Предельные теоремы для гауссовских случайных процессов и их применение в финансовой теории тема автореферата и диссертации по математике, 01.01.05 ВАК РФ
Иванов, Роман Валерьевич
АВТОР
|
||||
кандидата физико-математических наук
УЧЕНАЯ СТЕПЕНЬ
|
||||
Москва
МЕСТО ЗАЩИТЫ
|
||||
2006
ГОД ЗАЩИТЫ
|
|
01.01.05
КОД ВАК РФ
|
||
|
На правах рукописи УДК 519.21
Иванов Роман Валерьевич
ПРЕДЕЛЬНЫЕ ТЕОРЕМЫ ДЛЯ ГАУССОВСКИХ СЛУЧАЙНЫХ ПРОЦЕССОВ И ИХ ПРИМЕНЕНИЕ В ФИНАНСОВОЙ ТЕОРИИ
01.01.05 — теория вероятностей и математическая
статистика
АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата физико-математических наук
Москва 2006
Работа выполнена на кафедре теории вероятностей механико-матсма-1 ического факультета Московского Государственного Университета им. М. В. Ломоносова
Научный руководитель: доктор физико-математических
наук, профессор В. И. Питербарг
Официальные оппоненты: доктор физико-математических
наук, гл. н. с. В. Д. Конаков
кандидат физико-математических наук, н. с. М. Л. Нечаев
Ведущая организация: Институт проблем управления
РАН
Защита диссертации состоится 7 апреля 2006 г. в 16 часов 15 минут на -заседании диссертационного совета Д.501.001.85 в Московском государственном университете им. М.В. Ломоносова по адресу: 119992, ГСП-2, Москва, Ленинские горы, МГУ, механико-математический факультет, аудитория 16-24.
С диссертацией можно ознакомиться в библиотеке механико-математического факультета (Главное здание, 14 этаж).
Автореферат разослан 7 марта 2006 г.
Ученый секретарь диссертационного совета Д.501.001.85 в МГУ, док тор фичико-математических наук, профессор
Т.П. Лукашенко
lùOGh
S4Ö7
ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ
Актуальность темы
Асимптотическая теория случайных процессов является одной из главных областей исследования в теории вероятностей и математической статистике как в нынешнем веке, так и в прошедших столетиях. Классические результаты относительно предельных распределений различного рода последовательностей случайных величин ( такие, как, например, теорема Муавра-Лапласа, закон больших чисел, теорема Пуассона ) можно найти в любом учебнике по теории вероятностей. Канонические предельные теоремы теории случайных процессов ( Донскера, Прохорова ) обсуждаются, например, в книгах 1 2. Классической монографией, включающей в себя многочисленные результаты на указанную тему в контексте семимартин-галов и стохастического интеграла Ито является 3. Остановимся на новейших результатах по этой тематике, во многом стимулировавших написание данной диссертации.
Рассмотрим стохастическое дифференциальное уравнение ( СДБ ) следующего типа:
dXt = a{Xt)dWt + b(Xt)dt, t > 0, X0 = x0, (1)
где n(-) и b(-) есть некоторые функции, a Wt есть стандартный вине-ровский процесс. В работах 4 6 изучается возможность численного решения уравнения (1) с помощью разностной схемы Эйлера. Обозначим через X? решение соответствующего дискретного уравнения. Хорошо известно, что при а — 0 скорость сходимости X" к решению уравнения (1) есть 1/п в случае наличия этой сходимости. В случае, когда коэффициент а(-) не исчезает, скорость сходимости есть 1/v/n, и в вышеописанных работах при допустимых функциях а(-) и £>(•) были получены точные предельные процессы для соответствующим образом нормализованной асимптотической ошибки
5t" = Sup|x;i, (2)
s<i
где А? = -Y, - Хр.
'Виллингсли П Сходимость вероятностных мер// M • Наука, 1977 Ч'ихман И. И., СкороходА. В. Теория случайных процессов// M • Наука, 1971
3Жакод Ж , Ширяев А H Предельные теоремы для случайных процессов// М.: Физматлит, 1994
'Talay I) Simulation of stochastic differential systems// Lecture Notes in Physics 451 (1995), 63-106 'Kurtz T. G , Protter P Wong-Zakai corrections, niinliiiij I'Hilnlinin Mill .щпп in il schemes for SDEs// ill Stochastic Analysis, NY- Academic Press, 1991, 331-M8C. НАЦИОНЛЛь
I БИБЛИОТЕКА '
В случае, когда вместо (1) рассматривается более общее уравнение
dXt = f{XtJ)dZu t> О, Х0 = х0, (3)
где Zt ость некоторый, не обязательно непрерывный, семимартин-гал, класс допустимых функций /(•), скорости сходимости, а также точные предельные процессы устанавливаются в работах6 7. В качестве мер близости рассматриваются функционал (3) и в случае разрывного процесса Zt так называемая интегральная ошибка
Ytn = fxfds, (4)
Jo
где X" = Xt — X{ntyn для данного семимартингала Xt, и устанавливаются точные предельные процессы при нормализации nY". Процессы вида (2) и (4) обсуждаются и в данной работе.
Для гауссовских случайных процессов, не являющихся семимар-тинталями, вопросы сходимости последовательности дискретизаций и функционалов от нее в различного вида нормах изучаются в работах8 4 10 и 12 13, в том числе и в применении к задачам вычислительной математики. Заметим, что в настоящее время быстро развивается и стохастическое интегральное исчисление для несемимартинга-лон ( в -»том контексте отметим работы 14 15, в которых определяется потраекторный стохастический интеграл по фрактальному броуновскому движению ( ФБМ ) B/f(t) при Н € (1/2,1), а также16 17 18, в
с Jarod .1 , Protter Р Asymptotic error distributions for the Euler method for stochastic differential equation»// Ami of Probab 28 (1998), 1, 267-307
r Jarod J , Jakubowski A , Memin J Oil asymptotic errors in discretization of processes// Ann of Probab. 31 (2003), 2, 592-608
•Helyaev, Yu К , Simonyan, A H Asymptotic properties of deviations of a sample path of a Gauvsian process from approximation by regression broken line for decreasing width of quantization// in Random Proteases and Fields, M Univ Press, 1979, 9-21
®Hii->ler J Extremes of Gaussian processes, on results of Piterbarg and Seleznjev//Statist Probab. Lett , 44 (1999). 251-258
'"Iliisler.J , Piterbarg, V ,Seleznjev, О On convergence of the uniform norms for Gaussian processes and linear Approximation problems// Ann of Appl. Prob , 13 (2003), 4, 1615-1653
" 1'itcrbarg, V and Selezryev, О Linear interpolation of random processes and extremes of a sequence of Gaussian non-stationary processes// Technical Report 1994:446, Center Storh Process, North Carolina Univ , Chapel Hill, 1994
"Seleznjev, О Large deviations in the piecewise linear approximation of Gaussian processes with stationary increments// Adv in Appl. Probab., 28 (1996), 481-499
'■'Seleznjev, О Spline approximation of random processes and design problems// J Statist Plann Inference, 84 (2000), 249-262
MS J bin Stochastic analysis of fractional Brownian motions// Stoch. Stoch. Rep 55 (1995),
121-140
"W Dai, С Heyde Ito formula with respect to fractional motion and its application// J. Appl Math Stochastic Anal. 9 (1996), 439-448
|еТ К Duncan, Y Ни, В Pasik-Duncan Stochastic calculus for fractional Brownian motion//SIAM J. Control Opt.iin 38 (2000), 2, 582-612
"Y Ни, В Oksendal Fractional white noise calculus and application to finance// Inf Dim Anal Quantum 1'robab Rel. Top. 6 (2003), 1-32
"H J Flliot, J van der Hoek A general fractional white noise theory and applications to finance//
Matliriii Fill 13 (2003), 2, 301-330
которых стохастический интеграл для процесса Bjj(t) определяется г помощью Wick-произведения, в первых двух работах рассматривается случай Я € (1/2,1), а в последней и любого Я € (0,1). См. также работы19 20, в связи с чем в перспективе задача о численном решении уравнений типа (1) должна, несомненно, ставиться и при замене винеровского процесса Wt — B\/i{t) на произвольное ФБМ Bn(t), Н € (0,1). В диссертации процессы (2) и (4) рассматриваются в том числе и для процесса Xt = Bjj(t), Я 6 (0,1].
