Полуаналитический метод решения обратных задач кинетики ионно-координационной полимеризации тема автореферата и диссертации по химии, 02.00.04 ВАК РФ
Бигаева, Люзия Ахатовна
АВТОР
|
||||
кандидата физико-математических наук
УЧЕНАЯ СТЕПЕНЬ
|
||||
Уфа
МЕСТО ЗАЩИТЫ
|
||||
2009
ГОД ЗАЩИТЫ
|
|
02.00.04
КОД ВАК РФ
|
||
|
На правах рукописи
БИГАЕВА ЛЮЗИЯ АХАТОВНА
ПОЛУ АНАЛИТИЧЕСКИЙ МЕТОД РЕШЕНИЯ ОБРАТНЫХ ЗАДАЧ КИНЕТИКИ ИОННО-КООРДИНАЦИОННОЙ ПОЛИМЕРИЗАЦИИ
02.00.04 - Физическая химия 05.13.18 - Математическое моделирование, численные методы и комплексы программ
АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата физико-математических наук
Уфа-2009 2 3 иД? 2С:3
003465172
Работа выполнена в Проблемной лаборатории математического моделирования и механики сплошных сред при Бирской государственной социально-педагогической академии и в лаборатории математической химии Института нефтехимии и катализа РАН
Научные руководители: доктор физико-математических наук,
профессор Спивак Семён Израилевич,
кандидат химических наук Усманов Тимур Салаватович
Официальные оппоненты: доктор физико-математических наук,
профессор Лачинов Алексей Николаевич
доктор физико-математических наук, профессор Кризский Владимир Николаевич
Ведущая организация: Институт химической физики
им. Н.Н. Семенова РАН
Защита диссертации состоится 23 апреля 2009 года в 14 ч. на заседании диссертационного совета Д 212.013.10 при Башкирском государственном университете по адресу: 450074, г. Уфа, ул. Заки Валиди, 32, химический факультет.
С диссертацией можно ознакомиться в научной библиотеке Башкирского государственного университета.
Автореферат разослан «/^ » :
Ученый секретарь диссертационного совета доктор химических наук, профессор
¿7.., \ Прочухан Ю.А.
Общая характеристика работы
Актуальность проблемы. Большинство реальных полимерных материалов характеризуется широким молекулярно-массовым распределением (ММР), часто имеющим полимодальный вид. Основной причиной образования широких ММР является наличие в каталитической системе кинетически неоднородных активных центров (АЦ) полимеризации, которые работают независимо друг от друга, формируя полимер с разными свойствами. Определить свойства и характерные признаки полимера, образованного на таких кинетически неоднородных полицентровых каталитических системах, можно только исследуя ММР всего полимера как совокупность распределений образующегося полимера на каждом типе АЦ. Следовательно, для направленного воздействия на процесс полимеризации, необходимо изучить вклад и кинетические характеристики каждого типа АЦ, что приводит к обратным задачам - задачам восстановления механизма полимеризации по экспериментальным данным.
Задача восстановления кинетических констант скоростей элементарных стадий и концентраций активных центров полимеризации, т.е., обратная задача химической кинетики, решается численно, путем сопоставления значений конверсионных и молекулярных зависимостей, определенных на основе принятой кинетической схемы, с экспериментальными данными. Решать обратную кинетическую задачу для полицентровых каталитических систем слишком затруднительно, так как получаемое в этом случае численное решение, вследствие многократного обращения к системе дифференциальных уравнений, становится крайне неустойчивым. Поэтому проблема получения аналитических выражений для молекулярных характеристик полимера, образованного в присутствии нескольких типов центров полимеризации, так необходимых для определения кинетических параметров, до сих пор остается.
Цель работы. Решение обратных задач кинетики ионно-координационной полимеризации численно-аналитическими методами. При решении этой проблемы возникают следующие задачи: получение аналитических выражений для молекулярных характеристик полимеров, синтезированных на полицентровых каталитических системах; установление взаимосвязей между молекулярными характеристиками полимера, образованного на каждом типе АЦ, и всего полимера в целом; исследование влияния полицентровости процесса полимеризации на значения усредненных молекулярных масс и кинетических констант; анализ функции распределения АЦ полимеризации с учетом влияния ширины распределения; разработка методики расчета кинетических параметров центров полимеризации.
Научная новизна. Решены обратные задачи формирования ММР и химической кинетики ионно-координационной полимеризации изопрена на титансодержащих каталитических системах. Научная новизна работы представлена следующими положениями:
- получены аналитические выражения временных зависимостей среднечисленной молекулярной массы всего процесса полимеризации в целом, а также для каждого типа центра полимеризации с участием реакций передачи цепи на мономер, передачи цепи на алюминийорганическое соединение (АОС) и гибели активных центров;
- установлены аналитические зависимости между молекулярными характеристиками полимера, образованного на каждом типе АЦ, и всего полимера в целом;
- разработана методика анализа функции распределения АЦ полимеризации с учетом влияния параметра ширины;
- исследовано влияние полицентровости процесса полимеризации на значения усредненных молекулярных масс и кинетических констант. Показана неприменимость одноцентровой модели для анализа кинетических закономерностей полицентровых полимеризационных процессов;
- найдены значения кинетических параметров для каждого типа АЦ полимеризации изопрена на титансодержащих каталитических системах.
Практическая значимость работы.
Полученные аналитические выражения среднечисленных характеристик для различных полимеризационных процессов могут быть использованы как для решения прямых задач, так и для решения обратных кинетических задач, а также для целенаправленного синтеза полимеров с заданными молекулярными характеристиками.
Апробация работы. Результаты работы были представлены на: VII Всероссийском симпозиуме по прикладной и промышленной математике (Йошкар-Ола, 2006 г.); XIV Всероссийской конференции «Структура и динамика молекулярных систем» (Яльчик, 2007 г.); IV (Бирск, 2005 г.) и VI (Бирск, 2007 г.) Всероссийских научно-практических конференциях «ЭВТ в обучении и моделировании»; V (Бирск, 2006 г.) и VII (Бирск, 2008 г.) Всероссийских научно-практических конференциях «Обратные задачи в приложениях»; научных семинарах Проблемной лаборатории математического моделирования и механики сплошных сред при Бирской государственной социально-педагогической академии, Института нефтехимии и катализа РАН.
Публикации. По материалам диссертации опубликовано 17 печатных работ, в том числе 16 статей.
Структура и объем работы. Работа изложена на 160 страницах и состоит из введения, пяти глав, выводов и списка цитируемой литературы (94 наименования).
Основное содержание работы
Глава 1. Статистические характеристики ион-но-координационпой полимеризации (литературный обзор)
В литературном обзоре анализируются статистические характеристики ММР. Описываются способы математической обработки экспериментальных гель-хроматограмм полимеров, имеющих широкую полимодальную форму. Основная причина полимодальности объясняется наличием в полимеризационной системе кинетически неоднородных АЦ полимеризации. Поиск функции распределения АЦ по кинетической активности сводится к решению обратной задачи ММР, которая представляет собой интегральное уравнение Фредгольма первого рода. Приводятся основные положения, от которых отталкиваются при решении обратной задачи ММР.
В заключении сформулированы задачи исследования.
