенков В.Н., Дрягалин Н.Н. (1988). Является ли последовательность Arg-Gly-Asp участком связывания вируса ящура с клеточным рецептором? Биоорг. Химия, Т. 14, С. 965-968.
102. Fox G., Parry N.R., Barnet P.V., Mc.Ginn В., Rowlands D.J., Brown F. (1989). The cell attachment site on foot-and-mouth disease virus includes the amino acid sequence RGD (arginine-glycine-aspartic acid). J. Gen. Virol., V. 70, P. 625-637.
103. Chiu C.Y., Mathias P., Nemerow G.R., Stewart P.L. (1999). Structure of adenovirus complexed with its internalization receptor, alphavbeta5 integrin. J. Virol., V. 73, P. 6759-6768.
104. Bennet M.J., Schlunegger M.P., Eisenberg D. (1995). 3D domain swapping: A mechanism for oligomer assembly. Protein Sci., V. 4, P. 2455-2468.
105. Chen Y., Maquire Т., Hileman R.E., Fromm J.R., Esko J.D., Linhardt R.J., Marks R.M. (1997). Dengue virus infectivity depends on envelope protein binding to target cell heparan sulfate. Nature med., V. 3, P. 866-871.
106. Kjellen L., Lindahl U. (1991). Proteoglycans: structure and interactions. Annu. Rev. Biochem., V. 60, P. 443-475.
107. Couchman J.R., Woods A. (1993). Structure and biology of pericellular proteoglycans. In: Cell Structure and Extracellular Glycoconjugates, V.J. Eds. Roberts D.D., Mecham R.P., Acad. Press, New York, P. 33-82.
108. Giuffre L., Cordey A.S., Monai N., Tardy Y., Schapira M., Spertini O. (1997). Monocyte adhesion to activated aortic endothlium: role of L-selectin and heparan sulfate proteoglycans. J. Cell Biol., V. 136, P. 945-956.
109. Friedl A., Chang Z., Tierney A., Rapraeger A.C. 491997). Differential bindig of fibroblast growth factor-2 and -7 to basement membrane heparan sulfate: comparison of normal and abnormal human tissues. Am. J. Pathol., V. 150, P. 1443-1455.
110. Lopez-Casillas F., Wrana J.L., Massague J. (1993). Betaglycan presents ligand to the TGF beta signaling receptor. Cell, V. 73, P. 1435-1444.
111. Felding-Habermann В., Cheresh D.A. (1993). Vitronectin and its receptors. Curr. Opin. Cell Biol., V. 5, P. 864-868.
112. Potts J.R., Campbell I.D. (1994). Fibronectin structure and assembly. Curr. Opin. Cell Biol., V. 6, P. 648-655.
113. Compton Т., Nowlin D.M., Cooper N.R. (1993). Initiation of human cytomegalovirus infection requires initial interaction with cell surface heparan sulfate. Virology, V. 193, P. 834-841.
114. Neyts J. Snoeck R., Schols D., Balzarini J., Esko J.D., Schpdael A., Clereq E. (1992). Sulfated polymers inhibit the interaction of human cytomegalovirus with cell surface heparan sulfate. Virology, V. 189, P. 48-58.
115. Sawitzky D., Hampl H., Habermehl K.-O. (1990). Comparison of heparin-sensitive attachment of pseudorabies virus (PRV) and herpes simplex virus type 1 and identification ofheparan-bindingPRV glycoproteins. J. Gen. Virol., V. 71, P. 1221-1225.
116. Zhu Z., Gershon M.D., Ambron R, Gabel C., Gershon A. A. (1995). Infection of cells by varicella zoster virus: inhibition of viral entry by mannose 6-Phsphate and heparin. Proc. Natl. Acad. Sci. USA, V. 92, P. 3546-3550.
117. Toida Т., Imanari Т., Hileman R.E., Fromm J.R., Linhardt R.Y. (1997). Structural differences in heparan sulfates from tissues and species. Biochem. J., V. 322, P. 499-506.
118. Spear P.G. (1993). Entry of alfaherpesviruses into cells. Virology, V. 4, P. 167-180.
119. Shepley M.P., Racaniello V.R. (1994). A monoclonal antibody that blocks poliovirus attachment recognizes the lymphocyte homing receptor CD 44. J. Virol., V. 68, P 1301— 1308.