Вообще, в настоящее время в литературе большое внимание уделяется процессу ФБМ, см., например, работы 21 22 23 24 25 в первую очередь, возможно, из-за большого количества практических применений ( биология, физика, телекоммуникации, финансовая теория ). > Однако из-за немарковости и несемимартингальности этого процес-
са, изучение его весьма затруднено. Так, например, для ФБМ неизвестно распределение его максимума, исключая асимптотический j случай и —> оо. В связи с этим, автором доказываются предель-
ные теоремы для вероятностей пересечения уровня процессом ФБМ и математических ожиданий вида
Ef(BH(T) maх Bh(t),.) (5)
i для некоторых функций /. Данное исследование актуально также в
контек< те монографий и работ 26 27 28 29, в которых изучаются распределения экстремумов гауссовских случайных процессов, а также работ 30 9 10 11 12, где обсуждаются вопросы сходимости последовательно« гей гауссовских случайных процессов.
19 Л Dasgupta Fractional Brownian motion: It» properties and applications to stochastic integration//Pli D thesis, Dept. of Statistics, Univ of North Carolina at Chapel Hill, 1997
20L Derreusefond, A S Ustiinel (1998) Stochastic analysis of the fractional Brownian motion// Potential Anal 10 (1998), 177-214
21(iripenberg, G and Norroe, I. On the prediction of fractional Brownian motion//J Appl Probab. S3 (I«96). 400-410
•"Norros. I Busy Periods of Fraction Brownian Storage: A Large Deviations Approach// Adv Perform Anal 2 (1999), 1-20
"Norroi I , Vallceila, E , Virtamo, J. On elementary approach to a Girsanov formula and other analytical results on fractional Brownian motion, Bernoulli 5 (1999), 571-578
"Novikov, A and Valkeila, E. On some maximal inequalities for fractional Brownian motions// Stat Probab Lett. 44 (1999), 47-54
"Valkeila, E On some properties of geometric fractional Brownian motions. Department of Mathematics// Univ Helsinki, Preprint 224, 1999,12 p.
26Piterbarg, V Asymptotic methods m the theory of Gaussian processes and fields// Providence, RI, 1996
"Herman, S M The maximum of a Gaussian process with nonconstant variance// Ann Inst H. Poincare Probab Statist. 21 (1985), 383-391
"] liisler, .J Extreme values and high boundary crossings for locally stationary Gaussian processes// Ann Probab 18 (1990), 1141-1158
29I!usler, J A note on extreme values of locally stationary Gaussian processes// J Statist Pt&nn. Inference 43 (1995), 203-213
30Seleznjpv, О Limit theorems for maxima and crossings of a sequence of Gaussian processes and
approximation of random processes// J. Appl Probab 28 (1991), 17-32
Вопросы приближенного расчета вероятностей пересечения уровня и математических ожиданий вида
Е/{ЦГТ, тах ]¥и ■)
для стандартного винеровского процесса Wt и скорости сходимости аппроксимирующих их выражений рассматриваются также в задачах финансовой математики, а именно, для расчетов цен финансовых инструментов с выплатами, зависящими от траектории цены актива ( см. монографию 31, а также работы 32 33 34 35 36 ). В связи с развитием математических моделей финансового рынка, основанных на ФБМ ( см. 17 18 ), вопросы аппроксимации цен опционов данного вида обсуждаются в диссертации.
Вообще, задачи приближенного расчета различных финансовых инструментов представлены в литературе достаточно широко в случае опционов Европейского типа, то есть таких, которые предъявляются к исполнению в фиксированный момент окончания действия контаркта. Работы по этой тематике можно разделить на две группы: те, в которых дискретизация цен активов осуществляется только по временному параметру, и те, где также дискретизируется и пространство элементарных исходов. Из первой группы можно отметить работы по расчету ошибки, возникающей при непрерывной аппроксимации дискретных опционов Европейского типа в модели Блэка и Шоулса и, фактически, связанной с несамофинансируемо-стью устанавливаемых стратегий в дискретном времени, 37 для опционов с регулярными функциями выплат, 38 с нерегулярными, а также39 для d рисковых активов, и работы 32 33 34 38, в которых рассматривались опционы, зависящие от траектории, в частности, барьерные опционы и опционы с последействием. Вопросы сходимости финансовых рынков в контексте полных рынков исследуются в ра-
сширяем А H Основы стохастической финансовой математики// М.: ФАЗИС, 1998 "Hroadie M , G lasser man P, Kou, S. A continuity correction for discrete barrier options// Math. Finance 7 (1997), 325-348
"M Broadie, P Glasserman, S Kou Connecting discrete and continuous path-dependent options// Finance and Slochastice 3 (1999), 55-82
''Chance, D M The pricing and hedging of limited exercise caps and spreads// J Financial Res. 17 (19941, 561-584
3s('heuK, T, Vorst, T. Currency lookback options and the observation frequency A binomial approach// J. Int. Money Finance 16 (1997), 173-187
,eHeyne», R С , Kat, H M Lookback options with discrete and partial monitoring of the underlying price// Appl Math Finance 2 (1995), 273-284
37R Zhang Couverture Approchée des Options Européennes// Ph. D. thesis. Ecole Nationale des Ponts et Chaussées, 1999
"E Gobet, К Temam Discrete time hedging errors for options with irregular payoffs// Fin. Stoch. 5 (2003), 357-307
39 К Temam Analysis of error with Malliavin calculus: application to finance// Math Finance 13 (2003), 201-214
ботах 40 41 35, в монографии 31, а также в работах 42 43 44. Здесь также рассматриваются опционы Европейского типа, а кроме того опционы, зависящие от траектории. Скорость сходимости цен устанавливается порядка тГ1!7, или т~1, в зависимости от вида платежной функции, где т - количество точек разбиения интервала [О, Г].
В случае опционов Американского типа, то есть тех, которые могут быть предъявлены в любой момент действия контракта, результатов относительно аппроксимации цен с помощью дискретных моделей известно сравнительно немного. Отметим статью-обозрение45, в которой приводится немало методов численных расчетов, однако оценки ошибок аппроксимации известны лишь в редких случаях. В 46 показано, что при расчетах, использующих нормально распределенные границы ошибки есть 0(1/т) при малых т. Биномиальное приближение рассматривается в работах 47 48. Здесь в лучшем случае удается получить скорость сходимости порядка т~4/51о§2^5 т при т —>- ос для некоторых значений параметров непрерывной модели. При этом доказательства используют громоздкую и трудоемкую технику приближенного решения стохастических дифференциальных уравнений. В диссертации подобная задача рассматривается с использованием иного подхода, продолжающего линию монографий 49 31, а также работ 50 51 и 52.