Глава 2. Объекты и методы исследования
В качестве модельных объектов рассмотрены продукты ионно-координационной полимеризации изопрена, синтезированные на 77С74 -содержащем каталитическом комплексе с добавками кислородсодержащего электронодонора - дифенилоксида и непредельного соединения -пиперилена (образцы полиизопрена (ПИ) получены в заводской лаборатории в ЗАО «Каучук» г. Стерлитамак). Эти образцы характеризуются широким молекулярно-массовым распределением.
Основной причиной образования широких ММР является наличие в полимеризационной системе кинетически неоднородных АЦ полимеризации. Поиск функции распределения АЦ по кинетической активности сводится к решению обратной задачи ММР, которая записывается в виде:
«
ЧК(М)= ¡<р(Л)К(Л,М)с1Л, (1)
о
где ^(Л/) - экспериментальная кривая ММР изучаемого полимера; Л -статистический параметр полимеризации Френкеля; ядро интегрального уравнения К(Л,М) - есть функция, отражающая механизм полимериза-ционного процесса, а следовательно должна подбираться опираясь на ки-
нетическую схему процесса полимеризации; д>(Л) - искомая функция распределения АЦ.
Обратная задача ММР (1) продуктов ионно-координационной полимеризации диенов на катализаторах Циглера-Натта является некорректно поставленной.
Глава 3. Численное решение обратной задачи молекулярно-массоеого распределения продуктов ионно-координационной полимеризации па титансодержащих катализаторах
Переходя к новым переменным х = 1п М и = 1п Л., обратная задача ММР продуктов ионно-координационной полимеризации (1) сводится к решению уравнения Фредгольма первого рода, где в качестве ядра берется кинетически обоснованная функция наиболее вероятного распределения Флори:
Решая обратную задачу ММР (2) с помощью метода регуляризации А.Н.Тихонова, рассчитываем функцию распределения АЦ по их кинетической активности Дальнейший анализ сводится к разложению полученного распределения (//(.у) на отдельные гауссовы составляющие.
Стандартная процедура разложения расчетной функции распределения <//(.?) на элементарные составляющие сводится к минимизации функционала (3). В работе предложена оптимизационная процедура, обеспечивающая не только разложение на гауссовы функции, но также и
наибольшую близость экспериментальных среднемассовых и среднечис-ленных молекулярных масс (ММ) от соответствующих расчетных значений. Задача сводится к определению коэффициентов Ь{ЬиЬ2,....,ЬП1),
<т(сг1,сг2,....,сгт) и 50(501,5,02,....,50т) путем минимизации функционалов
б; (у), В2(у) и #3(у) по V = х>(Ь, а, 50) (где т - количество типов АЦ):
ь
(2)
а
(3)
вз(у)=м„ (у)-м„.
пэксп. •
м>эксп. >
(4)
(5)
До сих пор результаты численного решения обратных задач ММР были использованы лишь частично. Дело в том, что при дальнейших расчетах применены только i0 • и соответствующая доля полимерной продукции bj, производимой этим же типом АЦ. Другими словами, расчетная функция распределения кинетической активности, соответствующая каждому типу АЦ, представляется в виде 8 - функции и не учитывается значение параметра ширины сту этого распределения, т.е.
^•(s) = <5(j-s0), а ММР представляется в виде суперпозиции функций
т
Флори, т.е. <7w(x) = "YjbjK(^о^*) • Экспериментальные значения средне-
7=1
численной характеристики ММР для j -того типа АЦ определяются также без учета параметра ширины по формуле:
Mni=\- = e~**> . (6)
Ai
В работе в качестве ц/j (s) нами рассмотрена гауссова функция и
исследовано влияние параметра ширины распределения Оу на среднечис-
ленную и среднемассовую характеристики ММР.
С учетом параметра ширины Оу для j -го типа АЦ полимеризации
расчетная кривая ММР qwj (х) получена следующим образом:
\2 '
М*)= J—W=exP
I а;у/2я
К)
2а]
ехр[2(х + 5)-ехр(л: + 5)]Л. (7)
По расчетным кривым ц ■ (х) для каждого типа АЦ определяются среднемассовые и среднечисленные значения молекулярных масс:
M«j=±±—„-' MnJ=--^-, (8)
Z Ящ (х,) 2 [ехр(-лг,.) • qVJ (х,)]
где п - количество расчетных точек.
Было обнаружено, что с увеличением параметра ширины Оу значения среднечисленных молекулярных масс М„у уменьшаются, а значения
среднемассовых молекулярных масс Мм,, наоборот, возрастают. Зависи-
мость коэффициента полидисперсности и - =
М
К]
м„
с увеличением пара-
метра ширины возрастает, когда а] >0,3 (при этом иДоу) больше 2 -
значения, характерного для функции Флори) для описания кривой ММРу-того типа АЦ полимеризации необходимо использовать интегральное выражение вида (7). Поэтому при математической обработке экспериментальных кривых ММР продуктов ионно-координационной полимеризации наряду с наложением нескольких типов АЦ нужно учесть распределение кинетической активности в области действия конкретного типа центра полимеризации.
Значения среднемассовой и среднечисленной ММ для всей полимеризации в целом получены через соответствующие характеристики каждого типа АЦ по следующим выражениям:
расч ^ \ Ь/ ' ^у*] '
М,
п расч
= £/уЧ(/>
(9)
м н
Р] - доля полимерных молекул, образованных на у-том типе АЦ, Ь] -
доля мономера, вступившего в реакцию с участием данного типа АЦ, т т м
причем = £ Р] = 1 и Р] = Ъ>---~
;=1
м„
д„ = з%
8 10 12 14 16 8 10 12 14
Рис.1. Экспериментальная гель-хроматограмма (обозначена точками) и расчетные кривые ММР для каждого типа АЦ образца ПИ, синтезированного на Т1СЦ-ДФО-пиперилен-А1('|-С4Н,)3,1 = 20 мин.
На рис. 1 представлено сопоставление результатов решения прямой задачи по существующей и рекомендуемой методикам. Как видно, учет дополнительной информации для анализа функции распределения кине-
тической активности АЦ позволяет существенно снизить погрешность описания кривых ММР при решении прямой задачи.
Глава 4. Одноцентровая модель кинетики ионно— координационной полимеризации
Кинетическая схема процесса полимеризации диенов включает следующие элементарные стадии:
1. Реакция инициирования:
к'
I
2. Реакция роста цепи:
л/
3. Реакция передачи цепи на мономер:
Л/ +М—+Л/.
4. Реакция передачи цепи на алюминийорганическое соединение
(АОС):
я/ + А—+/?/.
5. Реакция гибели активных центров:
где индекс ] -\..т указывает номер типа АЦ, ведущего полимеризацию, т- количество типов АЦ в данной каталитической системе, ¡1; и Q1Í - растущая и «мертвая» (неактивная) полимерные цепи длиной /, образованные на 7-ом типе АЦ, I - инициатор, М - мономер, А - АОС; Ц -, кр- , к 'м -, УД — и к^ - константы скоростей элементарных стадий инициирования, роста цепи, передачи цепи на мономер и на АОС, гибели активных центров, соответственно, для ./-ого типа АЦ. При создании математической модели кинетики ионно-координационной полимеризации предполагаем, что константы скоростей элементарных стадий не меняют
своего значения в ходе процесса. Стадию инициирования АЦ будем считать прошедшей.
