Исследование критических свойств фрустрированных моделей Гейзенберга методами Монте-Карло тема автореферата и диссертации по физике, 01.04.07 ВАК РФ
Бадиев, Магомедзагир Курбанович
АВТОР
|
||||
кандидата физико-математических наук
УЧЕНАЯ СТЕПЕНЬ
|
||||
Махачкала
МЕСТО ЗАЩИТЫ
|
||||
2012
ГОД ЗАЩИТЫ
|
|
01.04.07
КОД ВАК РФ
|
||
|
На правах рукописи
БАДИЕВ МАГОМЕДЗАГИР КУРБАНОВИЧ
ИССЛЕДОВАНИЕ КРИТИЧЕСКИХ СВОЙСТВ ФРУСТРИРОВАННЫХ МОДЕЛЕЙ ГЕЙЗЕНБЕРГА МЕТОДАМИ МОНТЕ-КАРЛО
01.04.07 - физика конденсированного состояния
АВТОРЕФЕРАТ
диссертации на соискание ученой степени кандидата физико-математических наук
1 2
МАХАЧКАЛА, 2012
005012215
Работа выполнена в Учреждении Российской академии наук Институте физики им. Х.И. Амирханова Дагестанского научного центра Российской Академии наук
Научный руководитель: член-корреспондент РАН, доктор
физико-математических наук, профессор Муртазаев Акай Курбанович
Официальные оппоненты: доктор физико-математических наук, профессор
Палчаев Дайр Каирович
Защита состоится 20 марта 2012 г. в 1500 на заседании диссертационного совета Д002.095.01 при Институте физики ДНЦ РАН по адресу: 367003, Махачкала, пр. Шамиля, 39-а.
Отзывы на автореферат просьба направлять по адресу: 367003, Махачкала, ул. М. Ярагского, 94, Институт физики ДНЦ РАН
С диссертацией можно ознакомиться в библиотеке Института физики ДНЦ РАН
Автореферат разослан 18 февраля 2012 г.
Ученый секретарь диссертационного совета,
кандидат физико-математических наук, доцент Таскаев Сергей Валерьевич
Ведущая организация:
Омский государственный университет им. Ф.М. Достоевского
доктор физико-математических наук
Батдалов А.Б.
ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ
Актуальность темы. В современной физике магнитных явлений в последние десятилетия растет интерес к исследованию магнитных состояний веществ, по своим свойствам отличающихся от классических ферро-, ферри- и антиферромагнетиков. Такие магнитные структуры могут возникать по разным причинам. Среди этих состояний можно отметить магнитные структуры, образующиеся на треугольных решетках и других специфических типах решеток. В таких структурах конкуренция антиферромагнитных обменных связей может проявляться в геометрической фрустрации обменного взаимодействия, т.е. такого пространственного расположения магнитных ионов, при котором одновременное антипараллельное упорядочение всех взаимодействующих спинов невозможно. Результатом такого эффекта может быть формирование неколлинеарной магнитной структуры, а в случае сильной фрустрации - даже отсутствие дальнего магнитного порядка.
Очень интересны магнитные структуры, возникающие в низкоразмерных магнитных системах с антиферромагнитным обменным взаимодействием. Из-за сильных квантовых флуктуации либо, опять-таки, вследствие конкуренции обменных взаимодействий в цепочке между ближайшими ионами и со вторыми соседями такие системы демонстрируют широкий спектр необычных
магнитных структур.
Строгое исследование критических свойств данных систем требует разработки микроскопических моделей и методов их изучения.
Исследование трехмерных микроскопических гамильтонианов сложных систем методами современной теоретической физики - задача чрезвычайно сложная. Это привело к тому, что фазовые переходы (ФП) и критические явления (КЯ) интенсивно исследуются методами вычислительной физики (ВФ) - методами Монте-Карло (МК) и молекулярной динамики (МД) [1-3], которые позволяют успешно исследовать критические свойства систем со сложными реалистичными гамильтонианами в широком диапазоне температур и других
внешних параметров.
Фрустрированные спиновые системы (ФС) являются довольно сложными объектами для исследования даже методами МК. Для ФС характерна проблема многочисленных долин локальных минимумов энергии. Обычные методы МК плохо справляются с решением этой проблемы. Поэтому в последнее время разработано много новых вариантов алгоритмов метода МК. Дня решения этой проблемы наиболее мощными и эффективными оказались репличные алгоритмы метода МК [4].
Таким образом, исследование критических и термодинамических свойств, в частности фрустрированных спиновых систем, исходя из трехмерных микроскопических гамильтонианов, является важной и актуальной проблемой современной статистической физики решеточных систем, теории фазовых переходов и критических явлений.
Целью работы является исследование статических критических свойств моделей фрустрированных спиновых систем репличным алгоритмом метода
Монте-Карло. В процессе выполнения работы решались следующие основные задачи:
1. Разработка комплекса программ для ЭВМ, с помощью которого можно исследовать статические критические свойства моделей с фрустрациями;
2. Исследование методом Монте-Карло статических критических свойств фрустрированной антиферромагнитной модели Гейзенберга на слистой треугольной решетке с переменным межслойным обменным взаимодействием. Определение статических магнитных и киральных критических индексов теплоемкости а, намагниченности Д Д, восприимчивости у, ук и индекса радиуса корреляции у и этой модели на основе теории конечно-размерного скейлинга (КРС);
3. Исследование критического поведения и зависимость критических индексов Ъс1 фрустрированной модели Гейзенберга на слоистой треугольной решетке от типа межплоскостного обменного взаимодействия;
4. Исследование статического критического поведения трехмерной антиферромагнитной модели Гейзенберга на слоистой треугольной решетке с взаимодействиями вторых ближайших соседей;
5. Проверка справедливости теории конечно-размерного скейлинга для фрустрированных моделей.
Практическая ценность работы.
Полученные в диссертации результаты по исследованию статических критических свойств фрустрированных спиновых моделей представляют интерес для дальнейших исследований в теории магнетизма, физики фазовых переходов и статистической физики конденсированного состояния. Разработанный комплекс программ для ЭВМ формирует базу, на основе которой возможны высокоточные исследования статических критических явлений в фрустрированных спиновых системах.
Использование репличного алгоритма метода МК для исследования моделей фрустрированных спиновых систем показало, что репличные алгоритмы являются ценным инструментом при исследовании ФС, позволяют определять с высокой степенью точности критические параметры системы и являются значительно более эффективными по сравнению с классическим алгоритмом (алгоритм Метрополиса). Эти алгоритмы успешно справляются с проблемой локальных энергетических минимумов, в решении которой другие алгоритмы метода МК (стандартный алгоритм Метрополиса, одно-кластерный алгоритм Вульфа) оказались малоэффективными.
Экспериментальные результаты данной работы используются для чтения спецкурсов: «Исследование фазовых переходов и критических явлений методами Монте-Карло», «Компьютерное моделирование в физике», «Методы вычислительной физики в магнетизме», а часть программ для ЭВМ при выполнении лабораторных работ по указанным спецкурсам в Дагестанском государственном университете.
Основные положения, выносимые на защиту:
1. Исследование критических свойств 3d фрустрированной антиферромагнитной модели Гейзенберга на треугольной решетке с переменным межслойным обменным взаимодействием. Расчитаны статические магнитные и киральные критические индексы теплоемкости а, намагниченности Д Д, восприимчивости у,ук и индексы радиуса корреляции у и vk этой модели. Показана принадлежность 3d фрустрированной модели Гейзенберга на треугольной решетке к новому классу универсальности критического поведения.
2. Исследование магнитных и киральных статических критических свойств 3 d фрустрированной модели Гейзенберга с различными типами межплоскостного обменного взаимодействия. Доказательство принадлежности 3d фрустрированных моделей Гейзенберга на слоистой треугольной решетке с ферромагнитным и антиферромагнитным межплоскостным взаимодействием к одному и тому же классу универсальности критического поведения'.
3. Результаты расчета магнитных и киральных критических индексов теплоемкости а, намагниченности Д Д, восприимчивости у, ук и радиуса корреляции и vk 3d фрустрированной модели Гейзенберга на слоистой треугольной решетке с учетом взаимодействий вторых ближайших соседей.