Цель работы
Была поставлена задача установить новые предельные теоремы
4°J Сох, S Ross, М Rubinstein, Option Pricing: a Simplified Approach// Jour Fin Econ 7 (197»), 229-263
41H He Optimal consumption-portfolio policies' a convergence from discrete to continuous time models// Jour Econ Theor 55 (1990), 340-363
"Pedersen, J Convergence of strategies: an approach using Clark-Haussmann's formula// Fin. Stoch 1999,3,323-344
"J В Walsh The rate of convergence of the binomial tree scheme// Fin Stoch 7 (2003), 337-361
44 R. Carbon? Binomial approximation of Brownian motion and its maximum//Stat. Probab. Let. 69 (20041, 271-285
45 M Broadie, J Detemple American option valuation- new bounds, approximations, and a comparison of existing methods// Rev. Fin. Stud. 9 (1995), 1211-1250
"A P. Carverhill, N Webber American options: theory and numerical analysis// in Optwna. Recent Advances m Theory and Practice, Manchester Univ Press, 1990
47 1) Lamberton Error estimates for the binomial approximation of American put options// Ann Appl Probab 8 (1998), 206-233 (1998)
481) Lamberton Brownian optimal stopping and random walks// Appl Math Optim , 45 (2002), 283-324
49 Ширяев A H Статистический последовательный анализ// M : Наука, 1976
50А Н Ширяев, Ю М Кабанов, Д. О Крамков, А В Мельников К теории расчетов опционов Европейского и Американского типов. 1. Дискретное время// Теор вер примен 39 (1994), 1, 21-74
51А Н Ширяев, Ю М Кабанов, Д. О. Крамков, А В Мельников К теории расчетов опционов Европейского и Американского типов. 2. Непрерывное время// Теор вер примен. 39 (1994), 1, 80-129
52 Новиков А А , Ширяев А Н Об одном эффективном случае решения задачи об оптимальной остановке для случайных блужданий// Теор. вероятн прим. 49 (2004), 2, 373-382
для гауссовских случайных процессов, в том числе для процесса фрактального броуновского движения, а также рассмотреть асимптотическое поведение различных функционалов их аппроксимаций в применении к задачам финансовой математики.
Научная новизна
Результаты работы являются новыми и состоят в следующем.
1. Установлены точные предельные процессы и соответствующая нормализация для процесса ошибки дискретизации фрактального броуновского движения в равномерной норме, а также нормализация и слабая сходимость интегральной ошибки в вышеописанной задаче. В последнем случае также получены точные предельные процессы.
2. Результаты предыдущего пункта относительно сходимости в равномерной норме распространены на более широкий класс гауссовских процессов со стационарными приращениями.
3. Получены результаты относительно скорости сходимости распределения дискретной аппроксимации по времени максимума фрактального броуновского движения и различных функционалов типа цены от него. Данные результаты использованы для приближенного расчета стоимости финансовых инструментов Европейского типа, зависящих от траектории цен активов, в модели с фрактальным броуновским движением.
4. В стандартной стохастической модели Блэка и Шоулса финансовой теории получены оценки скорости сходимости биномиальной аппроксимации цен стандартных опционов Американского типа на бесконечном и конечном временных интервалах. Установлены новые предельные теоремы в соответствующих задачах об оптимальной остановке.
Все результаты диссертации снабжены подробными доказательствами с точными ссылками на результаты других авторов.
Методы исследования
В доказательствах использованы как классические, так и современные асимптотические методы теории случайных последовательностей и процессов, а также задач об оптимальной остановке. Кроме того, использованы стандартные аналитические методы теории вероятностей.
Теоретическая и практическая ценность
Рабсл а носит теоретический характер. Результаты и методы работы могут получить применение собственно в теории вероятностей, теории случайных процессов, а также в финансовой математике.
Апробация работы
Результаты диссертации докладывались на семинарах мех-мата МГУ "Стохастический анализ и финансовая математика" под руководством чл.-корр. РАН проф. Ширяева А.Н. и проф. Гущина А. А., "Асимптотический анализ случайных процессов и полей" под руководством проф. Булинского А. В. и проф. Питербарга В. И. (2004-2005), на Большом семинаре кафедры теории вероятностей под руководством чл.-корр. РАН проф. Ширяева А.Н. ( 2005), а также на Всероссийском симпозиуме по прикладной и промышленной математике в г. Сочи (октябрь 2005) и семинаре Института проблем управления РАН (декабрь 2005).
Публикации
Список опубликованных работ [1-5] приведен в конце автореферат а. Работ, написанных в соавторстве, нет.
Структура и объем работы
Диссертация состоит из введения, трех глав, разбитых на параграфы, и списка литературы. Объем диссертации 84 страницы, список литературы включает 77 наименований.
СОДЕРЖАНИЕ ДИССЕРТАЦИИ
Во введении приводится обзор литературы на тему результатов диссертации и мотивируется актуальность выбранной темы по главам. Кроме того, во введении сформулированы основные результат ы диссертации, а также описана ее структура.
В первой главе обсуждаются вопросы сходимости дискретизации га.нговских процессов со стационарными приращениями. Определим для процесса X(t) процесс ошибки
Xn{t) = X(t) - X{[nt)/n).
Следуя работам 5 6 7, автор рассматривает асимптотическое поведение соо гветствующим образом нормированных функционалов
Sn(t) — sup|Xn(s)| 8<t
и
Y"(t) = f Xn(s)ds.
Jo
В случае, когда X(£) есть фрактальное броуновское движение Вц(Ь) при любом фиксированном параметре Н € (0,1], автором устанавливаются следующие теоремы.
Теорема 1. Пусть X(t) - фрактальное броуновское движение Bn(t),H £ (0,1]. Тогда для произвольных х и t > 0
lim P{Sn(t) < n-Hbn(t) + xn-H/b„(t)} = exp(-e-*),
71—»OO
где MO = (21ogn)"2 + (210g«)-1/2 (flog log n + log(ci2l)) + о ((21og7i)-1/2) при тг —> oo с константами с = max{ 1/Я — 3, —1} и а = а(Н) < оо.
Теорема 2. Пусть X(t) - фрактальное броуновское движение Bn{t), Н € (0,1]. Тогда процесс nY"(t) слабо сходится к \X(t) с тем же Н при п —>• оо.
Заметим, что для стандартного броуновского движения предельный процесс в теореме 2 совпадает с соответствующим предельным процессом в теореме 1.4 7, установленным для случая семимартин-галов.
Далее, пусть процесс X(t), t > 0, - непрерывный гауссовский со стационарными приращениями, Х(0) = 0, EX(t) = 0. Обозначим of, = max/€[01/n] EX'2(t,). Верно следующее обобщение теоремы 1.
Теорема 3. Пусть <p(t — s) = E(X(t) — X(s))2, t > s, такова, что
<p(h) = haL{h)(l + o(l))
при h I 0 для некоторого a > 0 и непрерывной функции L(h), такой что L(h) > 0 при h > 0 и —> 1 при h 0 для любого / > 0. Тогда для любых х > 0, t > 0
lim P{Sn(t) < <rn(bn{t) + x/bn(t))} = exp(—е-1),
»—у оо
где МО = (2 logn)1/2 + (210g«)-1/2 (cj loglogn + log(c2i2c')) + о ((2 log n)~1/2) при n —t оо, с константами с\ = тах{2/а — 3,-1} и с2 = c2(rt,L(0)) < оо.