Применяя метод моментов, систему дифференциальных уравнений (СДУ), описывающую процесс полимеризации, преобразуем к замкнутому виду. Сами моменты ММР при этом рассчитываются по формулам:
4=±[<2]}чк, (Ю)
/=1 /=1
где и <7^ - начальные ненормированные моменты ¿-ого порядка
активных и неактивных цепей полимера на /-ом типе АЦ, соответственно. Среднечисленная ММ определяется через моменты по выражению:
4,(0 = "^-- (11)
ЕИ'ЫМ)
/=1
Поскольку, для расчета среднечисленной характеристики молекулярных масс необходимо знание моментов до 1-ого порядка включительно, СДУ, описывающая кинетическую схему, запишется относительно моментов л/, и £/д, ц{ следующим образом:
Иг'
аГ0 - и К!
(12)
Фо сЬ
¿¡У
Ф/. Л
где К^А=УА[А}.
При решении системы (12) учитываются следующие начальные условия:
'4=0) =№> = °> 1 =^ > к =(13)
Одноцентровую модель механизма полимеризации получаем, когда т= 1, т.е. когда в системе существует 1 тип АЦ.
Решая СДУ (12) при т = 1, найдено аналитическое выражение для Мп{1):
Mn{t)=nb-
Mo-M*
Kcl
kp+kM
К-14
(14)
Выражение (14) получено нами в общем случае. В зависимости от состояния стационарности процесса относительно концентрации реагирующих веществ ([Л/], [/?] ]0) рассмотрены 3 частных случая, для которых также выведены аналитические выражения Мп ({).
Случай 1. В ходе ионно-координационной полимеризации диенов концентрация мономера остается постоянной и константа гибели активных центров равна нулю, т.е. соблюдается стационарность по концентрациям мономера и АЦ. Этот случай соответствует процессу ионно-координационной полимеризации диенов на неодимсодержащих катализаторах в начальный момент времени. Аналитическое выражение для среднечисленной характеристики ММР имеет вид:
и ГЛ - 1 + +
М„(.0 - Щ ■-- Т. г . .1 ч -
1 + {км[М\+КАу
(15)
Случай 2. Константа гибели активных центров равна нулю, т.е. соблюдается стационарность только по концентрации АЦ. Этот случай соответствует процессу ионно-координационной полимеризации диенов на неодимсодержащих катализаторах. Рассчитанное выражение для средне-численной характеристики ММР следующее:
ГПп
kp + км
(16)
м
kP+kM
Случай 3. Концентрация мономера уменьшается незначительно и можно считать, что [М] = const и kd t- 0. Этот случай соответствует начальной стадии полимеризации диенов на титансодержащих каталитических системах, когда конверсия мономера незначительна или же когда мономер подается в реакционную систему непрерывно и с избытком. Полученное выражение для среднечисленной ММ:
4,(0 =
тп
(км[М\+КА+крЩ{\-е-1",) + к,1 (кс1+км[м]+КА)-е-к"'{км[М] + КА)'
(17)
На рис. 2а показаны зависимости Л/П(г), рассчитанные для случаев, когда соблюдается стационарность по концентрации мономера и когда не соблюдается для 1-го из исследуемых образцов ПИ и для образца полибутадиена (ПБ), синтезированного на каталитической системе ШС13-ЗТБФ-ТИБА. Как видно, для образца ПИ, отличие между зависимостями Л/„(?), вычисленными по двум разным формулам, составляет порядка 0,3%, а для образца ПБ -35%. Отсюда можно сделать вывод о том, что при полимеризации диенов на титансодержащих каталитических системах, в отличие от неодимсодержащих, изменение концентрации мономера практически не влияет на процесс полимеризации. Это связано с тем, что в процессе полимеризации диенов на титансодержащих каталитических системах происходит гибель АЦ. В ходе полимеризации также происходит уменьшение концентрации мономера. Но при полимеризации диенов на титансодержащих каталитических системах, как можно заметить из рис.2б, отношение концентрации мономера к общей концентрации АЦ со временем не уменьшается, оно даже увеличивается. В этом случае создается как бы эффект избыточной подачи мономера в реакционную систему. При полимеризации диенов на неодимсодержащих каталитических системах изменение концентрации АЦ не происходит, поэтому уменьшение концентрации мономера сильно влияет на процесс полимеризации. В этом случае отношение концентрации мономера к общей концентрации АЦ со временем убывает (рис.26).
[МИАЦРСПП)
г Т1СЬ-ДФО-пиперилен-А1(|-С,)Ну)1
а)
№С1уЗТБФ-ТИБА -----
ч[М]/[АЩМ0'2(Г4<а)
Т|С1.гДФО-пиперилен-А1(;-С|Н!))з
б)
/ 2
ЬМСЬ-ЗТБФ-ТИБА к, мин
Рис.2. Значения средиечислекных характеристик ММР (а) (пунктирные линии -соблюдается стационарность по мономеру) и отношение [А/]/[Л//] (б).
Таким образом, вследствие эффекта «избыточной» подачи мономера при полимеризации диенов на титансодержащих каталитических системах для вычисления значений среднечисленной молекулярной массы применимо более простое выражение (17).
Глава 5. Полицентровая модель кинетики ионно-координациоиной полимеризации
Рассмотрим решение СДУ (12) применительно к полицентровым катализаторам. При полимеризации диенов на титан- и неодимсодержа-щих каталитических системах оно сводится к 2-м частным случаям.
Случай 1. В ходе ионно-координационной полимеризации диенов соблюдается стационарность по концентрации АЦ. Этот случай соответствует процессу ионно-координационной полимеризации диенов на не-одимсодержащих каталитических системах. Рассчитанное выражение для среднечисленной ММу-ого типа АЦ имеет вид:
тп х
(18)
/я
+*£)[*■ I
м0
1-ехр
М0
1-ехр
к= 1
Выражение для усредненной среднечисленной характеристики суммарно для всех типов АЦ совпало с зависимостью для одноцентровой модели (16), где в качестве констант берутся усредненные константы. Этот факт объясняет объективное описание экспериментальных среднечислен-ных значений расчетными, вычисленными по одноцентровой модели, в то время как для рассматриваемой системы характерна кинетическая неоднородность катализатора.
Случай 2. В ходе ионно-координационной полимеризации диенов происходит гибель АЦ, т.е. ка & 0. Этот случай соответствует процессу
ионно-координационной полимеризации диенов на титансодержащих каталитических системах. Усредненная среднечисленная характеристика ММР суммарно для всех типов АЦ вычисляется по выражению:
Мп (() = тах
(19)
т I н ( т -I {КМ,){1ф-ь!г1 1-е1 V }
т . _ /=1
т I ЧЛЧ[М1 ¡-Ш^'ф-^'г' 1 - ё- \ \ /
т . .1=1
На рис. 3 показаны экспериментальные и расчетные среднечислен-ные ММ для образца ПИ с кинетическими параметрами, которые были найдены решением обратной задачи химической кинетики.