4. Результаты исследования характера и особенностей фазовых переходов в 3d фрустрированной модели Гейзенберга на слоистой треугольной решетке с учетом взаимодействий вторых ближайших соседей на основе высокоэффективного гистограмного метода МК.
5. Разработка сложного комплекса программ для ЭВМ, основанный на использовании современных высокоэффективных алгоритмов, позволяющий проводить высокоточные исследования статических критических явлений в моделях фрустрированных спиновых систем.
Научная новизна н значимость полученных в диссертации результатов обусловлена основными положениями, которые выносятся на защиту.
Апробация работы.
Основные результаты диссертации докладывались на следующих конференциях, совещаниях, семинарах: 9-м международном симпозиуме «Упорядочение в металлах и сплавах» ОМА-9. Ростов-на-Дону - noc.JIoo, 2006; Международной конференции «Фазовые переходы, критические и нелинейные явления в конденсированных средах». Махачкала, 2007; 10-м международном симпозиуме «Упорядочение в минералах и сплавах» ОМА-10, v. II. Ростов-на-Дону - пос.Лоо, 2007; V всероссийской конференции по физической электронике. Махачкала, 2008; VIII региональной школе-конференции для студентов, аспирантов и молодых ученых по математике, физике и химии. Уфа, 2008; 11-м международном симпозиуме «Порядок, беспорядок и свойства оксидов» ODPO-11, г. Ростов-на-Дону - пос.Лоо, 2008; XXI-й международной
конференции «Новое в магнетизме и магнитных материалах». Москва, 2009; Межрегиональной научно-технической конференции памяти профессора Валеева К.А. «Актуальные проблемы естественных и технических наук». Уфа, 2009; Международной конференции «Фазовые переходы, критические и нелинейные явления в конденсированных средах». Махачкала, 2009; 12-м международном симпозиуме «Порядок, беспорядок и свойства оксидов» ODPO-12, г. Ростов-на-Дону - пос.Лоо, 2009; V-й международной конференции студентов и молодых ученых «Перспективы развития фундаментальных наук». Томск, 2009; Региональной школе-конференции для студентов, аспирантов и молодых ученых по математике, физике и химии. Уфа, 2009; Международной конференции «Фазовые переходы, критические и нелинейные явления в конденсированных средах». Махачкала, 2010; XXXIII Международной зимней школе физиков-теоретиков «Коуровка-2010». Екатеринбург, 2010; IV Euro-Asian Symposium "Trends in MAGnetism": Nanospintronics EASTMAG-2010; 13-м международном симпозиуме «Упорядочение в минералах и сплавах» ОМА-13. г. Ростов-на-Дону - пос.Лоо, 2010; 14-м международном симпозиуме «Упорядочение в минералах и сплавах» ОМА-14. г. Ростов-на-Дону - пос.Лоо, 2011; Moscow International Symposium on Magnetism «MISM». Moscow, 2011; Международной конференции «Инноватика-2011». Махачкала, 2011.
Результаты работы обсуждались на научных семинарах лаборатории вычислительной физики и физики фазовых переходов и общеинститутских семинарах (Институт физики ДНЦ РАН).
Достоверность результатов обеспечивается строгой математической обоснованностью использованных численных методов, применением надежной теоретической базы для интерпретации полученных данных и сравнением с имеющимися в литературе данными других авторов.
Личный вклад автора. Все основные результаты получены автором лично или при его активном участии. Обработка результатов и постановка численных экспериментов проведено лично автором диссертации. Обсуждение результатов и подготовка публикаций выполнено совместно с соавторами.
Публикации. Основные результаты опубликованы в 36 работах, в том числе 12 статьях, опубликованных в российских и зарубежных научных изданиях, входящих в перечень журналов, утвержденных ВАК Минобрнауки РФ. Список публикаций приведен в конце автореферата.
Структура и объем диссертации. Диссертационная работа изложена на 156 страницах, иллюстрирована 77 рисунками и 6 таблицами. Список цитируемой литературы 145 ссылок.
Работа состоит из введения, трех глав, выводов и списка цитируемой литературы.
ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ
Во введении обоснована актуальность темы, сформулирована цель работы, приводятся основные положения, выносимые на защиту, дается краткая аннотация по главам.
В главе I дано изложение классического метода Монте-Карло применительно к каноническому ансамблю.
В разделе 1.1 рассмотрен классический метод Монте-Карло применительно к каноническому ансамблю, а также практическая реализация процедуры метода Монте-Карло для систем с дискретным (модель Изинга) и непрерывным (модель Гейзенберга и ХУ-модель) распределением состояний. Также коротко рассмотрен вопрос о выборе начальной конфигурации системы.
Раздел 1.2 посвящен описанию решеточных моделей, наиболее часто используемых при исследованиях кооперативных явлений в решеточных системах. Рассматриваются модели как с дискретными состояниями спинов так и с непрерывным распределением состояний спинов (модель Гейзенберга). Здесь также кратко описаны некоторые модели ФС.
В разделе 1.3 рассмотрен стандартный алгоритм метода Монте-Карло, основанный на перевороте одного спина (алгоритм Метрополиса). Показано, что в критической области в фрустрированных системах этот алгоритм сталкивается с проблемой так называемого «критического замедления».
В разделе 1.4 дано описание репличного алгоритма метода МК. Этот алгоритм, в отличие от стандартного алгоритма метода МК, позволяет преодолеть проблему многочисленных долин локальных минимумов энергии, возникающая при исследовании ФС.
В разделе 1.5 рассмотрены различные виды граничных условий, применяемых для устранения погрешности, связанной с малостью исследуемой системы, возникающей при изучении систем, содержащих конечное число частиц.
В разделе 1.6 подробно анализируются ошибки, возникающие при моделировании методом Монте-Карло, и рассматриваются вопросы, связанные с оценкой погрешности метода Монте-Карло. Также в разделе приводятся меры, применяемые для исключения различных непредвиденных ошибок.
В главе II дается обзор современного состояния теоретических и экспериментальных исследований статических критических свойств фрустрированных спиновых систем и результаты полученные автором при исследовании трехмерной антиферромагнитной модели Гейзенберга с переменным межслойным обменным взаимодействием на слоистой треугольной решетке.
Раздел 2.1 посвящен обсуждению природы спиновых стекол и фрустрированных спиновых систем.
В разделе 2.2 показано, как возникает фрустрация на примере треугольной решетки.
Раздел 2.3 посвящен обсуждению литературных результатов экспериментальных и численных исследований критических свойств антиферромагнетиков на треугольной решетке.
В разделе 2.4. подробно изложены основные положения теории конечно-размерного скейлинга. Обсуждаются особенности определения статических критических индексов и критической температуры.
Идеи, заложенные в теории КРС, позволяют экстраполировать МК результаты, полученные для систем с конечными размерами к термодинамическому пределу. Согласно теории КРС, соотношения для теплоемкости, спонтанной намагниченности и восприимчивости, приходящих на один спин имеют вид [5,6]:
т(Т,V)~ Ь'//'та), хУМ-ЯхЛи*),
(1) (2)
(3)
где 1=\Т-ТС\/ТС - приведенная температура, Ь - линейные размеры системы, а, Д у и V- статические критические индексы для системы с ¿ = оо, связанные скейлинговыми соотношениями:
Г = Р{8~ О,
_ 2-а + у
д =-
2-а-у
а + 2/3 + у = 2, (2-Т])у = у, 2-а = йу
(4)
Уравнения (1)-(3) хорошо воспроизводят критическое поведение бесконечных систем при t« \ и X -> со.
Результаты исследования критических явлений фрустрированной антиферромагнитной модели Гейзенберга с переменным межслойным обменным взаимодействием приведены в разделе 2.5.
Гамильтониан этой модели может быть представлен в следующем виде [7]:
С/к.
(V) И
(5)
Рис. 1 .Зависимость теплоемкости С!кв от температуры квТ/\Т\ для системы с Ь = 30 для разных г.
где - трехкомпонентный
единичный вектор 5, = /<0 и
0 - константы обменного взаимодействия, г = ¿М = 0.01-1.0 -соотношение межслойного и
внутрислойного обменов.