Доказательства теорем 1 и 3 во многом опираются на результаты работы 10. Доказательство теоремы 2 в основном использует свойства процесса фрактального броуновского движения.
Во второй главе устанавливаются оценки скорости сходимости дискретной аппроксимации процесса максимума фрактального броуновского движения Bff(t), Н € (0,1].
Для процесса фрактального броуновского движения Вц(£) с произвольным фиксированным параметром Хёрста Н G (0,1], t < 0, обозначим
М = max Bu(t) <е[о,Г] v '
М' = min BH(t),
где 0 < Т < оо.
Для некоторого m € N положим h = T/m. Определим процессы дискретного максимума и минимума как
Mm = max B]j(t)
кнф,т\
М'т= min BH(t),
где к = 0,1,...,
Теорема 4. Для любого 0 < и < оо
Р{М > «} -Р{Мт > и) < С^-^
т"
при всех достаточно больших m для некоторой константы С > 0. Соответственно, для любого —оо < и < 0
Р{М< <и}- Р{М'т < и} <
при всех достаточно больших m для некоторой константы С' > 0.
Кроме того, рассмотрены различные функционалы от процесса максимума.
Теорема 5. Пусть функция /(•) 6 (^([О.оо)) и E[f'(M)]2 < оо. Тогда
\Ef(M)-Ef(Mm)\<C
т"
при всех достаточно больших т для некоторой константы С > 0.
Соответственно, пусть функция /(•) G С1((—оо,0]) и E[f'(M)]2 < оо. Тогда
\Ef(M')-Ef(Mi)\<C'^
т
при всех достаточно больших m для некоторой константы С' > 0.
Доказательства теорем 4-5 используют традиционную технику, применяемую для гауссовских процессов ( см. 26 ), а также свойства фрактального броуновского движения.
Далее, полученные результаты применяются к вопросу о соотношении между ценами дискретных и непрерывных финансовых инструментов. Нами рассматриваются опционы Европейского типа, зависящие от траектории, в модели финансового рынка с фрактальным броуновским движением. Обсуждается расширенная модель Блэка и Шоулса, в которой безрисковый и рисковый активы задаются, соответственно, уравнениями
dRt = rRtdt, Ro = 1 (6)
и
dSt = uSidt + aStodBfíit), S„ > 0, 0<¿<T (7)
для любого фиксированного H € (0,1). Базирующаяся на Wick-произведении, эта модель безарбитражная ( см. 17 теорема 5.4, 18 часть 7 ), решение уравнения (7) есть St = S0e(rBH^+>lt~^'r2f, и цена квадратично-интегрируемого по риск-нейтральной мере Р платежного обязательства /
V = e-'TE[f],
где мера Р такая, что процесс ^-t + Bjj(t) является фрактальным броуновским движением Вц (t) относительно нее, аналогично стандартному случаю ( см. 17 часть 5, 18 часть 7 ).
Далее, определим функции выплат для различных типов опционов. Для барьерных опционов, мы имеем для ru := inf{t > 0 : S¿ = и} и для произвольной функции /(5т) выплаты
//{г„<Т} И /1{ти>Т]
для нок-ин ( knock-in ) - и нок-аут an ( knock-out up ) ( и > So ) или - даун ( down ) ( и < Sq ) барьерных опционов, соответственно.
В частности, стандартные барьерные опционы покупателя ( call ) и продавца ( put ) с ценой покупки К имеют / = (St - К)+ и / = (К — S-i)+. Для опционов с последействием функции выплат имеют форму
/(ей, К, So) и Не*', К, So)
для опционов покупателя и продавца, где
М — шах log <е[о,Т]
§L [А
М' = min log <е[о,т]
L-sbJ
В частности, стандартные опционы с последействием покупателя и продавца имеют функции выплат / = (5оем — 5г) и / = (¿т—5оем ). Наконец, мы обсуждаем Русский опцион покупателя и продавца для функций выплат (5оем — К)+ и (К — воем')+, соответственно.
Положим Л := Т/т. В дискретном случае, мы имеем в определениях выплат г„ := т{{кН, к = 1,2... : Эьн > ( для опционов ап; для опционов даун т„_:= А; = 1,2... : 5*/, < и} ) и Л/,„ := тах^о^к^^/Зо], := тт^од^^^/Зо]-
Представляются следующие результаты.
Теорема 6. На рынке (6)-(7), Н 6 (0,1), обозначим через Ут(и) цену дискретно наблюдаемого нок-ин или нок-аут, даун или ап, колл или пут опциона с барьером и. Пусть У(и) - цена соответствующего опциона в случае непрерывного мониторинга. Тогда
Ут(и) = У(и) + О (т-'Оовт)1/»)
при т -> оо.
Теорема 7. На рынке (6)-(7), Н € (0,1), обозначим через V цену непрерывно наблюдаемого опциона с последействием покупателя или продавца с функцией выплат /(М) € С1, Ё/'(М)2 < оо, в час тности, стандартного опциона с последействием покупателя или продавца, или Русского опциона с функцией выплат (5оем — К)+ и (К — в^ем )+ в случаях опциона покупателя и продавца, соответственно. Пусть Ут - цена соответствующего дискретно наблюдаемого опциона. Тогда мы имеем
Vm = V+ 0(гп~н {log т)1/*)
при т, оо.
Заметим, что в случае Я = 1/2 с помощью принципа отражения ( см. 5-1 Гл 1 §10 ) может быть получен более точный резуль-
53Ширяев А Н. Вероятность// М.: МЦНМО, 2004
тат 0(1/y/ïn) и коррекционный терм для цены в случае платежных функций стандарных опционов (см 32 33 ). Однако в общем случае Я € (0,1) мы вынуждены использовать иную технику.
Третья глава диссертации посвящена решению задачи об аппроксимации цен стандартных опционов Американского типа в модели Блэка и Шоулса ценами соответствующих опционов в дискретной биномиальной модели Кокса-Росса-Рубинштейна. Предполагается, что эволюция цен безрискового и рискового активов В = {Bt)t>о и S = (Sf)t>o подчиняется уравнениям модели Блэка и Шоулса ( см. 54 65 ), т. е.
dBt = rBtdt, г > 0, (8)
dSt = St(гdt + odWt), а > 0.
В условиях данной модели мы обсуждаем хеджирование опционов Американского типа, т. е. таких, которые могут быть предъявлены в любой момент действия контракта. Пусть выплаты по контракту определяются набором функций / = {/( = e~Xt9(St)}t>о» гДе А > 0 и g(St) = (St — А')+ или (К — St)+, в случаях опционов покупателя и продавца, соответственно.
Положим So = х. Тогда по определению ценой опциона Американского типа на интервале [0,7"] называется ( 31, гл. 6, §5а-5с )
V(x,T) = V(x,TJ) = inf{y : Этт : = > /rVr € OTQr},
где 9Лу есть множество всех моментов остановки со значениями в [0, Г]. Отметим, что в случае опциона на бесконечном временном ин тервале ( Т = оо ) рассматриваются в том числе и моменты остановки, принимающие значение оо с ненулевой вероятностью. Множество всех таких моментов, согласно сложившейся терминологии, будет обозначаться как ffljj°. Т. о., цена опциона Американского тина нн бесконечном временном интервале будет определяться как
V(x) = V(x,f) = inf{y : Зтг : Х0* = у, Х*т > fTI{r < оо} Vr € 5W§°}.