О 10 20 31] АО 50 60 70
Рис.3. Экспериментальные и расчетные среднечисленные молекулярные массы: (?) (1), Мп2 (?) (2), Мпз (?) (3) и для всей полимеризации (4) образца ПИ, синтезированного на к.с. "ПСЦ-ДФО-пиперилен-А^-С^).
Обратная задача химической кинетики для титансодержащих систем решается путем минимизации двух функционалов. На первом этапе
ищется минимум функционала Р (у^ по у 1 = у/ [к^, [/?, , к^ |:
1=1
где п - количество экспериментальных точек,
^э^сп ^ ) и Vрас,.' (.У/ )~ экспериментальная и расчетная конверсионные зависимости для_/-го типа АЦ.
На втором этапе находится минимум Ф(г/) по
при этом величины Ур ■ [/?, и к]й
считаются постоянными.
Результаты решения обратной кинетической задачи для одного из исследуемых образцов ПИ представлены в табл. 1.
Как видно из рис.3, экспериментальные и рассчитанные с найденными константами среднечисленные характеристики молекулярных масс отличаются не более чем на 6%. Таким образом, можно считать, что кинетические параметры, найденные при решении обратной задачи для полицентровых систем, объективны.
Таблица 1
Кинетические характеристики процесса ионно-координационной полимеризации изопрена на системе Т{С14-ДФО-пиперилен-А1(1-С4Н9)з
Константы
-й АЦ
2-й АЦ
3-й АЦ
Усредненные характеристики
моль-мин
500
1630
2400
1853
л
\ моль-мин
4,00
2,50
0,47
1,65
км
моль ■ мин
5,0
5,0
5,0
5,0
1 ' мин,
0,052
0,03
0,09
0,067
[*,]0, МО«
3,98
5,81
12,2
22,0
Усредненная константа скорости «/с, » (/'= р, М, А, й) взаимосвязана с соответствующими константамиу'-того типа АЦ по формуле:
ш т
1\Ц\лц\ !>/[*,}' « к/ >>= ^-= £!-, (22)
±[лц\ М
./■=1
т
где [/?,] = - общая концентрация АЦ.
У=1
Полицентровость процесса полимеризации оказывает существенное влияние на стационарность Кинетических параметров процесса. Большинство методик экспериментального определения кинетических параметров в случае одноцентрового процесса ионно-координационной полимеризации справедливо для стационарных процессов, где постоянными считаются как кинетические константы, так и концентрации реагентов. Оказывается, в полицентровых системах, где происходит гибель АЦ, значения усредненных констант (22) в процессе полимеризации не остаются постоянными. Известно, что концентрация АЦ убывает с течением времени по
формуле [Л, У = [Л, е'^'. Ввиду того, что значения констант гибели АЦ
разных типов различны, скорость уменьшения концентрации АЦ для каждого типа также будет разной (рис.4).
Рис. 4. Изменение концентрации АЦ для каталитической системы "ПСЦ-ДФО- пиперилен -А1(1-С4Н9): кривая 1-для 1-го типа АЦ, 2-для 2-го, 3-для 3-го, 4- с начальными усредненными константами, 5- суммарная.
Это, в свою очередь приводит к тому, что в процессе полимеризации происходит изменение усредненных констант скоростей элементарных реакций (рис.5), т.е., не выполняется предположение о стационарности процесса полимеризации.
б)
О 20 40
100 120 140 160 160 2С0
О 20 40
100 120 140 193 160 2Х
Рис.5. Изменение усредненной константы роста (а) и константы передачи цепи на мономер (б) полимеризации ПИ на системах: "ПС14-А1(1-С4Н9) (1), ПС14-пиперилеп-А1(1-С4Н9) (2), Т]С14-ДФО-Л1(1-С4Н9) (3), Т1СЦ-ДФО-гшперилен-А1(ьС4Н9)(4).
Таким образом, рассмотрение полицентровой полимеризации как классическую одноцентровую, может привести к ошибочным результатам. Поэтому при определении кинетических параметров надо использовать модельные схемы, описывающие формирование полимера в присутствии нескольких типов АЦ.
Основные результаты и выводы
1. Впервые получены аналитические выражения, описывающие особенность формирования молекулярных характеристик в процессе ион-но-координационной полимеризации с участием нескольких типов АЦ.
1.1. Получены аналитические выражения временных зависимостей среднечисленной молекулярной массы для различных полимеризацион-ных процессов, которые могут быть использованы как для решения прямых задач, так и для решения обратных кинетических задач, а также для целенаправленного синтеза полимеров с заданными молекулярными характеристиками.
1.2. Установлены аналитические зависимости между молекулярными характеристиками полимера, образованного на каждом типе АЦ, и всего полимера в целом. Полученные зависимости позволяют оценить вклад каждого типа АЦ в процесс образования полимерных цепей.
1.3. Обнаружено, что при полимеризации диенов на титансодержа-щих катализаторах, когда полимеризация проходит с гибелью АЦ, изменение концентрации мономера не сказывается на значениях среднечисленной молекулярной массы.
2. Разработана методика анализа функции распределения активных центров полимеризации, позволяющая значительно снизить погрешность описания кривых ММР.
3. Исследовано влияние полицентровости процесса полимеризации на значения усредненных молекулярных масс и кинетических констант. Показана неприменимость одноцентровой модели для анализа кинетических закономерностей полицентровых полимеризационных процессов.
4. Решена обратная задача расчета усредненных констант и констант скоростей элементарных реакций для каждого типа АЦ ионно-координационной полимеризации изопрена на титансодержащих каталитических системах.
Список основных публикаций:
1) Усманов Т.С. Об одном способе расчета параметра полидисперсности продуктов ионно-координационной полимеризации / Т.С. Усманов, P.P. Исмаилов, Л.А. Бигаева, С.М. Усманов // Обозрение прикладной и промышленной математики,-2006. - Т. 13, ч.2 - С. 1124-1126.
2) Усманов Т.С. Расчет кинетических констант ионно-координационной полимеризации изопрена на титансодержащих катализаторах / Т.С. Усманов, Л.А. Бигаева, A.C. Усманов // Обозрение прикладной и промышленной математики-2006. - Т. 13, ч.2 - С. 1122-1124.
3) Усманов Т.С. Об особенностях численного решения обратной задачи молекулярно- массового распределения радикальной полимеризации /Т.С. Усманов, Ф.Р. Гайсин, Л.А. Бигаева и др. //Башк. хим. журнал. - 2006.-Т.13, №4.- С. 88-94.
4) Усманов Т.С. Численное решение обратных задач молекулярно-массового распределения и кинетики ионно-координационной полимеризации изопрена на титансодержащих катализаторах / Т.С. Усманов, Л.А. Бигаева, С.М. Усманов // Башк. хим. журнал. -2007. - Т. 14, №5. - С. 7-14.
5) Усманов Т.С. Об одном способе расчета усредненных характеристик молекулярных масс продуктов ионно-координационной полимеризации / Т.С. Усманов, Л.А. Бигаева, С.М. Усманов // Вестник Башк.гос.ун-та-2008. -Т.13, №3. - С.492-495.