Первый член в формуле (5) характеризует внутриплоскостное
антиферромагнитное взаимодействие спинов, а второй - межплоскостное ферромагнитное. Фрустрации в этой
модели обусловлены геометрией решетки.
Для исследования данной модели нами использовался репличный алгоритм метода Монте-Карло [4]. Расчеты проводились для систем с периодическими граничными условиями (ПГУ) и с линейными размерами 1хЬхЬ=Н, ¿=12+42.
Для наблюдения за температурным ходом поведения теплоемкости и восприимчивости нами использовались выражения [8]:
[(Ж)({«гИН}2
\т<тс.
(6) (7)
т>тг
0.940 0.945 0.950 0.955 0.960 0.965 £ эд^
Рис.2. Зависимость кумулянта биндера от температуры квЩ1\ для г= 1.
г =0.0$
Г=7\.
8 « I 32
Рис.З.Зависимость магнитной восприимчивости X от линейных размеров системы £ при Т- Гц для г=0,05.
где К = |./| / к„Т, N - число частиц, и -внутренняя энергия, т - подрешеточная намагниченность.
На рис.1 представлены характерные зависимости теплоемкости С от температуры для систем с линейными размерами ¿=30 для разных г. Отметим, что в зависимости теплоемкости С от температуры для всех г вблизи критической температуры наблюдаются хорошо выраженные максимумы. При этом уменьшение соотношения межслойного и внутрислойного обменов ведет к уменьшению температуры фазового перехода и, соответственно, смещению максимумов теплоемкости в сторону низких температур.
Для определения критической температуры 7дг. нами использовался метод кумулянтов Биндера четвертого порядка [9,10]:
и,
V)
(В)
Согласно теории конечно-размерного скейлинга точка пересечения всех кривых в их температурной
зависимости является критической точкой. На рис.2, представлены характерные зависимости Щ от температуры кцТ/\.У: для г =1. Из графиков видно, что критическая температура Тм =0.956(1).
Построив аналогичные зависимости, были определены значения критических температур для всех остальных г= 0.01-1.0.
При расчете магнитных и киральных критических индексов намагниченности ДД, восприимчивости у, д и теплоемкости а использовались следующие выражения [1,8,11]:
m и L f/",
-Рк/ mt«L *
(9) (10)
(П)
(12)
= = (13)
Эти соотношения позволяют легко определить Д/ V, Д/' ук, у! у, д/ ук и а! г (см.рис.З).
Для определения критического индекса радиуса корреляции V и ц нами использовались следующее выражение [9]:
(14) (15)
V = L/v" р Упк ь Sv„t
где gy = Const, а в качестве V„ может выступать:
К„=У^Ця),(и=1,2,3). (16)
Рис.4.3ависимость параметров У,т линейных размеров системы при Т = Ты для г => 0.05.
На рисунке 4 в двойном логарифмическом масштабе
представлены характерные зависимости величины К,„ от линейных размеров решетки I. Как видно из рисунка все данные ложатся на прямую, угол наклона
кривой определяет значение 1/к По этой схеме нами определены значения ук И для всех г= 0.01-1.0.
Затем, по аналогичной схеме были построены характерные зависимости для теплоемкости С, магнитного и кирального параметра порядка т, ть магнитной и киральной восприимчивости х, Хк от линейных размеров решетки Ь для всех г и вычислены значения критических индексов, которые представлены в таблице 1 и 2. Как видно из таблиц 1 и 2 значения индексов для разных г в интервале от г = 1.0 до г = 0.075 практически не зависят от г и в пределах погрешности совпадают. При этом соотношения скейлинга между критическими индексами а, ДД, у и ук выполняется с достаточно высокой степенью точности.
Однако, как только г становиться меньше 0.075, мы наблюдаем резкое изменение значений всех индексов. Это изменение сопровождается и нарушением скейлингового соотношения между индексами а, Р , Д, у и ук. Таким образом, характер критического поведения этой модели не меняется в пределах значений г от 1.0 до 0.075. По видимому, значение г =0.075 можно считать границей, после которой в системе начинает происходит кроссовер от трехмерного критического поведения к квазидвумерному.
Таблица 1.Значения магнитных критических параметров для модели Гейзеиберга на слоистой треугольной решетке с переменным межслойпим обменным взаимодействием._
г Тн V а Р У <н-2/?+г2
1 0.956(1) 0.59(2) 0.26(2) 0.27(2) 1.23(3) 2.03
0.8 0.872 0.60 0.24 0.26 1.26 2.02
0.6 0.783 0.59 0.22 0.29 1.22 2.02
0.3 0.619 0.60 0.26 0.29 1.23 2.07
0.1 0.468 0.59 0.24 0.28 1.17 1.97
0.075 0.442 0.55 0.26 0.24 1.23 1.97
0.05 0.413 0.55 0.15 0.22 1.11 1.70
0.01 0.353 0.48 0.09 0.27 0.82 1.45
Таблица2. Значения киральных критических параметров для модели Гейзеиберга на слоистой треугольной решетке с переменным мезкелойным обменным взаимодействием.
г П п а А п а+2Д+й=2
1 0.956(2) 0.59(2) 0.26(2) 0.43(2) 0.87(3) 1.99
0.8 0.872 0.60 0.24 0.42 0.96 2.04
0.6 0.783 0.59 0.22 0.46 0.85 1.99
0.3 0.619 0.60 0.26 0.48 0.81 2.03
0.1 0.468 0.59 0.24 0.47 0.82 2
0.075 0.442 0.55 0.26 0.42 0.87 1.97
0.05 0.413 0.55 0.15 0.31 0.60 1.37
0.01 0.353 0.48 0.09 0.40 0.52 1.41
В главе III эффективным репличным алгоритмом метода Монте-Карло исследуется магнитное и киральное статическое критическое поведение М фрустрированной модели Гейзенберга на слоистой треугольной решетке с ферромагнитным и антиферромагнитным обменным взаимодействием между плоскостями и модели Гейзенберга на слоистой треугольной решетке с учетом взаимодействия вторых ближайших соседей.
В разделе 3.1 приводятся результаты исследований 3с1 модели Гейзенберга на слоистой треугольной решетке с различными типами межплоскостного обменного взаимодействия.
Модель Гейзенберга на слоистой треугольной решетке является фрустрированной магнитной системой. Эта модель может быть представлена в виде трехмерной решетки, которая состоит из двумерных треугольных слоев сложенных по ортогональной оси. Гамильтониан этой системы представлен выражением [7]:
н = -5,), (17)
V) со
где ¿] -трехкомпонентный единичный вектор §^(8*,57Дг), Jv^ J' - константы обменного взаимодействия.
Первый член в формуле (17) характеризует внутриготоскостное взаимодействие спинов, а второй — межплоскостное.
Для выяснения влияния типа межплоскостного обменного взаимодействия на характер критического поведения рассмотрены две модели -и Б2:
Модель -1 < О, Г> 0, |1| = |Г|.
Модель Ш -1 < 0 и Г< 0, |1| =
Расчеты проводились для систем с периодическими граничными условиями и с линейными размерами ¿=12+42. При каждом
конкретном значении Ь для усреднения термодинамических параметров использовались 20 марковских цепей стартующих из различных случайных начальных конфигураций. В каждой цепи длина равновесного участка в 100 раз превышала длину неравновесного. Полученные таким образом значения термодинамических параметров усреднялось по всем 20 конфигурациям.
Для наблюдения за температурным ходом поведения теплоемкости и восприимчивости нами использовались выражения (6,7).
Параметр порядка системы т вычислялся по формуле [7]:
т = (18)
где МА, Мв и Мс - намагниченности трех подрешеток, соответственно.
Намагниченность подрешетки вычисляется следующим образом [7]:
Щ = = (19)
Рис.5. Зависимость магнитного параметра порядка от температуры для модели 01.