Как известно, в задаче о нахождении цены V(x) опциона на бесконечном временном интервале существует оптимальный момент т* Ç 901(5°, имеющий вид
т* = inf{t : St = х*}
44К Biai-k, M Scholes The pricing of options and corporate liabilities// Jour Polit Econ 81 (1973), 3, 637-G59
"R C. Merton Theory of rational pricing// Bell Jour. Econ. Manag. Sc. 4 (1973), 141-183
( мы предполагаем inf{0} = 00), где
х* = inf{z : V(x) = <7(ж)}, и при этом ( см. 51 и 31, гл. 8, § 2а-2Ь )
V(x) = В0Е^-1{т* < оо},
т. е. задача имеет явное решение. В случае конечного временного интервала, однако, подобный результат оказывается уже невозможным в силу резкого усложнения собственно задачи об оптимальной остановке ( см. подробнее 31, гл. 8, §3а ).
В случае дискретного времени мы рассматриваем биномиальную Л-модель Кокса-Росса-Рубинштейна ( см., например, зх, гл. 6, §3d ), полагая
ВпА - #(„_!)д = гД£(„_1)д, 5пД - £(„_ 1)Д = (е0*" - 1)S(„-I)A,
где t£,/t = 1,2,.. - н. о. р. с. в., такие, что Р{е£ = \/S} = р, = -V^} = 1 - Р с Р = \t$Iee-ljs > т- е- исходная мера - мар-гингальная. Мы полагаем также /„д = (1 + \A)~ng(SnA), А > 0, и 9Ло (А) = {t{oj) : т — О, Д,.., [Т/Д]Д}. Цены опционов на конечном и бесконечном интервалах обозначаются как V(x,T,¿\) и V(x, Д), соответственно. Отметим, что в случае дискретного времени в задаче о нахождении цены V(x, Д) также существует оптимальный момент т G 9Ло°(Д), который есть
í = infjA;: SkA > х},
где
х = inf{a: : V(x, Д) = <?(х)}
( см. подробнее 50 31, гл. 6, §5а-5Ь и 52 ). Доказана следующая теорема.
Теорема 8. Пусть в модели Блэка и Шоулса г < у. Тогда существуют такие положительные константы С и с, зависящие только от параметров модели, что при Т > Clog Д"1 для всех достаточно малых Д > О
\V{x,T) — Д)| < сД.
Отметим, что в существующих приближениях для цены Американского опциона на конечном временном интервале, а именно для
стандартного опциона продавца в случае А = 0 ( соотношение между ценами стандартных опционов-р^ Европейского и Американского типа, см. 31, гл. 8, §3(1 и ссылки в нем ), размер погрешности также зависит от Т, возрастая в данном случае при росте Т. У нас, вообще говоря, присутствует зависимость константы с от Т, а именно, при росте Т константа с = с(Т) убывает, оставаясь при этом больше некоторой константы со, не зависящей от Т.
Взглянем на результат теоремы 8 с несколько иной точки зрения. Предположим, что наш интервал [0,Т] на тп частей с шагом Д, то есть Д = Тогда теорема говорит о том, что существуют константы С, с, со, такие, что при ш < СТесТ
У{х,Т)-У сот'1
для достаточно больших т. Эта оценка соответствует оценке для опционов Европейского типа.
2
Теорема 9. Пусть в модели Блэка и Шоулса г = у. Тогда для некоторых положительных констант С и с, зависящих только от параметров модели, при Т > СД-1 для всех достаточно малых Д >0
\У(х,Т)-У(х,Т,А)| < сД5.
Очевидно, что во втором случае мы имеем сходимость существенно более низкого порядка. Это объясняется различными методиками осуществления доказательств, учитывающими структуру оптимального момента остановки г* на бесконечном временном интервале, который при г > у является конечным, и мы имеем
У(х) = В0Ек-
{ см. 3\ гл. 8, §2а-2Ь, и 53, гл. 8, § 9 ). При этом, в случае г > ^
2
удается установить лучшую, чем при г = у, сходимость.
Теорема 10. Пусть в модели Блэка и Шоулса г > у. Тогда для некоторых положительных констант С и с, зависящих только от параметров модели, при Т > СД-1 для всех достаточно малых Д >0
\У(х,Т) - У(*,Т,Д)| < сД.
Доказательства теорем 8-10 основаны на использовании разложе-
ния
V(x,T) - V(x,T,A) = [V(x,T) - V(x)] +[FOc) - V(x, Д)] + [V(x, Д) - V(x, T, A)]
и оценивания по модулю каждого из членов суммы в правой части равенства.
Автор глубоко благодарен своему научному руководителю профессору В. И. Питербаргу за постановку задач глав 1 и 2 и многочисленные ценные обсуждения, а также члену-корреспонденту РАН профессору А. Н. Ширяеву за важные советы по написанию главы 3.
Список работ автора по теме диссертации
[1] Иванов Р. В. О дискретной аппроксимации опционов Американского типа// Успехи математических наук, т. 61 (2006), вып. 1, с. 179 -180.
[2] Иванов Р. В. Дискретная аппроксимация опционов Американского типа на конечном временном интервале// Литовский математический сборник, т. 45 (2005), вып. 4, с. 525-536.
[3] Иванов Р. В. О дискретной аппроксимации некоторых гауссов-ских процессов// Вестник МГУ, Серия 1, Математика. Механика (2005), вып. 6, с. 54-55.
[4] Иванов Р. В. О дискретной аппроксимации опционов Американского типа// Тезисы докладов VI Всероссийского симпозиума по прикладной и промышленной математике (Сочи, октябрь 2005): Обозрение промышленной и прикладной математики, т. 12 (2005), вып. 4, с. 975.
[5] Иванов Р. В. Об асимптотических ошибках в дискретизации процессов: фрактальное броуновское движение, рукопись// депонирована в ВИНИТИ РАН ном. 1079-В2005, (2005), 12 с.
Подписано в печать 02-06. ОО Формат 60x90 1/16. Усл. печ. л. 1,0
Тираж /ДОэкз. Заказ /3.
Лицензия на издательскую деятельность ИД В 04059, от 20.02.2001г.
Отпечатано с оригинал-макета на типографском оборудовании механико-математического факультета
i
4
2.00 £ Ar S407
Введение
1. О сходимости дискретизации по времени для гауссов-ских процессов со стационарными приращениями
§1.1 Введение и основные результаты.
§1.2 Доказательства.
§1.3 Доказательства вспомогательных утверждений.
2. Об аппроксимации экстремумов фрактального броуновского движения и функционалов типа цен
§2.1 Введение.
§2.2 Основные результаты и доказательства.
§2.3 Доказательства вспомогательных результатов.
§2.4 О численных расчетах в модели фрактального финансового рынка.
3. Об аппроксимации цен опционов Американского типа
§3.1 Введение.
§3.2 Основные результаты
§3.3 Доказательства.
Асимптотическая теория случайных процессов является одной из главных областей исследования в теории вероятностей и математической статистике как в нынешнем веке, так и в прошедших столетиях. Классические результаты относительно предельных распределений различного рода последовательностей случайных величин (такие, как, например, теорема Муавра-Лапласа, закон больших чисел, теорема Пуассона ) можно найти в любом учебнике по теории вероятностей. Канонические предельные теоремы теории случайных процессов ( Донскера, Прохорова ) обсуждаются, например, в книгах [4], [16]. Классической монографией, включающей в себя многочисленные результаты на указанную тему в контексте семимартингалов и стохастического интеграла Ито является [29]. Остановимся на новейших результатах по этой тематике, во многом стимулировавших написание данной диссертации.