6) Бигаева Л.А. Расчет молекулярно-массового распределения продуктов ионно-координационной полимеризации изопрена на титансодержащих катализаторах / Л.А. Бигаева, С.М. Усманов // Сб. трудов IV на-учно-практ. конф. «ЭВТ в обучении и моделировании»,- Бирск: Бир-ГСПА, 2005. -4.1. - С.145 -150.
7) Бигаева JI.A. Расчет среднечисленной и среднемассовой характеристик молекулярно-массового распределения с помощью метода моментов / JI.A. Бигаева, A.C. Усманов, С.И. Спивак // Сб. трудов IV научно-практ. конф. «ЭВТ в обучении и моделировании».- Бирск: Бир-ГСПА, 2005. - 4.1. - С.277 -280.
8) Усманов С.М. Расчет функции распределения молекулярных масс ионно-координационной полимеризации изопрена / С.М. Усманов, Л.А. Бигаева, A.C. Усманов // Труды кафедры эксперим. и теорет. физики ИФМиК УНЦ РАН,- Уфа: Гилем, 2006,- Вып. 2. - С.79-86.
9) Усманов Т.С. Расчет среднечисленной характеристики молекулярно-массового распределения продуктов ионно-координационной полимеризации / Т.С. Усманов, Л.А. Бигаева // Сб. трудов VI научно-практ. конф. «ЭВТ в обучении и моделировании».- Бирск: БирГСПА, 2007. -4.1. — С.153 -158.
10) Усманов Т.С. Расчет параметра полидисперсности продуктов ионно-координационной полимеризации с учетом распределения молекулярных масс / Т.С. Усманов, Л.А. Бигаева, С.М. Усманов // Сб. тезисов XIV Всерос. конф. "Структура и динамика молекулярных систем. Яльчик - 2007." - 2007. - С. 243.
11) Усманов Т.С. 4исленное решение обратной задачи молекулярно-массового распределения при ионно-координационной полимеризации изопрена на титансодержащих катализаторах / Т.С. Усманов, Л.А. Бигаева, С.М. Усманов //Труды Инст. механики УНЦ РАН-Уфа: Гилем, 2007,- Вып. 7. - С.89-94.
12) Бигаева Л.А. Обратные задачи ММР и расчет кинетических констант ионно-координационной полимеризации / Л.А. Бигаева, Т.С. Усманов // Сб. науч. трудов Всеросс. научно-практ. конф. «Обратные задачи в приложениях».- Бирск: БирГСПА, 2008. - С. 129-135.
Соискатель Бигаева Л.А.
Автор выражает благодарность д.ф.-м.н., проф. Усманову С.М., к. ф.-м.н., доц. Латыпову И.И. за помощь в работе и обсуждении результатов.
Подписано в печать 10.03.2009 г. Гарнитура "Times". Печать на ризографе с оригинала. Формат 60х84'/1б. Усл.-печ.л. 1,3. Уч.-изд.л. 3,42. Бумага писчая. Тираж 110 экз. Заказ № 68
452450, Республика Башкортостан, г. Бирск, ул.Интернациональная, 10. Бирская государственная социально-педагогическая академия Отдел множительной техники БирГСПА
Список сокращений и условных обозначений.
ВВЕДЕНИЕ.
Глава 1. СТАТИСТИЧЕСКИЕ ХАРАКТЕРИСТИКИ
ИОННО-КООРДИНАЦИОННОЙ ПОЛИМЕРИЗАЦИИ (Литературный обзор).
1.1. Статистические характеристики молекулярно-массового распределения (ММР).
1.2. Явление полицентровости в титансодержащих каталитических системах.
1.3. Постановка обратных задач формирования ММР и кинетики ионно-координационной полимеризации.
Актуальность проблемы. Большинство реальных полимерных материалов характеризуется широким молекулярно-массовым распределением (ММР), часто имеющим полимодальный вид. Основной причиной образования широких ММР является наличие в каталитической системе кинетически неоднородных активных центров (АЦ) полимеризации, которые работают независимо друг от друга, формируя полимер с разными свойствами. Определить свойства и характерные признаки полимера, образованного на таких кинетически неоднородных полицентровых каталитических системах, можно только исследуя ММР всего полимера как совокупность распределений образующегося полимера на каждом типе АЦ. Следовательно, для направленного воздействия на процесс полимеризации, необходимо изучить вклад и кинетические характеристики каждого типа АЦ, что приводит к обратным задачам - задачам восстановления механизма полимеризации по экспериментальным данным.
Задача восстановления кинетических констант скоростей элементарных стадий и концентраций активных центров полимеризации, т.е., обратная задача химической кинетики, решается численно, путем сопоставления значений конверсионных и молекулярных зависимостей, определенных на основе принятой кинетической схемы, с экспериментальными данными. Решение обратной кинетической задачи для полицентровых каталитических систем вызывает большие затруднения, так как получаемое в этом случае численное решение, вследствие многократного обращения к системе дифференциальных уравнений, становится крайне неустойчивым. Поэтому проблема получения аналитических выражений для молекулярных характеристик полимера, образованного в присутствии нескольких типов центров полимеризации, так необходимых для определения кинетических параметров, до сих пор остается.
Цель работы. Решение обратных задач кинетики ионно-координационной полимеризации численно-аналитическими методами. При решении этой проблемы возникают следующие задачи: получение аналитических выражений для молекулярных характеристик полимеров, синтезированных на полицентровых каталитических системах; установление взаимосвязей между молекулярными характеристиками полимера, образованного на каждом типе АЦ, и всего полимера в целом; исследование влияния полицентровости процесса полимеризации на значения усредненных молекулярных масс и кинетических констант; анализ функции распределения АЦ полимеризации с учетом влияния ширины распределения; разработка методики расчета кинетических параметров центров полимеризации.
Научная новизна. Решены обратные задачи формирования ММР и химической кинетики ионно-координационной полимеризации изопрена на титансодержащих каталитических системах. Научная новизна работы представлена следующими положениями:
- получены аналитические выражения временных зависимостей среднечисленной молекулярной массы всего процесса полимеризации в целом, а также для каждого типа центра полимеризации с участием реакций передачи цепи на мономер, передачи цепи на алюминийорганическое соединение (АОС) и гибели активных центров;
- установлены аналитические зависимости между молекулярными характеристиками полимера, образованного на каждом типе АЦ, и всего полимера в целом;
- разработана методика анализа функции распределения АЦ полимеризации с учетом влияния параметра ширины;
- исследовано влияние полицентровости процесса полимеризации на значения усредненных молекулярных масс и кинетических констант. Показана неприменимость одноцентровой модели для анализа кинетических закономерностей полицентровых полимеризационных процессов;
- найдены значения кинетических параметров для каждого типа АЦ полимеризации изопрена на титансодержащих каталитических системах.
Практическая значимость работы.
Полученные аналитические выражения среднечисленных характеристик для различных полимеризационных процессов могут быть использованы как для решения прямых задач, так и для решения обратных кинетических задач, а также для целенаправленного синтеза полимеров с заданными молекулярными характеристиками.