Рис.6. Зависимость магнитного параметра порядка от температуры квТ/\А для модели 02
На рисунке 5 и 6 представлены характерные зависимости магнитного параметра порядка т от температуры для систем с линейными размерами 1=9-30 для модели Б1 и 02. Отметим, что эти рисунки демонстрируют возникновения магнитного упорядочения при низких температурах. С ростом температуры параметры порядка т плавно уменьшаются. При приближении к критической температуре происходит резкий спад. Можно отметить, что в высокотемпературной фазе для параметра т при малых значениях линейных размеров системы I наблюдаются заметные высокотемпературные «хвосты», которые с ростом Ь становятся существенно меньше. По данным представленным на этих рисунках можно отметить, что температуры фазовых переходов для обоих моделей совпадают или очень близки.
Для определения магнитной критической температуры Тд/ нами использовался метод кумулянтов Биндера С4 четвертого порядка [9,10], который определяется выражением (8).
В разделе 3.2 приведены соотношения теории конечно-размерного скейлинга на основе, которых выполняется расчет статических магнитных и киральных критических индексов теплоемкости а, восприимчивости у, уь намагниченности Д Д и радиуса корреляции ц ук. Анализ данных проводился с учетом коррекции к скейлингу.
Из соотношений КРС следует, что в системе с размерами ЬхЬхЬ при Т=ТМ и достаточно больших Ь выполняются следующие выражения [12,13]:
Рис.7.Зависимость магнитного параметра порядка т от линейных размеров системы Ь при Т=Тц л ля модели О/.
т - (20)
"А/ г 1 (21)
тк /"'[1 + ЬгЬ-\,
х- (22)
(23)
У,- -1^(1 + 6,1-], (24)
К, (25)
где В/, Ь2, Ь3, Ь4, 65, Ь6-амплитуды коррекции к скейлингу, со - индекс поправки к конечно-размерному скейлингу, £И-некоторая
постоянная. Вместо ¥1 выступает соотношение (16), а в качестве Г« использовали следующее выражение:
ук1 (1=1,2,3,4). (26)
К)
В качестве поправки к КРС нами использовалось значение т=0.78, которое соответствует для чистой модели Гейзенберга [12].
На рис.7 в двойном логарифмическом масштабе представлена характерная зависимость магнитного параметра порядка т от линейных размеров решетки Ь для модели . Как видно из рисунка все точки на графике в пределах погрешности хорошо ложатся на прямую. Угол наклона прямой определяет значение /?/к По этой схеме определены значения а1 ц р!V, Д/ \'к, у/у и д/ ук для обеих моделей.
Особо следует отметить процедуру использованную нами для определения индекса Фишера ц и щ. С помощью отношений между восприимчивостью % и радиусом корреляции §
(27)
а также соотношения г; = 2-//у, связывающего индексы // и V, получим
(28)
где с - некоторая константа. Для систем с конечными размерами £ = I, тогда при Т = Т,,< имеем
\п{Х11}) = с-г1\ъ1. (29)
Значения всех индексов, для моделей и 02, рассчитанные по вышеупомянутой схеме представлены в таблице 3.
Таблица 3. Значения критических параметров для трехмерной фрустрированной модели Гейзенберга на слоистой треугольной решетке с учетом поправки к скеилингу.
Модель а Р Г V ßk Л Н Ч
D] <о=0.78 0.22(2) 0.26(2) 1.26(2) 057(2) 0.44(3) 0.87(3) 0.57(3) -0.09(3) 0,50(5) 2 1.97
D2 ю=0.78 021(2) 0.24(2) 1.28(2) 0.59(2) 0.46(3) 0.85(3) 0.59(3) -0.06(3) 0.63(5) 1.97 1.98
Эксп-т 0.39(9) 0.25(1) 1.10(5) 0.44(2) 0.84(7) - 1.99 2.11
Метод МК 0.24(8) 0.30(2) 1.17(7) 0.59(2) 0.55(2) 0,72(2) 0 60(2) 2,01 2.06
Heisenberg model -0.116 0.36 1.387 0.705 - - - 1.99 -
Как видно из таб.3, значения статических магнитных и киральных критических индексов для модели 01 и 02 в пределах погрешности практически совпадают. При этом скейлинговые соотношения между критическими индексами выполняются достаточно хорошо. Это дает нам основание утверждать, что класс универсальности критического поведения моделей 01 и 02 совпадает. Следовательно, характер критического поведения трехмерной фрустрированной модели Гейзенберга на слоистой треугольной решетке не зависит от типа межплоскостного обменного взаимодействия. Кроме того, численные значения критических индексов для данной модели убедительно свидетельствуют о том, что эти модели образуют новый киральный класс универсальности критического поведения. Для сравнения в таб.3, представлены экспериментальные и Монте-Карло результаты для аналогичных систем. В последней строке таблицы приведены значения критических индексов полученных теоретическими методами.
В разделе 3.3 рассматриваются результаты, полученные при исследовании фрустрированной модели Гейзенберга на слоистой треугольной решетке с учетом взаимодействия вторых ближайших соседей.
Гамильтониан для этой модели выглядит так:
Н =-J^(SrSJ.)-J1^(Sl■S¡), (30)
(и) <«>
Изучено критическое поведение данной модели при разных значениях величины где Я - величина взаимодействия вторых ближайших
соседей. Нами рассмотрены случаи, когда И = 0.0,0.025,0.05,0.075,0.1,0.115.
Для наблюдения за температурным ходом теплоемкости, восприимчивости и намагниченности использовались флуктуационные
соотношения (6), (7), (18).
Температуры фазовых переходов для всех R были найдены используя высокоточный метод кумулянтов Биндера Ui четвертого порядка (8).
Использование аналогичной
процедуры для определения киральной критической температуры Тк дает существенно менее точные значения. Поэтому для определения Тк нами использовался метод пересечения кумулянтов (cumulant crossing), который считается более точным и надежным [8]. В соответствии с этим методом зависимости кумулянтов Ul(T) для систем разных размеров строятся в приведенных масштабах In ' /L), где L; и L размеры двух систем, при этом L] > L. Экстраполяция данных 7* при In 4(L,/£)—>0 соответствует критической температуре для бесконечной системы Тц(Ь—хх>).
Характерная зависимость температуры Тк от величины In l(L/L) для L=12, 18, 24 при R=0.05 представлена на рис.8. Из рисунка видно, что при In" X(L\/L)^Q все зависимости для разных L сходятся к одной точке. Значения 7* в этой точке соответствует киральной критической температуре 7\=0.825(2). По аналогии нами были определены значения критических температур и для всех остальных R, которые представлены в таблице 3. Обращает внимание на себя тот факт, что значения магнитной TN и киральной критической температуры Тк для соответствующих значений R в пределах погрешности совпадают.
т.
\n(L/L)
Рис.8. Зависимость температуры 1\ от In"1 (Lj/L) при L-12;18;24 для К- 0.05.
Температурные зависимости для теплоемкости и восприимчивости приведены на рисунках 9 и 10. Отметим, что рост значения Я сопровождается сдвигом максимумов в сторону более низких температур, одновременно с этим наблюдается рост абсолютных значений максимумов, как теплоемкости, так и восприимчивости. Очевидно, что это связано с усилением конкурирующих взаимодействий вторых ближайших соседей, вследствие чего система становится более восприимчивой.
Для расчета эффективных магнитных и киральных критических индексов теплоемкости а, намагниченности Д Д, восприимчивости/, % и индекса радиуса корреляции и и и. воспользовались соотношениями КРС (9) -(15).
Из данных представленных в таблице 4 и 5 следует, что трехмерная антиферромагнитная фрустрированная модель Гейзенберга с взаимодействием вторых ближайших соседей в пределах значений Н = 0.0 0.075 не меняет характер своего критического поведения. При значении К>0.1 наблюдается довольно резкое изменение значений и магнитных и киральных критических индексов. Кроме того, при 72=0.115 соотношения Рашбрука для киральных критических индексов не выполняется совсем. Все эти особенности при /¿0.075, по видимому, связаны с близостью к мультикритической точке, где сосуществуют антиферромагнитная, коллинеарная и парамагнитная фаза.
Таблица.4. Значения эффективных магнитных критических индексов для трехмерной фрустрированной модели Гейзенберга на слоистой треугольной решетке с учетом взаимодействия вторых ближайших соседей.