Рассмотрим стохастическое дифференциальное уравнение ( СДЕ ) следующего типа: dXt = a(Xt)dWt + b{Xt)dt, ¿>0, X0 = x0l (1) где а(-) и &(•) есть некоторые функции, а Wt есть стандартный ви-неровский процесс. В работах [68], [42] рассматривается возможность численного решения уравнения (1) по схеме Эйлера, то есть изучаются вопросы сходимости решения уравнения dXГ = a{Xl)dWt + b{Xl)dt, (2) где t € [О,Г], tn = [ntyn при И G N и tn = t-T/n при [nt] <£ N. з
Хорошо известно, что при а = 0 скорость сходимости решения (2) к решению уравнения (1) есть 1/п в случае наличия этой сходимости. В случае, когда коэффициент а(-) не исчезает, скорость сходимости есть 1 /л/п, и в вышеописанных работах при допустимых функциях а(-) и &(•) были получены точные предельные процессы для соответствующим образом нормализованной асимптотической ошибки
5? = 8иР|х;|, (з) где
Х? = Хг-Х?.
В случае, когда вместо (1) рассматривается более общее уравнение йХг = !{Х^)йги £ > 0, Хо = яо, (4) где Zt есть некоторый, не обязательно непрерывный, семимартингал, класс допустимых функций /(•), скорости сходимости, а также точные предельные процессы устанавливаются в работах [28], [27]. В предположении непрерывной дифференцируемости функции /(•) в (4) для случая непрерывных семимартингалов Zt в работе [28] обсуждается равномерная сходимость нормализованного процесса ошибки X", то есть распределение функционала л/пв™, в случае, когда Zt есть процесс ограниченной вариации, и слабая сходимость процесса у/пХ? для процесса Zt, являющегося локальным мартингалом, или, в некоторых случаях, просто семимартингал ом. Однако, в случае, когда Zt не является непрерывным, процесс у/пХ" может вообще не сходится к 0 в обычном смысле ( топологии Скорохода ). Поэтому, для разрывных семимартингалов в работе [27] рассматривается так называемая интегральная ошибка для данного семимартингала и устанавливаются точные предельные процессы при нормализации пУп. Процессы вида (3) и (5) обсуждаются и в данной работе.
Для гауссовских случайных процессов, не являющихся семимар-тингалами, вопросы сходимости последовательности дискретизаций и функционалов от нее в различного вида нормах изучаются в работах [2], [35], [36], [58], [62], [63], [64], [65], в том числе и в применении к задачам вычислительной математики. Заметим, что в настоящее время быстро развивается и стохастическое интегральное исчисление для несемимартингалов ( в этом контексте отметим работы [46], [18], в которых определяется потраекторный стохастический интеграл по фрактальному броуновскому движению Вн(¿) при Я 6 (1/2,1), а также [22], [31], [23], в которых стохастический интеграл для процесса Д у(£) определяется с помощью \¥1ск-произведения, в первых двух работах рассматривается случай Н Е (1/2,1), а в последней и любого Н £ (0,1). См. также работы [20], [21] ), в связи с чем в перспективе задача о численном решении уравнений типа (1) должна, несомненно, ставиться и при замене винеровского процесса И^ = .61/2 (£) на произвольное фрактальное броуновское движение Вн(£)> Н £ (0,1). В
5) где Хг - Х[п1у. п диссертации процессы (3) и (5) рассматриваются в том числе и для процесса Хг = Вя(*),#€ (0,1].
Вообще, в настоящее время в литературе большое внимание уделяется процессу фрактального броуновского движения, см., например, работы [17], [50], [51], [52], [53], [75], в первую очередь, возможно, из-за большого количества практических применений ( биология, физика, телекоммуникации, финансовая теория. ). Однако из-за немарковости и несемимартингалыюсти этого процесса, изучение его весьма затруднено. Так, например, для фрактального броуновского движения неизвестно распределение его максимума исключая асимптотический случай и —> оо. В связи с этим, автором доказываются предельные теоремы для вероятностей пересечения уровня типа
Р{ шах ВН(Ь) > и], и > 0 (7) и математических ожиданий вида для некоторых функций /. Данное исследование актуально также в контексте монографий [45], [56], [1] и работ [57], [3], [33], [34], [7], в которых изучаются распределения экстремумов гауссовских случайных процессов, а также работ [61], [62], [63], [58], [35], [36], где обсуждаются вопросы сходимости последовательностей гауссовских случайных процессов.
Р{ тах Вни) > г/}, и > 0,
6)
Е/(ВН(Т) тах Вя(0,0
8)
Вопросы приближенного расчета вероятностей
Р{ max Wt > и], и > О е[о,Я и математические ожидания вида
Ef(WT, max Wt, •) для стандартного винеровского процесса Wt и скорости сходимости аппроксимирующих их выражений рассматриваются также в задачах финансовой математики, а именно, для расчетов цен финансовых инструментов с выплатами, зависящими от траектории цены актива -Русских, барьерных опционов, а также опционов с последействием ( см. монографию [70], а также работы [9], [10], [13], [14], [30] ). Так, используя аппроксимирующие выражения в случае стандартного броуновского движения типа (7) - (8), авторы работ [9] и [10] устанавливают точные коррекционные выражения порядка 0(1/у/т) с погрешностью о(1/у/т) для опционов, зависящих от траектории. В связи с развитием математических моделей финансового рынка, основанных на фрактальном броуновском движении ( см. [23], [31], [54] ), вопросы аппроксимации цен опционов данного вида рассмотрены в диссертации в указанной модели работ [23], [31], [54].
Вообще, задачи приближенного расчета различных финансовых инструментов представлены в литературе достаточно широко в случае опционов Европейского типа, то есть таких, которые предъявляются к исполнению в фиксированный момент окончания действия контарк-та. Работы по этой тематике можно разделить на две группы: те, в которых дискретизация цен активов осуществляется только по временному параметру, и те, где также дискретизируется и пространство элементарных исходов. Из первой группы можно отметить работы по расчету ошибки, возникающей при непрерывной аппроксимации дискретных опционов Европейского типа в модели Блэка и Шоулса и, фактически, связанной с несамофинансируемостью устанавливаемых стратегий в дискретном времени, [77] для опционов с регулярными функциями выплат, [24] с нерегулярными, а также[74] для d рисковых активов, и работы [9], [10], [13], [30], в которых рассматривались опционы, зависящие от траектории, в частности, барьерные опционы и опционы с последействием. Вопросы сходимости финансовых рынков в контексте полных рынков исследуются в работах [15], [25], [14], в монографии [70], а также в работах [55], [76], [11]. Здесь также рассматриваются опционы Европейского типа, а кроме того опционы, зависящие от траектории. Скорость сходимости цен устанавливается порядка т-1/2 или т-1, в зависимости от вида платежной функции, где т - количество точек разбиения интервала [0,Т].
В случае опционов Американского типа, то есть тех, которые могут быть предъявлены в любой момент действия контракта, результатов аппроксимации цен с помощью дискретных моделей известно сравнительно немного. Математически, рассматриваемая задача сводится к нахождению соотношения между функциями цен
V = sup Ef(WT + аг), (9) тетЪ где 9Ло есть множество всех моментов остановки, принимающих значения из множества [0,Т], a WT + at обозначает броуновское движение со сносом, и т/А
V(A)= sup £/(J>), . (10) тетПА) i=i где Л = T/m, есть множество всех моментов остановки, принимающих значения из множества 0, Д,.,Т, a {£i}i=\x.,m есть последовательность независимых одинаково распределенных случайных величин, принимающих два значения. Как известно, решение задачи (10) находится с помощью метода индукции назад, с то время как точное решение (9) на конечном интервале [0,Т] установить не удается ( см., например, монографию [70] и ссылки в ней ). Перечислим все работы по этой тематике.