120. Wickham T.J., Mathias P., Cheresh D.A., Nemerow G.R. (1993). Integrins avp3 and av35 promote adenovirus internalization but not virus attachment. Cell, V. 73, P. 309319.
121. Fuller A.O., Santos R.E., Spear P.G. (1989). Neutralization antibodies specific for glycoprotein H of herpes simplex virus permit viral attachment to cells but prevent penetration. J. Virol., V. 63, P. 3435-3443.
122. Ligas M.W., Johnson D.C. (1988). A herpes simplex virus mutant in which glycoprotein D sequences are replaced by 3-galactosidase sequences binds to but is unable to penetrate into cells. J. Virol., V. 62, P. 1486-1494.
123. Brunetti C.R., Burke R.L., Kornfeld S., Gregory W., Masiarz F.R., Dingwell K.S., Johnson D.C. (1994). Herpes simplex virus glycoprotein D acquires mannose 6-phosphate receptors. J. Biol. Chem., V. 269, P. 17067-17074.
124. McClain D.S., Fuller A.O. (1994). Cell-specific kinetics and efficiency of herpes simplex virus type 1 entry are determined by two distinct phases of attachment. Virology, V. 198, P. 690-702.
125. Schlessinger J., Lax I., Lemmon M. (1995). Regulation of growth factor activation by proteoglycans: what is the role of the low affinity receptor? Cell, V. 83, P. 357-360.
126. Putnak J.R., Kanesa-Thasan N., Innis B.L. (1997). A putative cellular receptor for dengue viruses. Nature Med., V. 3, P. 828-829.
127. Halstead S.B., Porterfield J.S., O'Rourke E.Y. (1980). Enhancement of dengue virus infection in monocytes by flavivirus antisera. Amer. J. Trop. Med. Hyg., V. 29, P. 638642.
128. Peiris J.S.M., Porterfield J.S. (1979). Antibody mediated enhancement of flavivirus replication in macrofage cell lines. Nature, V. 282, P. 509-511.
129. Thompson L.D., Pantoliano M.W., Springer B.A. (1994). Energetic characterization of the basic fibroblast growth factor -heparin interaction: Identification of the heparin binding domain. Biochemistry, V. 33, P. 3831-3840.
130. Faham S., Hileman R.E., Fromm J.R., Linhardt R.J., Rees D.C. (1996). Heparin structure and interactions with basic fibroblast growth factor. Science, V. 271, P. 11161120.
131. Gollins S.W., Porterfield J.S. (1986). A new mechanism of the neutralization of enveloped viruses by antiviral antibody. Nature, V. 321, P. 244-246.
132. Vorovitch M.F., Timofeev A.V., Atanadze S.N., Tugizov S.M., Kuhch A.A., Elbert L.B. (1991). PH-dependent fusion of tick-bom encephalitis virus with artificial membranes. Arch. Virol., V. 118, P. 133-138.
133. Hsu M.-C., Scheid A., Choppin P.W. (1981). Activation of the Sendai virus fusion protein (F) involves a conformational change with exposure of a new hydrophobic region. J. Biol. Chem., V. 256, P. 3357-3363.
134. Richardson C/D., Choppin P.W. (1983). Oligopeptides that specifically inhibit membrane fusion by paramyxoviruses: Studies on the site of action . Virology, V. 131, P. 518-582.
135. Lobl T.J., Renis H.E., Epand R.M., Maggiora L.L., Wathen M.W. (1988). Peptides as potential virus inhibitors. Int. J. Peptide Protein Res., V. 32, P. 326-330.
136. Wilson I.A., Skehel J.J., Wiley D.C. (1981). Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 A resolution. Nature, V. 289, P. 366-373.
137. White J.M., Kielian M., Helenius A. (1983). Membrane fusion proteins of enveloped animal viruses. Quarterly Reviews of Biophysics, V. 16., P. 151-195.
138. Daniels R.S., Downie J.C., Hay A.J., Knossow M., Skehel J.J., Wang M.L., Wiley D.C. (1985). Fusion mutants of the influenza virus hemagglutinin glycoprotein. Cell, V. 40, P. 431—439.
139. Weis W.I., Cusack S.C., Brown J.H., Daniels R.S., Skehel J.J., Wiley D.C. (1990). The structure of a membrane fusion mutant of the influenza virus haemagglutinin. EMBO J., V. 9, P. 17-24.