X Ты у а Р У Ч
0 0.957(2) 0.65(1) 0.18(2) 0.28(2) 1.27(2) -0.06(6) 2.01
0.025 0.893 0.65 0.20 0.28 1.27 -0.11 2.03
0.05 0.824 0.65 0.22 0.28 1.26 -0.15 2.04
0.075 0.747 0.65 0.22 0.25 1.28 -0.24 2
0.1 0.657 0.64 0.27 0.23 1.30 -0.30 2.03
0.115 0.588 0.50 0.46 0.20 1.21 -0.15 2.07
'Габлица.5. Значения эффективных киральных критических индексов для трехмерной фрустрированной модели Гейзенберга на слоистой треугольной решетке с учетом взаимодействии вторых ближайших соседей.
Я П П а А й Чк
0 0.957(2) 0.65(2) 0.18 0.50(3) 0.83(4) 0.70(12) 2.01
0.025 0.893 0.65 0.20 0.49 0.89 0.50 2.06
0.05 0.824 0.65 0.22 0.46 0.92 0.44 2.06
0.075 0,747 0.65 0.22 0.43 0.98 0.33 2.06
0.1 0.657 0.64 0.27 0.36 1.07 0.11 2.06
0.115 0.588 0.50 0.46 0.35 1.26 0.03 2.4
В заключении представлены обобщающие выводы по результатам диссертационной работы.
Основные результаты работы.
1. Проведено исследование критических свойств фрустрированной модели Гейзенберга на слоистой треугольной решетке с переменным межслойным обменным взаимодействием. Рассчитаны статические магнитные и киральные критические индексы теплоемкости а, намагниченности Д Д, восприимчивости y,yk и индекс радиуса корреляции wiVk.
2. Изучен и установлен характер критического поведения фрустрированной модели Гейзенберга на слоистой треугольной решетке в зависимости от величины межслойного обменного взаимодействия. Обнаружено, что класс универсальности критического поведения этой модели не меняется вплоть до значения межслойного обменного взаимодействия г=0.05. При дальнейшем уменьшении величины г, по-видимому, наблюдается переход от трехмерного поведения к квазидвумерному.
3. Получены температурные зависимости основных термодинамических функций 3d фрустрированной модели Гейзенберга на слоистой треугольной решетке с ферро- и антиферромагнитными типами межплоскостного взаимодействия. Рассчитаны статические магнитные и киральные критические индексы теплоемкости а, восприимчивости у, д, параметров порядка Д Д и радиуса корреляции v, vk.
4. Показано, что 3d фрустрированная модель Гейзенберга на слоистой треугольной решетке с ферро- и антиферромагнитными типами межплоскостного взаимодействия принадлежат к одному и тому же классу универсальности и образуют новый киральный класс универсальности критического поведения.
5. Проведены исследования 3d фрустрированной модели Гейзенберга на слоистой треугольной решетке с учетом взаимодействий вторых ближайших соседей. Рассчитаны все основные эффективные магнитные и киральные критические индексы.
6. Построена фазовая диаграмма зависимости критической температуры от величины взаимодействия вторых ближайших соседей.
7. Разработан комплекс программ для ЭВМ, с помощью которого можно исследовать статические критические свойства фрустрированных спиновых моделей.
8. Подтверждена эффективность применения репличного алгоритма метода Монте-Карло для исследования фрустрированных спиновых систем на слоистых треугольных решетках.
Цитированная литература.
1. Камилов И.К., Муртазаев А.К., Алиев Х.К. Исследование фазовых переходов и критических явлений методами Монте-Карло // УФЫ. - 1999. -169, №7.-С. 773-795.
2. Landau D.P. Computer simulation studies of critical phenomena // Physica A. -
1994.-V. 205.-P.41-64.
3. Binder К., Luijten E. Monte Carlo tests of renormalization-group predictions for critical phenomena in Ising models // Phys. Reports. - 2001. - V. 344. - P. 179-253.
4. Mitsutake A., Sugita Y., Okamoto Y. Generalized-Ensemble Algorithms for Molecular Simulations of Biopolimers // preprint cond-mat/0012021.
5. Стенли Г. Фазовые переходы и критические явления // Пер. с англ. А.И. Мицека, Т.С. Шубиной; Под ред. С.В. Вонсовского. - М.: Мир, 1973.
6. Бэкстер Р. Точно решаемые модели в статистической механике // Пер. с англ. Е.П. Вольского, Л.И. Дайхина; Под ред. A.M. Бродского. - М.: Мир, 1985.
7. Kawamura Н. New Critical Behavior I-Heisenberg Antiferromagnet on the Layered-Triangular Lattice. // J. Phys. Soc. Jap. -1987. - V.56, N.2. - P.474-491.
8. Mailhot A., Plumer M.L., Caille A. Finite-size scaling of the frustrated model on a hexagonal lattice //Phys. Rev. B. - 1994-11. - V.50, N.10. -P.6854-6858.
9. Binder K., Luijten E. Monte Carlo tests of renormalization-group predictions for critical phenomena in Ising models // Phys. Reports. -2001. -V. 344. -P.179-253.
10. Бивдер К. Методы Монте-Карло в статистической физике / Пер. с англ.
B.Н. Новикова, К.К. Сабельфельда; Под. ред. Г.И. Марчука, Г.А. Михайлова. - М.: Мир, 1982. - 400 с.
11. Landau D.P. Computer simulation studies of critical phenomena // Physica A. -1994.-V. 205.-P.41-64.
12. Le Guillou J.C., Zinn-Justin J. Critical exponents from field theory // Phys. Rev. В 21, 3976 (1980).
13. Ballesteros H.G., Fernandez L.A., Martin-Mayor V. et al. Critical exponents of the three-dimensional diluted Ising model // Phys. Rev. B. 58,2740 (1998).
Публикации по теме диссертации
В изданиях, рекомендованных ВАК:
1. Муртазаев А.К., Рамазанов М.К., Баднев М.К. Статическое критическое поведение трехмерной фрустрированной модели Гейзенберга на слоистой треугольной решетке с переменным межслойным обменным взаимодействием //ЖЭТФ. - 2007. Т. 132, № 5, С.1152-1159.
2. Муртазаев А.К., Рамазанов М.К., Баднев М.К. Исследование фрустрированной модели Гейзенберга с переменным межслойным обменным взаимодействием // Известия РАН. Серия физическая. - 2008. Т. 72, №8, С. 1186-1189.
3. Муртазаев А.К., Рамазанов М.К., Абуев Я.К., Бадиев М.К. Исследование критических свойств антиферромагнитной модели Гейзенберга методом Монте-Карло // Вестник ДГУ. - 2008. № 6, С. 5-10.
4. Муртазаев А.К., Рамазанов М.К. Бадиев М.К. Исследование критических свойств трехмерной фрустрированной модели Гейзенберга на треугольной решетке методами Монте-Карло // ФНТ. - 2009. Т.35, №7, С.663-669.
5. Муртазаев А.К., Рамазанов М.К., Бадиев М.К. Исследование влияния фрустраций на критические свойства трехмерной антиферромагнитной модели Гейзенберга // Радиотехника и Электроника. - 2009. Т.54, №2,
C.202-207.
6. Муртазаев А.К., Рамазанов М.К., Бадиев М.К. Исследование критических свойств фрустрированной модели Гейзенберга на треугольной решетке
методом Монте-Карло // Известия РАН. Серия физическая. - 2009. Т.73, №7, С.1059-1061.
7. Муртазаев А.К., Рамазанов М.К., Бадиев М.К. Исследование фазовых переходов фрустрированной модели Гейзенберга на треугольной решетке методами Монте-Карло // ФТТ. - 2010. Т.52, №8. С.1557-1562.
8. Муртазаев А.К., Рамазанов М.К., Бадиев М.К. Фрустрированной антиферромагнетик Гейзенберга на треугольной решетке с взаимодействиями вторых ближайших соседей // Известия РАН. Серия физическая,-2010.1.1 А,№8, С.1189-1191.
9. Муртазаев А.К., Камилов И.К., Рамазанов М.К., Бадиев М.К. Критические свойства фрустрированной антиферромагнитной модели Гейзенберга на слоистой треугольной решетке // Вестник ДНЦ - 2010 . Т. 37, С.5-10.