Апробация работы. Результаты работы были представлены на: VII Всероссийском симпозиуме по прикладной и промышленной математике (Йошкар-Ола, 2006 г.); XIV Всероссийской конференции «Структура и динамика молекулярных систем» (Яльчик, 2007 г.); IV (Бирск, 2005 г.) и VI (Бирск, 2007 г.) Всероссийских научно-практических конференциях «ЭВТ в обучении и моделировании»; V (Бирск, 2006 г.) и VII (Бирск, 2008 г.) Всероссийских научно-практических конференциях «Обратные задачи в приложениях»; научных семинарах Проблемной лаборатории математического моделирования и механики сплошных сред при Бирской государственной социально-педагогической академии, Института нефтехимии и катализа РАН.
Публикации. По материалам диссертации опубликовано 17 печатных работ, в том числе 16 статей.
Структура и объем работы. Работа изложена на 160 страницах и состоит из введения, пяти глав, выводов и списка цитируемой литературы (94 наименования).
Результаты исследования позволили сделать следующие основные выводы:
1. Впервые получены аналитические выражения, описывающие особенность формирования молекулярных характеристик в процессе ионно-координационной полимеризации с участием нескольких типов АЦ.
1.1. Получены аналитические выражения временных зависимостей среднечисленной молекулярной массы для различных полимеризационных процессов, которые могут быть использованы как для решения прямых задач, так и для решения обратных кинетических задач, а также для целенаправленного синтеза полимеров с заданными молекулярными характеристиками.
1.2. Установлены аналитические зависимости между молекулярными характеристиками полимера, образованного на каждом типе АЦ, и всего полимера в целом. Полученные зависимости позволяют оценить вклад каждого типа АЦ в процесс образования полимерных цепей.
1.3. Обнаружено, что при полимеризации диенов на титансодержащих катализаторах, когда полимеризация проходит с гибелью АЦ, изменение концентрации мономера не сказывается на значениях среднечисленной молекулярной массы.
2. Разработана методика анализа функции распределения активных центров полимеризации, позволяющая значительно снизить погрешность описания кривых ММР.
3. Исследовано влияние полицентровости процесса полимеризации на значения усредненных молекулярных масс и кинетических констант. Показана неприменимость одноцентровой модели для анализа кинетических закономерностей полицентровых полимеризационных процессов.
4. Решена обратная задача расчета усредненных констант и констант скоростей элементарных реакций для каждого типа АЦ ионно-координационной полимеризации изопрена на титансодержащих каталитических системах.
1. Френкель С.Я. Введение в статистическую теорию полимеризации / С.Я. Френкель. - М.: Наука, 1965. -268 с.
2. Берлин А.А. Кинетика полимеризационных процессов / А.А. Берлин, С.А. Вольфсон, Н.С. Ениколопян. М: Химия, 1978. -268 с.
3. Кантов М. Фракционирование полимеров / М. Кантов. М.: Мир, 1971. -441 с.
4. Sauvet G. Multiplicity of active centers in the cationic polymerization of P-methoxystyrene / G. Sauvet, M. Moreau, P. Sigwalt // Macromol. Chem. Macromol. Symp, 1986.-V.3. P. 33-46.
5. Dandge D.K. Kinetics of higher-olefm polymerization /D.K. Dandge, J.P. Heller, C.J. Lien, K.V. Wilson//Amer. Chem. Soc. Polym. Prepr., 1986. -№27, v.l.-P. 273-274.
6. Сигаева H.H. Распределение центров полимеризации диенов на ланта-нидных системах по каталитической активности / Н.Н. Сигаева, Т.С. Усманов, С.И. Спивак, Ю;Б. Монаков //Высокомолек. соед. Серия Б -2000. -Т. 42, №2. С. 112-117.
7. Визен Е.И. Молекулярно-массовое распределение изотактического полипропилена, полученного в условиях "квази-живой" полимеризации /Е.И. Визен, Ф.И. Якобсон //Высокомолек. соед. Серия А 1978. -Т. 20, №4. - С. 927-935.
8. Kissin Y.V. Molecular wieght distribution of linear polymers: detailed analysis from GPC data / Y.V. Kissin // J. Polym. Sci. Part A: Polym. Chem.- 1995. V. 33. - P. 227-237.
9. Усманов Т.С. Математическое моделирование процесса полимеризации бутадиена на лантанидсодержащих катализаторах / Т.С. Усманов, Э.Р. Максютова, С.И. Спивак // Доклады РАН 2002. - Т.387, №.6. - С. 793-796.
10. Аксенов В.И. ММР низкомолекулярного полибутадиена, полученного на никелевой каталитической системе. /В.И. Аксенов, В.И. Аносов,
11. JI.C. Колокольников и др. // Пром. синтет. каучука, шин и резино-техн. изделий 1986. -№.7. - С. 11-14.
12. Усманов А.С. Модельные функции в некорректно поставленной задаче ММР / А.С. Усманов, С.И. Спивак, Т.С. Усманов // Обозрение приклад. и пром. математики 2001. - Т.8, №.2. - С.642-643.
13. Bohm L.L. Polymerization of ethylene: catalyst desing and molecular mass distribution / L.L. Bohm, J. Berthold, R. Franke // Amer. Chem. Soc. Po-lym. Prepr. 1985. - V.26, №.2. - P.374-379.
14. Bonini F. Modelling of Ziegler-Natta olefin polymerization /F. Bonini, G. Sorti, M: Morbidelli, S. Cerra//Gazz.Chim.Ital. 1996. - V.126, №.2. -P.75-84.
15. Fan Z.Q. Distribution of active centers on TiCU/MgCL catalyst for olefin polymerization / Z.Q. Fan, L.X. Feng, S.L. Yang // J. Polym. Sci. Part A: Polym. Chem. 1996. - V.34, №.16. - P.3329-3335.
16. Pepper D.C. Bimodality in molar distribution in polystyrenes initiated by perchlocic acid-an artifact not diagnostic of propagating species Makromol /D.C. Pepper.- Chem. Rapid. Commun. 1996. - V.17, №.3. - P. 157-161.
17. Монаков Ю.Б. Полицентровость каталитических систем в полимериза-ционных процессах /Ю.Б. Монаков, Н.Н. Сигаева//Высокомолек. со-ед. Серия С 2001. -Т. 43, №9. - С. 1667-1688.
18. Садыков И.В. Стереоспецифическая полимеризация изопрена при формировании катализатора на основе TiCl4-Al(i-C4H9)3 :автореф. дисс. на соиск. уч. степени канд. хим. наук / И.В. Садыков.- Уфа, 2005. -20 с.
19. Сигаева Н.Н. Кинетическая неоднородность активных центров ланта-нидных и ванадиевых каталитических систем ионно-координационной полимеризации диенов: автореф. на соиск. уч. ст. док. хим. наук / Н.Н.Сигаева.- Уфа: ИОХ УНЦ РАН, 2001. -24 с.
20. Монаков Ю.Б. Каталитическая полимеризация 1,3- диенов/Ю.Б. Монаков, Г.А. Толстиков. М.: Наука, 1990. - 211 с.
21. Долгоплоск Б.А. Металлоорганический синтез в процессах полимеризации / Б.А. Долгоплоск, Е.И. Тинякова.- М.: Наука, 1985. 534 с.
22. Долгоплоск Б.А. Роль катализаторов Циглера-Натта в синтезе стерео-регулярных полимеров сопряженных диенов / Б.А. Долгоплоск, Е.И. Тинякова//Высокомолек. соед. Сер. А 1994. - Т.36, №.10. - С.1653-1679.