140. Clague M.J., Knutson J.R., Blumenthal R., Hermann A. (1991). Interaction of influenza hemagglutinin amino-terminal peptide with phospholipid vesicles: a fluorescence study. Biochemistry, V. 30, P. 5491-5497.
141. Weber Т., Paesold G., Mischler R., Semenza G., Brunner J. (1994). Evidence for If-induced insertion of the influenza hemagglutinin HA2 N-terminal segment into viral membrane. J. Biol. Chemistry, V. 269, P. 18353-18358.
142. Gallaher W.R. (1987). Detection of a fusion peptide sequence in the transmembrane protein of human immunodefificiency virus. Cell, V. 50, P. 327-328.
143. Bosch M.L., Earl P.L., Fargnoli K., Picciaftioco S., Giombini F., Wong S.F., Franchini G. (1989). Identification of the fusion peptide of primate immunodeficiency viruses. Science, V. 244, P. 694-697.
144. Delahunty M.D., Rhee I., Freed E.O., Bonifacino J.S. (1996). Mutational analysis of the fusion peptide of the human immunodeficiency virus type 1: Identification of critical glycine residues. Virology, V. 218, P. 94-102.
145. McMinn P.C., Weir R.C., Dalgarno L. (1996). A mouse-attenuated envelope protein variant of Murray Valley Encephalitis virus with altered fusion activity. J. Gen. Virol., V. 77, P. 2085-2090.
146. Allison S.L., Schalich J., Stiasny K., Mandl C.W., Kunz Ch., Heinz F.X. (1995). Oligomeric rearrangement of tick-borne encephalitis virus envelope proteins induced by an acidic pH. J. Virology, V. 69, P. 695-700.
147. Stiasny K., Allison S.L., Marchler-Bauer A., Kunz Ch., Heinz F.X. (1996). Structural requirements for low-pH-induced rearrangements in the envelope glycoprotein of tick-borne encephalitis virus. J. Virology, V. 70, P. 8142-8147.
148. Bron R., Wahberg J.M., Garoff H„ Wilschut J (1993). Membrane fusion of Semliki Forest virus in a model system: correlation between fusion kinetics and structural changes in the envelope glycoprotein. EMBO J., V. 12, P. 693-701.
149. Justman J., Klimjack M.R., Kielian M. (1993). Role of spike protein conformational chages in fusion of Semliki Forest virus. J. Virol., V. 67, P. 7597-7607.
150. Waklberg J.M., Bron R., Wilschut J., Garoff H (1992). Membrane fusion of Semliki Forest virus involves homotrimers of the fusion protein. J. Virology, V. 66, P. 7309-7318.
151. Helenius A. (1995). Alphavirus and flavivirus glycoproteins: Structure and functions. Cell, V. 81, P. 651-653.
152. Chambers P., Pringle C.R., Easton A.J. (1990). Heptad repeat sequences are located adjacent to hydrophobic regions in several types of virus fusion glycoproteins. J/ Gen. Virol., V/ 71, P. 3075-3080.
153. Gollins S.W., Porterfield J.S. (1985). Flavivirus infection enhancement in macrophages: an electron microscopic study of viral cellular entry. J. Gen. Virol., V. 66, P.1969-1982.
154. Ng M.L., Lau L.C.L. (1988). Possible involvement of receptors in the entry of Kunjin virus into Vero cells. Arch. Virol., V. 100, P. 199-211.
155. Anderson R.G.W., Orci L. (1988). A review of acidic intracellular compartments. J. Cell Biol/. V. 106, P. 539-543.
156. Wahlberg J.M., Boere W.A.M., GarofF H. (1989). The heterodimeric association between the membrane protein of Semliki Forest virus changes its sensitivity to low pH during virus maturation. J. Virol., V. 63, P. 4991^4997.
157. Wengler G., Wengler G. (1989). Cell-associated West Nile flavivirus is covered with E+Pre-M protein heterodimers which are destroyed and reorganized by proteolytic cleavage during virus release. J. Virol., V. 63, P. 2521-2526.
158. Randolph V.B., Winkler G., Stollar V. (1990). Acidotropic amines inhibit proteolytic processing of flavivirus prM protein. Virology, V. 174, P. 450-458.