10: Муртазаев А.К., Рамазанов М.К., Бадиев М.К. Критические свойства антиферромагнитной модели Изинга на квадратной решетке с взаимодействиями вторых ближайших соседей // ФНТ. - 2011. Т. 37, С. 1258-1263.
11. Kassan-Ogly F.A., Filippov B.N., Men'shenin V.V., Murtazaev A.K., Ramazanov M.K., Badiev M.K. Frustrations and phase transitions in Ising model on 2D lattices //Solid state phenomena.- 2011. V. 168-169. P. 435-438.
12. Муртазаев A.K., Рамазанов M.K., Бадиев М.К. Компьютерное моделирование фрустрированной антиферромагнитной модели Гейзенберга на слоистой треугольной решетке // Известия РАН. Серия физ. -2011. Т. 75, С. 1103-1105.
В других изданиях:
13. Муртазаев А.К., Рамазанов М.К., Бадиев М.К. Исследование фрустрированной модели Гейзенберга с переменным межслойным обменным взаимодействием. // 9-й международный симпозиум «Упорядочение в металлах и сплавах» ОМА-9, v. II. Ростов-на-Дону -пос.Лоо, 2006. - С.63-65.
14. Муртазаев А.К., Рамазанов М.К., Бадиев М.К. Критическое поведение и пространственный кроссовер в фрустрированной антиферромагнитной модели Гейзенберга на треугольной решетке // 10-й международный симпозиум «Упорядочение в минералах и сплавах» ОМА-Ю, v. II. Ростов-на-Дону - пос-Лоо, 2007. - С.68-70.
15. Муртазаев А.К., Рамазанов М.К., Бадиев М.К. Исследование критических свойств фрустрированной модели Гейзенберга на треугольной решетке методом Монте - Карло. // 11-й международный симпозиум «Порядок, беспорядок и свойства оксидов» ODPO - 11, v. И. Ростов-на-Дону -пос.Лоо, 2008. - С.298-300.
16. Муртазаев А.К., Рамазанов М.К., Бадиев М.К. Фрустрированный антиферромагнетик Гейзенберга на треугольной решетке с взаимодействиями вторых ближайших соседей // 12-й международный симпозиум «Порядок, беспорядок и свойства оксидов» ODPO-12. Ростов-на-Дону - пос.Лоо, 2009. v. II. С.52-54.
17. Муртазаев А.К., Рамазанов М.К., Бадиев М.К. Компьютерное моделирование фрустрированной антиферромагнитной модели
Гейзенберга на слоистой треугольной решетке // 13-й международный симпозиум «Упорядочение в минералах и сплавах» ОМА-13. Ростов-на-Дону - пос.Лоо, 2010. v. П. С. 100-102.
18. Муртазаев А.К., Рамазанов М.К., Баднев М.К. Критические свойства двумерной антиферромагнитной модели Изинга на квадратной решетке с взаимодействиями вторых ближайших соседей // 14-й международный симпозиум «Упорядочение в минералах и сплавах» ОМА-14. Ростов-на-Дону - пос.Лоо. 2011. v. И. С. 52-55.
19. Муртазаев А.К., Рамазанов М.К. Баднев М.К. Критическое поведение трехмерной фрустрированной модели Гейзенберга с взаимодействиями вторых ближайших соседей // Сборник трудов XXI международной конференции «Новое в магнетизме и магнитных материалах». Москва, 2009. С.761-763.
20. Муртазаев А.К., Рамазанов М.К., Баднев М.К. Фазовые переходы и критические свойства спиновых систем с фрустрациями // Материалы XXXIII Международной зимней школы физиков-теоретиков «Коуровка-2010». Екатеринбург, 2010. С.51-52.
21. Kassan-Ogly F.A., Filippov B.N., Men'shenin V.V., Murtazaev A.K., Ramazanov M.K., Badiev M.K. Frustrations and phase transitions in Ising model on 2D lattices // IV Euro-Asian Symposium "Trends in MAGnetism": Nanospintronics EASTMAG-2010.2010. P.360
22. Murtazaev A.K., Ramazanov M.K., Badiev M.K. Phase transition in frustrated Heisenberg antiferromagnet on a triangular lattice with next-nearest neighbor interactions // Book of Abstracts MISM. Moscow. 2011. P. 516.
23. Kassan-Ogly F.A., Filippov B.N., Murtazaev A.K., Ramazanov M.K., Badiev M.K. Influence of field on frustrations in low-dimensional magnets // Book of Abstracts MISM. Moscow. 2011. P. 850.
24. Муртазаев A.K., Камилов И.К., Рамазанов M.K., Баднев М.К. Критические свойства фрустрированной 3d модели Гейзенберга на слоистой треугольной решетке // Сборник научных трудов «Структурные и динамические эффекты в упорядоченных средах». Уфа: РИЦ БашГУ 2006. С.8-13.
25. Муртазаев А.К., Рамазанов М.К., Бадиев М.К. Исследование фрустрированной антиферромагнитной модели Гейзенберга на треугольной решетке. // Труды международной конференции «Фазовые переходы, критические и нелинейные явления в конденсированных средах». Махачкала 2007. С.60-64.
26. Муртазаев А.К., Рамазанов М.К., Бадиев М.К. Исследование критических свойств фрустрированной антиферромагнитной модели Гейзенберга. 11 Материалы V всероссийская конференция по «ФЭ - 2008». Махачкала 2008. С. 265-268.
27. Муртазаев А.К., Рамазанов М.К., Бадиев М.К. Критическое поведение фрустрированных спиновых систем на треугольной решетке // Сборник трудов международной конференции «Фазовые переходы, критические и нелинейные явления в конденсированных средах». Махачкала 2009. С.6-9.
28. Муртазаев А.К., Рамазанов М.К., Бадиев М.К. Компьютерное моделирование антиферромагнетика на треугольной решетке с взаимодействиями вторых ближайших соседей И Сборник трудов
международной конференции «Фазовые переходы, критические и нелинейные явления в конденсированных средах». Махачкала 2009. С.42-44.
29. Муртазаев А.К., Рамазанов М.К., Бадиев М.К., Магомедов Г.М., Мамаева С.М. Компьютерное моделирование фазовых переходов в антиферромагнитной модели Гейзенберга на треугольной решетке // 1 Сборник трудов международной конференции «Фазовые переходы, критические и нелинейные явления в конденсированных средах». Махачкала 2009. С. 107-109.
30. Муртазаев А.К., Рамазанов М.К., Бадиев М.К. Исследование критических свойств фрустрированной двумерной модели изинга на квадратной решетке // Сборник трудов международной конференции «Фазовые переходы, критические и нелинейные явления в конденсированных средах». Махачкала 2009. С.297-299.
31. Муртазаев А.К., Рамазанов М.К., Абуев Я.К., Бадиев М.К. Исследование критических свойств фрустрированной антиферромагнитной модели Гейзенберга с учетом взаимодействий вторых ближайших соседей // Межвузовский сборник научных трудов «Структурные и динамические эффекты в упорядоченных средах». Уфа, 2009. С. 17-24.
32. Муртазаев А.К., Рамазанов М.К., Бадиев М.К. Компьютерное моделирование антиферромагнетика на треугольной решетке с взаимодействиями вторых ближайших соседей // Сборник трудов межрегиональной научно-технической конференции памяти профессора Валеева К.А. «Актуальные проблемы естественных и технических наук». Уфа, 2009.
33. Муртазаев А.К., Рамазанов М.К., Бадиев М.К. Критическое поведение трехмерной фрустрированной модели Гейзенберга на треугольной решетке. // Труды V Международной конференция студентов и молодых ученых «Перспективы развития фундаментальных наук». Томск, 2009.
34. Муртазаев А.К., Рамазанов М.К., Бадиев М.К. Компьютерное моделирование ангиферромагнетика на треугольной решетке с взаимодействиями вторых ближайших соседей // Сборник трудов международной конференции «Фазовые переходы, критические и нелинейные явления в конденсированных средах». Махачкала 2010. С.315-318.