Во-первых, отметим статью-обозрение [8], немало методов численных расчетов цены (9), однако оценки ошибок аппроксимации известны лишь в редких случаях. В [12] показано, что при расчетах, использующих нормально распределенные границы ошибки есть 0(l/m) при малых т, т. е., фактически, константа, зависящая от т. Для биномиального приближения, аналогичного (10), в работе [43] устанавливаются границы ошибок аппроксимации для стандартного опциона-put ( продавца ) при m —> оо. Обозначим цену стандартного опциона-put через Vq . В общем случае в статье [43] доказывается существование положительных констант с и С, не зависящих от т, таких, что при достаточно больших m а при г < <т2/2 - константы С > 0, не зависящей от т, такой, что для достаточно больших т
Д)<с(^)
4/5
О <У0Р-У0Р
В работе [44] границы ошибок улучшены до 0(\/\о£т/т), но в предположении о том, что выплаты / € С2 и ограничены почти наверное. Доказательства этих утверждений используют весьма громоздкую и трудоемкую технику приближенного решения стохастических дифференциальных уравнений. В диссертации подобная задача рассматривается с использованием иного подхода, продолжающего линию монографий [69], [70], а также работ [72], [73] и [49].
Как уже отмечалось, в первой главе обсуждаются вопросы сходимости дискретизации гауссовских процессов со стационарными приращениями. Определим для процесса Х({) процесс ошибки
Следуя работам [42], [28], [27], автор рассматривает асимптотическое поведение соответствующим образом нормированных функционалов
В случае, когда Х{Ь) есть фрактальное броуновское движение £#(£) при любом фиксированном параметре Я £ (0,1], автором устанавливаются следующие теоремы.
Теорема 1.1 Пусть Х{Ь) - фрактальное броуновское движение £//(£), Н €
Хп{1) = Х{1)-Х{\п1)1п). $"(*)= вир |Л-"(*)| в<г и
0,1]. Тогда для произвольных х и t > О lim P{Sn(t) < n~Hbn(t)+xn-H/bn{t)} = ехрГ-е"*), n—>oo где bn(t) = (2 log n) V2+(2 log n)"1/2 (f log log n + log(c*2§)) +o ((2 log n)~1'2) при n —> oo с константами с = max{l/# — 3, —1} и а = а(Н) < со.
Теорема 1.2 Пусть X (¿) - фрактальное броуновское движение Bn(t), Н £ (0,1]. Тогда процесс nYn(t) слабо сходится к \X{t) с тем же Н при п —оо.
Заметим, что для стандартного броуновского движения предельный процесс в теореме 1.2 совпадает с соответствующим предельным процессом в теореме 1.4 [27], установленным для случая семимартингалов.
Далее, пусть процесс t > 0, - непрерывный гауссовский со стационарными приращениями, Х(0) = 0, EX(t) = 0. Обозначим а\ = max<e[o,i/n]EX2(t). Верно следующее обобщение теоремы 1.1.
Теорема 1.3 Пусть ip{t — s) = E{X(t) — X{s))2, t > s, такова, что ip{h) = haL(h){l + o{l)) при h 4- 0 для некоторого а > 0 и непрерывной функции L(h), такой что L(h) > 0 при h > 0 и 1 при h -» 0 для любого I > 0. Тогда для любых х > 0, t > 0 lim P{Sn{t) < an(bn(t)+x/bn{t))} = ехр{-е~х), n-teo где bn(t) = (2 log n)l'4{2 log n)"1/2 (cj log log n + log(c2i2Cl))+o ((2 log n)"1/2) при 7i —^ oo, с константами C\ = max{2/a — 3, —1} и C2 = C2(a, ¿(0)) < oo.
Доказательства теорем 1.1 и 1.3 во многом опираются на результаты работы [36]. Доказательство теоремы 1.2 в основном использует свойства процесса фрактального броуновского движения.
Во второй главе устанавливаются оценки скорости сходимости дискретной аппроксимации процесса максимума фрактального броуновского движения Вн(£), Н £ (0,1].
Для процесса фрактального броуновского движения Вн(¿) с произвольным фиксированным параметром Хёрста Н Е (0,1], £ < 0, обозначим
М = max BH(t) и
М' = min BH(t), е[о,П где 0 < Т < оо.
Для некоторого m £ N положим h = T/m. Определим процессы дискретного максимума и минимума как
Мщ — max Вн (t) khe[o,T] и где к = 0,1,.,-.
Теорема 2.1 Для любого 0 < и < оо log^ m
Р{М > и} - Р {Mm >и}<Стн при всех достаточно больших т для некоторой константы С > 0. Соответственно, для любого —оо < и < 0
Р{М' <и}-Р{М'т<и}< тп при всех достаточно больших т для некоторой константы С' > 0.
Кроме того, рассмотрены различные функционалы от процесса максимума.
Теорема 2.2 Пусть функция /(•) £ С^оо)) и E[f'(M)]2 < оо. Тогда
Ef(M)-Ef(Mm)\<Cl^¡£ при всех достаточно больших т для некоторой константы С > 0.
Соответственно, пусть функция /(•) £ С1((—оо,0]) и E[f'(M)]2 < оо. Тогда E¡(M')-ES(M'm)\<C'X^ til при всех достаточно больших т для некоторой константы С' > 0.
Доказательства теорем 2.1-2.2 используют традиционную технику, применяемую для гауссовских процессов ( см. [56] ), а также свойства фрактального броуновского движения.
Далее, полученные результаты применяются к вопросу о соотношении между ценами дискретных и непрерывных финансовых инструментов. Нами рассматриваются опционы Европейского типа, зависящие от траектории, в модели финансового рынка с фрактальным броуновским движением. Обсуждается расширенная модель Блэка и
Шоулса, в которой безрисковый и рисковый активы задаются, соответственно, уравнениями dRt = rRtdt, Ro = 1 (11) и dSt = fiStdt + a St o dBH(t), SQ> 0, 0 <t<T (12) для любого фиксированного Я € (0,1). Базирующаяся на Wick-произведении, эта модель безарбитражная ( см. [31] теорема 5.4, [23] часть 7 ), решение уравнения (12) есть St = , и цена квадратично-интегрируемого по риск-нейтральной мере Р платежного обязательства /
V = e~rTÉ[f], см. также [54] теоремы 4.7, 4.9 ), где мера Р такая, что процесс ^t + Bu{t) является фрактальным броуновским движением £#(£) относительно нее, аналогично стандартному случаю ( см. [31] часть 5, [23] часть 7 ).
Далее, определим функции выплат для различных типов опционов. Для барьерных опционов, мы имеем для ти := inf{¿ > 0 : St = и} и для произвольной функции /(Sr) выплаты
7{ги<Г} И fI{Tu>T] для нок-ин ( knock-in ) - и нок-аут an ( knock-out up ) ( и > So ) или - даун ( down ) ( и < Sq ) барьерных опционов, соответственно. В частности, стандартные барьерные опционы покупателя ( call ) и продавца ( put ) с ценой покупки К имеют / = (St — К)+ и / =
К — Бт)+. Для опционов с последействием функции выплат имеют форму для опционов покупателя и продавца, где
М = шах 1ой <6[0,Г1 и М' = пип 1ое
В частности, стандартные опционы с последействием покупателя и продавца имеют функции выплат / = (5оем — 5т) и / = — 5оем'). Наконец, мы обсуждаем Русский опцион покупателя и продавца для функций выплат (Зоем — К)+ и (К — 5оем')+, соответственно.