159. Guirakhoo F., Bolin R.A., Roehrig J.T. (1992). The Murray Valley encephalitis virus prM protein confers acid resistance to virus particles and after the expression of epitopes within the R2 domain ofE glycoprotein. Virology, V. 191, P. 921-931.
160. Heinz F.X., Auer G., Stiasny K., Holzmann H., Mandl C., Guirakhoo F., Kunz C. (1994). The interactions of the flavivirus envelope proteins: implications for virus entry and release. Arch. Virol., V. 9., P. 339-348.
161. Bray M., Lai C.-J. (1991). Dengue virus premembrane and membrane proteins elicit a protective immune response. Virology, V. 185, P. 505-508.
162. Schlesinger J.J., Brandriss M.W., Crop C.B., Monath T.P. (1986). Protection against Yellow Fever in monkeys by immunization with Yallow Fever virus nonstructural protein NS1. J. Virology, V. 60, P. 1153-1155.
163. Tan C.H-C., Yap E-H., Singh M., Deubel V., Chan Y-C. (1990). Passive protection studies in mice with monoclonal antibodies directed against the non-strustural protein NS3 of dengue 1 virus. J. Gen. Virol., V. 71, P. 745-748.
164. Deubel V., Kinney K.M., Trent D.W. (1988). Nucleotide sequence and deduced amino acid sequence of the nonstructural proteins of dengue type 2 virus, Jamaica genotype: comparative analysis of the full length genome. Virology, V. 165, P. 234-244.
165. Kreil T.R., Eibl M.M. (1997). Pre- and postexposure protection by passive immunoglobulin but no enhancement of infection with a flavivirus in a mouse model. J. Virol., V. 71, P. 2921-2927.
166. Kreil T.R., Maier E., Fraiss S., Eibl M.M. (1998). Neutralizing antibodies protect against lethal flavivirus challenge but allow for the development of active humoral immunity to a nonstructural virus protein. J. Virol., V. 72, P. 3076-3081.
167. Fan W.F., Mason P.W. (1990). Membrane association and secretion of the Japanese encephalitis virus NS1 protein from cells expressing NS1 cDNA. Virology, V. 177, P. 470-476.
168. Murphy B.R., Prince G.A., Collins P.L., Hildreth S.W., Paradiso P.R. (1991). Effect of passive antibody on the immune response of cotton rats to purified F and G glycoproteins of respiratory syncytial virus (RSV). Vaccine, V. 9, P. 185-189.
169. Schumacher C.L., Ertl H.C., Koprowski H., Dietzschold B. (1992). Inhibition of immune responses against rabies virus by monoclonal antibodies directed against rabies virus antigens. Vaccine, V. 10, P. 754-760.
170. Kreil T.R., Burger I., Attakpah E., Olas K., Eibl. M.M. (1998). Passive protection reduces immunity resulting from simultaneous immunization against tick-borne encephalitis virus. Vaccine, V. 16, P. 955-959.
171. D' Ambrosio D., Hippen K.L., Minskoff S.A., Mellman I., Pani G., Simonovitch K.A., Cambier J.C. (1995). Recruitment and activation of PTPIC in negative regulation of antigen receptor signaling by Fc gamma RIIBI. Science, V. 268, P. 293-297.
172. Schlesinger J.J., Brandriss M.W., Putnac J.R., Walsh E.E. (1990). Cell surface expression of yellow fever virus non-structural glycoprotein NS1: consequences of interaction with antibody. J. Gen. Virol., V. 71, P. 593-599.
173. Schlesinger J.J., Foltzer M., Chapman S. (1993). The Fc portion of antibody to yellow fever virus NS1 is a determinant of protection against YF encephalitis in mice. Virology, V. 192, P. 132-141.
174. Jacobs S.C., Stephenson J.R., Wilkinson G.W. (1994). Protection elicited by a replication-defective adenovirus vector expressing the tick-borne encephalitis virus nonstructural glycoprotein NS1. J. Gen. Virol., V. 75, P. 2399-2402.
175. Lobigs M., Arthur C.E., Mullbacher A., Blanden R.V. (1994). The flavivirus nonstructural protein NS3 is a dominant source of cytotoxic T cell peptide determinants. Virology, V. 202, P. 195-201.