35. Рамазанов М.К., Муртазаев А.К., Бадиев М.К. Исследование фрустрированной модели Изинга с взаимодействиями вторых ближайших соседей // Сборник трудов международной конференции «Инноватика-2011». Том 2. Махачкала. 2011. С. 28-29.
36. Муртазаев А.К., Рамазанов М.К., Бадиев М.К. Исследование трехмерной фрустрированной модели Гейзенберга с взаимодействиями вторых ближайших соседей // Сборник трудов международной конференции «Инноватика-2011». Том 2. Махачкала. 2011. С. 24-25.
Подписано в печать 16.02.2012г. Формат 60х84|/1б- Печать ризографная. Бумага офсетная. Гарнитура «Тайме». Усл. п. л. 1. Тираж 100 экз.
ateph
Отпечатано в типографии АЛЕФ, ИП Овчинников М.А. 367000, РД, г.Махачкала, пр. И.Шамиля35 Тел.: +7-903477-55-64, +7-988-2000-164 E-mail: alefgraf@mail.ru
61 12-1/681
На правах рукописи
БАДИЕВ МАГОМЕДЗАГИР КУРБАНОВИЧ
ИССЛЕДОВАНИЕ КРИТИЧЕСКИХ СВОЙСТВ ФРУСТРИРОВАННЫХ МОДЕЛЕЙ ГЕЙЗЕНБЕРГА МЕТОДАМИ МОНТЕ-КАРЛО
01.04.07 - физика конденсированного состояния
Диссертация на соискание ученой степени кандидата физико-математических наук
Научный руководитель: Член-корреспондент РАН, доктор физико-
математических наук, профессор Муртазаев Акай Курбанович
Махачкала, 2012
ОГЛАВЛЕНИЕ
ВВЕДЕНИЕ...............................................................................4
ГЛАВА I. МЕТОД МОНТЕ-КАРЛО.
§ 1.1. Классический метод Монте-Карло.....................................24
§ 1.2. Численное моделирование. Эвристичесие модели.................31
§ 1.3. Стандартный алгоритм метода Монте-Карло.......................37
§ 1.4. Репличный алгоритм метода Монте-Карло..........................39
§ 1.5. Граничные условия.......................................................44
§ 1.6. Анализ ошибок в методе Монте-Карло...............................46
ГЛАВА II. ФРУСТРИРОВАННЫЕ СПИНОВЫЕ СИСТЕМЫ.
§ 2.1. Атомный порядок и беспорядок..........................................54
§ 2.2. Конкуренция обменных взаимодействий, фрустрация.............57
§ 2.3.Критические свойства антиферромагнетиков на треугольной
решетке.....................................................................63
§ 2.4. Основные положения теории конечно - размерного
скейлинга...................................................................67
§ 2.. Фрустрированная модели Гейзенберга с переменным
межслойным обменным взаимодействием..........................73
ГЛАВА III. МОДЕЛИ ГЕЙЗЕНБЕРГА НА СЛОИСТОЙ ТРЕУГОЛЬНОЙ РЕШЕТКЕ. § 3.1.Критическое поведение фрустрированной модели Гейзенберга с различными типами межплоскостного обменного взаимодействия............................................................94
§ 3.2. Анализ результатов численного эксперимента....................107
§3.3. Критическое поведение фрустрированной модели Гейзенберга с учетом взаимодействий вторых ближайших соседей...........118
§ 3.4. Фазовые переходы в антиферромагнитной модели гейзенберга на слоистой треугольной решетке с взаимодействиями вторых ближайших соседей.....................................................134
ЗАКЛЮЧЕНИЕ.......................................................139
ЛИТЕРАТУРА..........................................................143
ВВЕДЕНИЕ.
Исследование фазовых переходов (ФП) и критических явлений (КЯ) в фрустрированных спиновых системах - одна из сложных и интересных задач статистической физики. Успехи, достигнутые в последние годы в понимании ФП и КЯ в фрустрированных системах (ФС), в значительной степени связаны с применением методов вычислительной физики. Это обусловлено тем, что большинство традиционных теоретических и экспериментальных методов исследования таких систем сталкивается с серьезными трудностями при попытке вычислить критические параметры, определить особенности, характер и механизмы критического поведения таких систем.
В последние годы достигнут значительный прогресс в понимании проблемы фазовых переходов (ФП) и критических явлений (КЯ). Тем не менее, количественное описание ФП и КЯ в различных решеточных спиновых системах до сих пор остается одной из центральных задач современной теории конденсированного состояния. В построении теории фазовых переходов наиболее продуктивными оказались методы ренормализационной группы и е- разложения, а также применение гипотезы подобия (скейлинг), основы которой были заложены в 60-х годах [1-5]. На их основе было получено большинство важнейших результатов современной теории ФП и КЯ. Установлены основные закономерности, наблюдающиеся в критической области, получены соотношения между критическими индексами (КИ) и критическими амплитудами (КА), построены уравнения состояния, рассчитаны значения КИ и КА. Идеи лежащие в основе всех этих предположений значительно обогатили наше понимание природы критических явлений. Тем не менее, строгой и последовательной микроскопической теории фазовых переходов второго рода и критических явлений на сегодняшний день не существует [6].
Существенный вклад в строгую количественную теорию критических явлений в решеточных спиновых системах также внесли методы высоко- и низкотемпературных разложений [5, 7].
На сегодняшний день установлено, что критические индексы не зависят от величины спина и деталей микроскопического гамильтониана, но сильно зависят от размерности d рассматриваемой системы и числа степеней свободы параметра порядка п. Эти закономерности позволили сформулировать гипотезу универсальности для статических критических явлений. В наиболее общем виде принцип универсальности может быть сформулирован следующим образом.
Критическое поведение системы зависит от:
1. размерности пространства;
2. числа степеней свободы параметра порядка;
3. симметрии гамильтониана;
4. радиуса характерного взаимодействия.
Вследствие чего, в пределах одного класса универсальности для всех систем, претерпевающих фазовый переход второго рода, критические индексы являются одинаковыми. Таким образом, в один и тот же класс универсальности попадают столь непохожие на первый взгляд системы, как жидкости, магнетики, сверхпроводники, сегнетоэлектрики и другие. В то же время следует отметить, что класс универсальности фрустрированных систем (ФС) может зависеть не только от этих параметров [8-11].
Важную роль в построении общей микроскопической теории фазовых переходов играют точные аналитические решения, которые удалось получить лишь для весьма ограниченного числа решеточных моделей. В 1925 году Изинг нашел решение для случая одномерной цепочки (в цепочке атомов фазовый переход происходит при Т= 0) [12]. В 1944 году Онзагер точно разрешил двухмерную проблему модели Изинга в
нулевом внешнем поле [13] и доказал существование фазового перехода. В 1952 году Берлин и Кац сформулировали и строго рассчитали так называемую сферическую модель [14]. Далее, наиболее интересным результатом было получение Либом [15, 16] строгого решения для модели типа льда (шести вершинной модели). Имеют точное решение и некоторые другие модели [17].
Несмотря на значительные успехи, создание последовательной теории фазовых переходов второго рода до сих пор остается одной из актуальных проблем физики конденсированного состояния [6, 18].
В основном при описании критических явлений в решеточных системах наиболее часто используются модели первого приближения. К таким моделям относятся: классическая модель Изинга, Гейзенберга, ХУ-модель, модель Поттса и т.д. На их основе, с помощью вышеупомянутых теоретических методов, получена обширная информация о поведении различных термодинамических величин в широком диапазоне температур и других физических параметров. Исследования выполнены на решетках различного типа и пространственной размерности, а также при варьировании большого количества различных параметров. В последние годы методами вычислительной физики (ВФ) успешно исследуется и критическая область с вычислением значений критических индексов (КИ) и критических амплитуд (КА), при этом достигаемая точность не только не уступает, но и зачастую превосходит лучшие результаты других методов [9,19-23].
Увеличению точности методов вычислительной физики (ВФ) способствуют[24-30]:
1. увеличение вычислительных мощностей современных ЭВМ;
2. разработка мощных высокоэффективных алгоритмов;
3. усовершенствование методов анализа данных;
4. использование теории конечно-размерного скейлинга (КРС) для расчета критических параметров.