23. Усманов Т.С. Обратные задачи формирования молекулярно-массовых распределений / Т.С.Усманов, С.И. Спивак, С.М. Усманов. -М: Химия, 2004. 252 с.
24. Саитова Ф.Ф. Кинетическая неоднородность активных центров полимеризации ванадиевых и титановых каталитических систем и- молекулярные характеристики полиизопрена: дисс. на соискание уч. ст. канд. хим. наук / Ф.Ф.Саитова. -Уфа: ИОХ УНЦ РАН, 2005. -137 с.
25. Усманов Т.С. О решении обратной задачи формирования молекулярно-массовых распределений при ионно-координационной полимеризации. / Т.С. Усманов, И.К. Гатауллин, С.М. Усманов и др.// Доклады РАН -2002. Т.385, №.3. - С.368-371.
26. Усманов А.С. Расчет функции распределения активных центров в процессе ионно-координационной полимеризации / А.С. Усманов, С.И. Спивак, И.Ш. Насыров, С.М. Усманов // Системы управления и информационные технологии. 2004. — №4 (16). — С.34-38.
27. Усманов А.С. Численное решение обратной задачи молекулярно-массового распределения / А.С. Усманов, С.И. Спивак, Ф.Р. Гайсин, Т.С. Усманов // Обозрение приклад, и пром. математики 2004. - T.l 1, №.1. - С.147-187.
28. Бартеньев Г.М. Физика полимеров /Г.М. Бартеньев, С .Я. Френкель. -Л.: Химия, 1990. 432 с.
29. Рафиков С.Р. Введение в физико-химию растворов полимеров / С.Р. Рафиков, В .П. Будтов, Ю.Б. Монаков,- М.: Наука, 1978. 378 с.
30. Бемфорд К. Кинетика радикальной полимеризации виниловых соединений / К. Бемфорд, У.Барб, А. Дженкинс. М: Ин.лит:, 1961.- 348 с.
31. Тихонов А.Н. Методы решения некорректных задач /А.Н. Тихонов,
32. B.Я. Арсенин. М.: Наука, 1986. - 288 с.32'. Усманов С.М. Релаксационная поляризация диэлектриков. Расчет спектров времен диэлектрической релаксации / С.М. Усманов М.: Наука, 1996.- 144 с.
33. Верлань А.Ф. Интегральные уравнения: методы, алгоритмы, программы / А.Ф. Верлань, B.C. Сизиков.- Киев: Наукова думка, 1986. 543 с.
34. Тихонов А.Н. Численные методы решения некорректных задач / А.Н. Тихонов, А.В. Гончарский и др. М.: Наука, 1990. - 232 с.
35. Тихонов А.Н. Регуляризующие алгоритмы и априорная информация. / А.Н. Тихонов, А.В. Гончарский и др. М.: Наука, 1983. - 198 с.
36. Усманов Т.С. Кинетическая неоднородность активных центров неоди-мовых каталитических систем при полимеризации диенов: дисс. на соискание уч. ст. кандидата хим. наук / Т.С. Усманов.- Уфа: ИОХ УНЦ РАН, 2000.- 126 с.
37. Тихонов А.Н. О регуляризации некорректно поставленных задач / А.Н.Тихонов // Доклады АН СССР 1963. - Т. 153, №.1. - С.49-52.
38. Тихонов А.Н. О решении некоррекно поставленных задач и методе регуляризации / А.Н.Тихонов // Доклады АН СССР 1963. - Т.151, №.3.1. C.501-504.
39. Бакушинский А.Б. Итеративные методы решения некорректных задач / А.Б. Бакушинский, А.В. Гончарский,- М.: Наука, 1989.
40. Иванов В.К. Теория линейных некорректных задач и ее приложения. / В.К. Иванов, В.В. Васин, В.П. Танака.- М.: Наука, 1978.
41. Морозов В.А. Регулярные методы решения некорректно поставленных задач / В.А. Морозов. -М.: Наука, 1987. 240 с.
42. Usmanov S.M. Numerical Methods of Solving Ill-Posed Problems of Dielectric Spectrometry / S.M. Usmanov, G.E. Zaikov. -New York: Nova Science Publishers, 2002. P. 156.
43. Сигаева H.H. О кинетической неоднородности в радикальной полимеризации стирола в присутствии системы пероксид-бензоила-металлоцен / Н.Н. Сигаева, С.В. Колесов, Е.М. Пропудина и др. // Доклады РАН 2002. - Т.386, №.6. - С.785-788.
44. Усманов Т.С. Обратная кинетическая задача ионно-координационной полимеризации диенов / Т.С. Усманов, Э.Р. Максютова, И.К. Гатаул-линидр. //Высокомолек. соед. Сер. А -2003.- Т.45, №.2. С. 181-187.
45. Максютова Э.Р. Кинетические модели ионно-координационной полимеризации диенов: автореф. дисс. на соиск. уч. ст. кандидата ф.-м. н. / Э.Р. Максютова.- Уфа: БГУ, 2003.- 21 с.
46. Максютова Э.Р. Обратные задачи кинетики ионно-координационной полимеризации / Э.Р. Максютова, Т.С. Усманов, С.И. Спивак // Обозр. приклад, и пром. математики 2001. - Т.8, №.1. - С.403-404.
47. Максютова Э.Р. Математическая модель процесса полимеризации» изопрена на катализаторах Циглера-Натта / Э.Р. Максютова, Т.С. Усманов,
48. С.И. Спивак // Обозр. приклад, и пром. математики 2001. - Т.8, №.2. -С.642-643.
49. Гатауллин И.К. Математическое моделирование • кинетически неоднородных неодимсодержащих каталитических систем в ионно-координационной полимеризации бутадиена: дисс. на соиск. уч. степени канд. хим. наук / И.К. Гатауллин. Бирск: БирГПИ, 2004. - 116 с.
50. Усманов С.М. Моделирование методом Монте-Карло кинетики ионно-координационной полимеризации диенов / С.М.Усманов, И.К. Гатауллин, Т.С. Усманов //Вестник Херсонского Гос. Университета 2001. -№.3(12). - С.275-279.
51. Усманов А.С. Модельные функции в обратных задачах молекулярно-массового распределения: дисс. на соиск. уч. степени канд. физ.-мат. наук / А.С.Усманов. -Бирск: БирГСПА, 2005,- 156 с.
52. Беленький Б.Г. Хроматография полимеров / Б.Г.Беленький, JI.3. Ви-ленчик. М.: Химия, 1978. - 334 с.
53. Самарский А.А. Численные методы решения обратных задач математической физики /А.А. Самарский, П.Н. Вабищевич. -М.: Едиториал УРСС, 2004. 480 с.
54. Сизиков B.C. Математические методы обработки результатов измерений / В.С.Сизиков.- СПб: Политехника, 2001. 240 с.
55. Сигаева Н.Н. О распределении по активности ионно-координационных каталитических систем при полимеризации диенов / Н.Н.Сигаева, Т.С. Усманов, Е.А. Широкова и др. //Доклады РАН 1999. - Т.365, №.2. -С.221-224.