176. Hill A.B., Mullbacher A., Parrish C., Coia G., Westaway E.G., Blanden R.V. (1992). Broad cross-reactivity with marked fine specificity in the cytotoxic T cell response to flaviviruses. J. Gen. Virol., V. 73, P. 1115-1123.
177. Rothman A.L., Kurane I., Lai C.-J., Bray M., Falgout В., Men R., Ennis F.A. (1993). Dengue virus protein recognition by virus-specific murine CD8+ cytotoxic T lymphocytes. J. Virol., V. 67, P. 801-806.
178. Hall R.A., Brand T.N.H., Lobigs M., Sangster M.Y., Howard M.J. (1996). Protective immune responses to the E and NS1 proteins of Murray Valley encephalitis virus in hybrids of flavivirus-resistant mice. J. Gen. Virol., V. 77., P. 1287-1294.
179. Hopp Th.P. (1986). Methods for identifying antigenic determinants and other interaction sites. J. Immunol. Methods., V. 88, P. 1-18.
180. Welling G.W., Weijer W.J., Zee R., Welling-Wester S. (1985). Prediction of sequential antigenic regions in proteins. FEBS Lett., V. 188, P. 215-218.
181. Tam J.P., Heath W.F., Merrifield R.B. (1983). SN 1 and SN 2 mechanisms for the deprotection of synthetic peptides by hydrogen fluoride. Studies to minimize the tyrosine alkylation side reaction. Int. J. Pept. Protein Res., V. 21, P. 57-65.
182. Gisin B.F. (1973). The preparation of Merrifield-resins through total esterification with cesium salts. Helv. Chim. Acta, V. 56, P. 1476-1482.
183. DiMarchi R.D., Tarn J.P., Kent S.B.H., Merrifield R.B. (1982). Weak acid-catalysed pyrrolidone carboxylic acid formation from glutamine during solid phase peptide synthsis. Int. J. Pept. Prot. Res., V. 19, P. 88-93.
184. Sarin V.K., Kent S.B.H., Tam J.P., Merrifield R.B. (1981). Quantitative monitoring of solid-phase peptide synthesis by the ningydrin reaction. Anal. Biochem., V. 117, P. 147-157.
185. Gisin B.F. (1972). The monitoring of reactions in solid phase peptide synthesis with picric acid. Anal. Chim. Acta., V. 58, P. 248-249.
186. Brusic V., Rudy G., Купе A.P., Harrison L.C. (1998). MHCPEP, a database of MHC-binding peptides: update 1997. Nucleic Acids Res., V. 26, P. 368-371.
187. Rammensee H.G., Bachmann J., Emmerich N.P.N., Bachor O.A., Stevanovic S. (1999). SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics, V. 50, P. 213-219.
188. DeLisi Ch., Berzofsky J.A. (1985). T-cell antigenic sites tend to be amphipathic structures. Proc. Natl. Acad. Sci. USA, V. 82, P. 7048-7052.
189. Perrin D.D. (1980). Purification of laboratory chemicals. N.Y., Pergamon Press, P. 1563.
190. PfafFE., Mussgay M., Bohm H.O., Schulz C.E., Schller H. (1982). Antibodies against a preselected peptide recognize and neutralize foot-and-mouth disease virus. EMBO J., V. 1, P. 869-874.
191. Briand J.P., Muller S., Van Regenmortel M.H.V. (1985). Synthetic peptides antigens: pitfalls of conjugation methods. J. Immunol. Methods, V. 78, P. 59-69.
192. Ворович М.Ф., Тимофеев А.В., Мальдов Д.Г., Хаустов В.И., Эльберт Л.Б. (1989). Изменение биологических свойств вируса клещевого энцефалита при расщеплении дисульфидных связей белка Е. Вопр. Вирусологии, Т. 34, С. 698-701.
193. Ворович М.Ф., Тимофеев А.В. Акимова Ю.Д., Терлецкая Е.Н., Эльберт Л.Б. (1991). Изучение процесса рН-зависимого слияния вируса клещевого энцефалита с искусственными мембранами. Вопр. Вирусологии, Т.36, С. 21-24.
194. IUPAC-IUB Joint Comission of Biochemical Nomenclature. Nomenclature and symbolism for amino acids and peptides. Recomendations (1983). J. Biol. Chem., 1984, V. 260, P. 14-42.1. РОССИЙСКАЯ