Центр тяжести теоретических исследований переместился к изучению более реалистичных моделей с учетом многочисленных факторов, присущих реальным кристаллам и не учитываемых в рамках моделей первого приближения. К таким факторам относятся: анизотропия, примеси, диполь-дипольные взаимодействия, колебания решетки, фрустрации [8, 31, 32].
Особый интерес представляют исследования спиновых стекол и фрустрированных спиновых систем. Проведенные экспериментальные и теоретические исследования установили, что ФС во многом проявляют свойства, отличные от соответствующих нефрустрированных систем. Это отличие отражается, прежде всего, в богатом разнообразии фаз и фазовых переходов, что обусловлено сильным вырождением и высокой чувствительностью фрустрированных систем к различного рода возмущающим взаимодействиям [33].
Вопрос о существовании нового кирального класса универсальности критического поведения на многих решетках и определение рода фазового перехода при изучении фрустрированных систем до сих пор является дискуссионным. Многие важные физические свойства фрустрированных систем сильно зависят от геометрии решетки (от степени фрустрации). Такая зависимость может привести к сужению классов универсальности критического поведения, и этот вопрос все еще недостаточно изучен [8-11].
Большинство традиционных теоретических и экспериментальных методов исследования таких систем сталкиваются с серьезными трудностями при попытке вычислить критические параметры, определить особенности, характер и механизмы критического поведения таких систем [18, 34]. Следовательно, строгое исследование трехмерных
микроскопических гамильтонианов сложных систем методами современной теоретической физики - задача чрезвычайно сложная.
Эти и некоторые другие причины привели к тому, что фазовые переходы и критические явления интенсивно исследуются методами вычислительной физики (ВФ) - методами МК и молекулярной динамики (МД) [19-21, 35-38], которые позволяют успешно исследовать критические свойства систем со сложными реалистичными гамильтонианами в широком диапазоне температур и других внешних параметров. Данные, получаемые с помощью методов ВФ, с одной стороны, можно рассматривать как «экспериментальные» и сравнивать их с различными аналитическими приближениями, а с другой стороны - как "теоретические" и сравнивать их с соответствующими экспериментами.
Одним из преимуществ методов численного эксперимента (ЧЭ) является то, что их применение не связано с малостью тех или иных параметров или другими трудностями, характерными для аналитических подходов. Погрешность контролируется в рамках самого метода. Анализ информации, полученная на основе этих методов, позволяет судить о термодинамических и кинетических свойствах системы, об ее структуре, дает совокупность характерных конфигураций или отрезок фазовой траектории. ЧЭ стал надежным и самостоятельным инструментом в исследовании молекулярных систем наряду с физическим экспериментом и аналитическими подходами [39-41].
Использование методов вычислительной физики требует создания довольно больших и сложных программ для ЭВМ. Почти все программы весьма специфичны, требуют от программиста большого опыта и внимательности и, как правило, не могут быть использованы для решения различных задач. Тем не менее, в настоящее время методам вычислительной физики уделяется значительное внимание. Об этом свидетельствует разработка специализированных ЭВМ и процессоров,
строго ориентированных на эти методы и решение конкретных задач статистической механики и молекулярной физики [35].
В данной работе рассматриваются некоторые вопросы теории статических критических явлений и фазовых переходов в фрустрированных спиновых системах. Объектом исследования является полностью фрустрированная модель Гейзенберга на слоистой треугольной решетке. Рассматриваемая модель сталкивается с серьезными трудностями при исследовании традиционными теоретическими методами, особенно в области фазового перехода. В рамках этой работы методами МК проведены исследования статических критических свойств полностью фрустрированной модели Гейзенберга на слоистой треугольной решетке с переменным межслойным обменным взаимодействием, с изменением типа взаимодействия между плоскостями и с учетом взаимодействий вторых ближайших соседей. Экспериментальные и теоретические данные, имеющиеся в литературе по критическим свойствам этой модели противоречивы и часто не согласуются между собой. Таким образом, исследование ФП и КЯ в этой модели целесообразно провести на основе методов ВФ [8-11, 18].
Интерес к этим моделям обусловлен следующими основными причинами.
Во-первых, при изучении ФС вопрос о существовании нового кирального класса универсальности на многих решетках, в частности, треугольных до сих пор является дискуссионным [9-11].
Во-вторых, многие важные физические свойства ФС сильно зависят от геометрии решетки (от степени фрустрации). Такая зависимость может привести к сужению классов универсальности критического поведения, и этот вопрос все еще недостаточно полно изучен [18].
В-третьих, первые попытки исследования этих моделей предпринимались в то время, когда мощности вычислительных машин и
используемые алгоритмы метода МК не позволяли рассчитывать критические параметры с необходимой степенью точности.
Так же до сих пор остается дискуссионным вопрос о роде фазового перехода в фрустрированных спиновых системах на треугольной решетке.
Фрустрированные спиновые системы являются довольно сложными объектами для исследования даже методами МК. Как известно, вблизи критической точки метод МК сталкивается с проблемой "критического замедления". Кроме того, в ФС существует немаловажная проблема многочисленных долин локальных минимумов энергии. Обычные методы МК плохо справляются с решением этой проблемы. Поэтому в последнее время разработано много новых вариантов алгоритмов метода МК. Для решения этой проблемы наиболее приспособленными и эффективными оказались репличные алгоритмы метода МК [42].
Поэтому нами на основе репличного алгоритма исследовано статическое критическое поведение фрустрированной
антиферромагнитной модели Гейзенберга с переменным межслойным обменным взаимодействием, антиферромагнитной модели Гейзенберга с изменением типа межплоскостного обменного взаимодействия и модели Гейзенберга на треугольной решетке с учетом взаимодействия вторых ближайших соседей.
К настоящему моменту фрустрированные антиферромагнетики изучены достаточно хорошо, однако многие аспекты теории слоистых антиферромагнетиков с треугольной геометрией остаются невыясненными. Предлагаемая работа призвана частично восполнить эти пробелы.
Таким образом, исследование ФП и КЯ, в частности фрустрированных спиновых систем, исходя из трехмерных микроскопических гамильтонианов, является важной и актуальной проблемой современной статистической физики решеточных систем.
Целью работы является исследование статических критических свойств моделей фрустрированных спиновых систем репличными алгоритмами метода Монте-Карло. В процессе выполнения работы решались следующие основные задачи:
1. Разработка комплекса программ для ЭВМ, с помощью которого можно исследовать статические критические свойства моделей с фрустрациями;
2. Исследование методом Монте-Карло статических критических свойств фрустрированной антиферромагнитной модели Гейзенберга с переменным межслойным обменным взаимодействием. Определение статических критических индексов теплоемкости а, намагниченности Д восприимчивости у, и индекса радиуса корреляции к этой модели на основе теории конечно-размерного скейлинга (КРС);
3. Исследование критического поведения и зависимость критических индексов Зй? фрустрированной модели Гейзенберга на слоистой треугольной решетке от типа межплоскостного обменного взаимодействия;
4. Исследование статического критического поведения трехмерной антиферромагнитной модели Гейзенберга на слоистой треугольной решетке с взаимодействиями вторых ближайших соседей;
5. Проверка справедливости теории конечно-размерного скейлинга для фрустрированных моделей.
Практическая ценность работы.
Полученные в диссертации результаты по исследованию статических критических свойств фрустрированных спиновых моделей представляют интерес для дальнейших исследований в теории магнетизма, физики фазовых переходов и статистической теории конденсированного состояния. Разработанный комплекс программ для ЭВМ формирует базу,
на основе которой возможны высокоточные исследования статических критических явлений в фрустрированных спиновых системах.
Использование репличного алгоритма метода МК для исследования моделей фрустрированных спиновых систем показало, что репличные алгоритмы являются ценным инструментом при исследовании ФС, позволяют определять с высокой степенью точности критические параметры системы и являются значительно более эффективными по сравнению с классическим алгоритмом (алгоритм Метрополиса). Эти алгоритмы успешно справляются с проблемой локальных энергетических минимумов, в решении которой другие алгоритмы метода МК (стандартный алгоритм Метрополиса, одно-кластерный алгоритм Вульфа) оказались малоэффективными.
Экспериментальные результаты данной работы используются для