56. Усманов А.С. Модельные функции в некорректно поставленной задаче форми-рования молекулярно-массовых распределений / А.С. Усманов, P.P. Исмаилов, Т.С. Усманов // Башкирский химический журнал 2005. - Т. 12, №.2. - С.67-74.
57. Усманов Т.С. Обратная задача формирования молекулярно-массовых распределений в процессах полимеризации / Т.С. Усманов, А.С. Усманов, С.М. Усманов // Тезисы докл. XVII Менделеевского съезда по общей и прикладной химии, 2003 С. 425-426.
58. Гатауллин И.К. Статистическая модель полимеризации бутадиена./ И.К. Гатауллин, А.С. Усманов // Региональная школа-конференциядля студентов, аспирантов и молодых ученых по математике и физике. -Бирск: БирГСПИ, 2002. С. 130-132.
59. Усманов Т.С. Обратные задачи формирования молекулярно-массового распределения в процессах полимеризации / Т.С. Усманов, А.С. Усманов, С.М. Усманов, А.Г. Ягола // Вычислительные методы и программирование. 2006. - Том 7. - С.294 -299.
60. Самарский А.А. Введение в численные методы / А.А.Самарский. М.: Наука, 1987. -288 с.
61. Банди Б. Методы оптимизации. Вводный курс /Б.Банди. -М: Радио и связь, 1980. 128 с.
62. Бахвалов Н.С. Численные методы /Н.С. Бахвалов, Н.П. Жидков. М.: Изд. лаб. базовых знаний, 2000. - 624 с.
63. Спивак С.И. О полноте доступных кинетических измерений при определении констант скоростей сложных химических реакций / С.И. Спивак, В.Г. Горский // Химическая физика 1982. - Т.1, №.2. - С.237-247.
64. Клибанов М.В. О числе независимых параметров стационарной кинетической модели /М.В. Клибанов, С.И. Спивак, В.И. Тимошенко и др. // Доклады академии наук 1973. - Т.208, №.5. - С. 1387-1390.
65. Козлов В.Г. Определение некоторых кинетических параметров процесса полимеризации диенов на катализаторах Циглера-Натта / В.Г. Козлов, В.П. Будтов, К.В. Нефедьев//Доклады академии наук 1987. -Т.27, №.2.-С.411-414.
66. Спивак С.И. Методы построения кинетических моделей стационарных реакций / С.И. Спивак, В.И. Тимошенко, М.Г. Слинько // Хим. пром. -1979. -№.3.- С. 33-36.
67. Слинысо М.Г. Механизм гетерогенных каталитических реакций / М.Г. Слинько //Кинетика и катализ. 1980. - Т.21, №.1. - С. 71-78.
68. Темкин М.И. Теоретические модели кинетики гетерогенных каталитических реакций /М.И. Темкин //Кинетика и катализ. 1972. - Т. 13, №.3. - С. 555-565.
69. Монаков Ю.Б. О кинетических параметрах полимеризации изопрена на модифицированных каталитических системах Т1С14-А1(изо-С4Н9)3 / Ю.Б. Монаков, С.Р. Рафиков, Н.Х. Минченкова и др. // Доклады РАН- 1980. Т.253, №.3. - С.1166-1168.
70. Берг А.А. Молекулярные массы и ММР 1,4-цис-полиизопрена, полученного при различных условиях системы TiCl4-Al(C7Hi5)3 / А.А. Берг, В.Г. Козлов, В.П. Будтов и др. //Высокомолек. соед. Серия А 1980. -Т.22, №.3. - С.543-549.
71. Фушман Э.А. Кинетика полимеризации этилена и проблема формирования активных центров гомогенных циглеровских каталитических систем. /Э.А. Фушман и др. //Высокомолек. соед. Серия Б 1995. -Т.37. - С. 1589-1616.
72. Монаков Ю.Б. Исследование 1,4-транс-полимеризации изопрена / Ю.Б. Монаков, С.Р. Рафиков, Н.Х. Минченкова и др. // Доклады РАН- 1981. Т.258, №.4. - С.892-894.
73. Гатауллин И.К. Определение констант скоростей элементарных реакций моделированием кинетики ионно-координационной полимеризации / И.К. Гатауллин, А.С. Усманов // Сборн. трудов Всеросс. Научной конф. "ЭВТ в обучении и моделировании" 2001. Т.1.- С. 26-29.
74. Усманов А.С. Расчет кинетических характеристик активных центров при ионно-координационной полимеризации бутадиена /А.С. Усманов, С.И. Спивак // Материалы региональной конф. "Школа. Вуз. Наука"-2002. Т.1.- С. 30-35.
75. Монаков Ю.Б. Лекции по химии полимеров / Ю.Б. Монаков. Уфа: БГУ, 2004.
76. Бреслер Л.С. Исследование механизма гомогенной полимеризации бутадиена под влиянием каталитической системы TibC^-A^i-C^H^ /Л.С. Бреслер и др. // Высокомолек. соед. Серия А 1969: - Т.5. -№.11. - С.1165-1179.
77. Подвальный С.Л. Моделирование промышленных процессов полимеризации / С.Л. Подвальный. М.: Наука, 1979.- 256 с.
78. Кафаров В.В. Системный анализ процессов химической технологии: процессы полимеризации /В.В. Кафаров, И.Н. Дорохов, Л.В. Драниш-ников. М.: Наука, 1991. - 350 с.
79. Корн Г. Справочник по математике /Г. Корн, Т. Корн.- М.: Наука, 1970.-720 с.
80. Карманов В.Г. Математическое программирование /В.Г. Карманов. М.: Наука, 1980.-256 с.
81. Яблонский Г.С. Математические модели химической кинетики /Т.С. Яблонский, С.И. Спивак. М.: Знание, 1977. - 64 с.
82. Монаков Ю.Б. О кинетических параметрах полимеризации изопрена на каталитической системе ТлСи-А^изо-СД^з / Ю.Б. Монаков, Н.Х. Минченкова, С.Р. Рафиков // Доклады РАН 1977. - Т.236, №.5. -С.1151-1154.
83. Гмурман В.Е. Теория вероятностей и математическая статистика /В.Е. Гмурман. М: Высшая школа, 2002. - 479 с.
84. Багдасарян Х.С. Теория радикальной полимеризации / Х.С.Багдасарян. М: АН СССР, 1959. - 298 с.
85. Эльгольц Л.Э. Дифференциальные уравнения и вариационное исчисление / Л.Э. Эльгольц. М.: Наука, 1969.- 424 с.
86. Бронштейн И.Н. Справочник по математике для инженеров и учащихся втузов / И.Н. Бронштейн, К.А. Семендяев. М.: Наука, 1986.- 544 с.
87. Рафиков С.Р. Молекулярные характеристики полипиперилена и кинетические параметры полимеризации / С.Р. Рафиков, В.Г. Козлов, Н.Г. Марина и др.// Изв. Ан СССР. Сер хим. 1982. - №.4. - С.871-875.
88. Ермаков Ю.И. Определение числа активных центров и константы скорости роста при каталитической полимеризации а- олефинов /Ю.И. Ермаков, В.А. Захаров // Усп. хим. 1972. -Т.41, №.3. - С. 377-400.