Положим к := Т/т. В дискретном случае, мы имеем в определениях выплат ги := т{{кк, к = 1,2. : 5м > и} ( для опционов ап; для опционов даун ти := т{{кН, к = 1,2. : < и} ) и Мт := тахАЛб[0|Г11об[5*л/'5о], М'т := ттАле[о,Г1 ^[б^л/бо].
Представляются следующие результаты.
Теорема 2.3 На рынке (11)-(12), Я £ (0,1), обозначим через Ут(и) цену дискретно наблюдаемого нок-ин или нок-аут, даун или ап, колл или пут опциона с барьером и. Пусть У(и) - цена соответствующего опциона в случае непрерывного мониторинга. Тогда
Ут{и) = У{и) +0 (т~н{\ozrn)1'2) при т —У со.
Теорема 2.4 На рынке (11)-(12), Я £ (0,1), обозначим через V цену непрерывно наблюдаемого опциона с последействием покупателя или продавца с функцией выплат /(М) 6 С1, Ё/'(М)2 < оо, в частности, стандартного опциона с последействием покупателя или продавца, или Русского опциона с функцией выплат (SoeM — К)+ и (К — 5оем')+ в случаях опциона покупателя и продавца, соответственно. Пусть Vm -цена соответствующего дискретно наблюдаемого опциона. Тогда мы имеем
Vm = V + 0 (т~н (log т)1^ при m —> со.
Заметим, что в случае Н = 1/2 с помощью принципа отражения (см. [71] Гл 1 §10 ) может быть получен более точный результат 0(1/у/т) и коррекционный терм для цены в случае платежных функций стан-дарных опционов ( см [9], [10] ). Однако в общем случае Н € (0,1) мы вынуждены использовать иную технику.
Третья глава диссертации посвящена решению задачи об аппроксимации цен стандартных опционов Американского типа в модели Блэка и Шоулса ценами соответствующих опционов в дискретной биномиальной модели Кокса-Росса-Рубинштейна. Предполагается, что эволюция цен безрискового и рискового активов В = (Bt)t>о и S = (St)t>о подчиняется уравнениям модели Блэка и Шоулса ( [5], [47], т. е. dBt = rBtdt, г > 0, (13) dSt = St(rdt + adWt), а > 0.
В условиях данной модели мы обсуждаем хеджирование опционов Американского типа, т. е. таких, которые могут быть предъявлены в любой момент действия контракта. Пусть выплаты по контракту определяются набором функций / = {/* = e~Xtg(St)}t>o, где А > 0 и
1б
7(5*) = (5* — К)+ или (К — в случаях опционов покупателя и продавца, соответственно.
Положим 5о = х. Тогда по определению ценой опциона Американского типа на интервале [0,Т] называется ( [70], гл. 6, §5а-5с )
У(х,Т) = У(х,Т,/) = тЦу : Зтг: = у,Х? > /гУт £ ЯЛ?}, где ЯЯд1 есть множество всех моментов остановки со значениями в [0, Т]. Отметим, что в случае опциона на бесконечном временном интервале ( Т = оо ) рассматриваются в том числе и моменты остановки, принимающие значение со с ненулевой вероятностью. Множество всех таких моментов, согласно сложившейся терминологии, будет обозначаться как 9Ло°. Т. о., цена опциона Американского типа на бесконечном временном интервале будет определяться как
У(х) = У(х,/) = Ы{у : Зтг : ХЦ = у, > /Т1{т < оо} Уг £ Щ^}.
Как известно, в задаче о нахождении цены У(х) опциона на бесконечном временном интервале существует оптимальный момент г* £ ШТд0, имеющий вид т* = М{г:Зг=х*} ( мы предполагаем т{{Щ = оо ), где х* = т^ж : У(х) = д(х)}, и при этом ( см. [73] и [70], гл. 8, § 2а-2Ь )
У(х) = В0Е^-1{т* < оо}, £>т* т. е. задача имеет явное решение. В случае конечного временного интервала, однако, подобный результат оказывается уже невозможным в силу резкого усложнения собственно задачи об оптимальной остановке ( см. подробнее [70], гл. 8, §3а ).
В случае дискретного времени мы рассматриваем биномиальную Д-модель Кокса-Росса-Рубинштейна ( см., например, [70], гл. 6, §3(1 ), полагая
ВпА ~ В(п-1)Д = гЛБ(п!)Д, д - 5(„1)д = (еае« - 1)5(„1)д, где = 1,2,. - н. о. р. с. в., такие, что Р{е„ = л/2} = Р? Р{е£ = -л/Е} = 1 - V с р = ^г^тг, т. е. исходная мера - мар-тингальная. Мы полагаем также /пд = (1 + АД)~"б7(5пд), А > 0, и = {т{и>) : т = 0, Д,., [Г/Д]Д}. Цены опционов на конечном и бесконечном интервалах обозначаются как У(х,Т,А) и У(х, Д), соответственно. Отметим, что в случае дискретного времени в задаче о нахождении цены У(х, Д) также существует оптимальный момент т 6 Ш?о°(Д), который есть т = т^А;: 5&Д > х}, где х = т{{х : У(х, Д) = д{х)} см. подробнее [72], [70], гл. 6, §5а-5Ь и [49] ). Сформулируем следующую теорему. 2
Теорема 3.1 Пусть в модели Блэка и Шоулса г < у. Тогда существуют такие положительные константы С и с, зависящие только от параметров модели, что при Т > С log Л 1 для всех достаточно малых
Д >0
V(x,T)-V(x,T,A)\ < с А.
Отметим, что в существующих приближениях для цены Американского опциона на конечном временном интервале, а именно для стандартного опциона продавца в случае Л = 0 ( связь стоимости стандартных опционов-put Европейского и Американского типа, см. [70], гл. 8, §3d и ссылки в нем ), размер погрешности также зависит от Т, возрастая в данном случае при росте Т. У нас, вообще говоря, присутствует зависимость константы с от Т, а именно, при росте Т константа с = с(Т) убывает, оставаясь при этом больше некоторой константы со, не зависящей от Т.
Взглянем на результат теоремы 3.1 с несколько иной точки зрения. Предположим, что наш интервал [0,Т] на m частей с шагом Д, то есть Д = Тогда теорема говорит о том, что существуют константы С, с, Со, такие, что при m, < СТесТ CQm~l для достаточно больших т. Эта оценка соответствует оценке для опционов Европейского типа. 2
Теорема 3.2 Пусть в модели Блэка и Шоулса г = Тогда для некоторых положительных констант С и с, зависящих только от параметров модели, при Т > СА~1 для всех достаточно малых Д > 0
V(x,T)-V(x,T,A)\<cA*.
Очевидно, что во втором случае мы имеем сходимость существенно более низкого порядка. Это объясняется различными методиками осуществления доказательств, учитывающими структуру оптимального момента остановки г* на бесконечном временном интервале, который при г > у является конечным, и мы имеем
У(х) = В0Е^V см. [70], гл. 8, §2а-2Ь, и [71], гл. 8, § 9 ). При этом, в случае г > у
О-2 удается установить лучшую, чем при г = у, сходимость.
Теорема 3.3 Пусть в модели Блэка и Шоулса г > у. Тогда для некоторых положительных констант С и с, зависящих только от параметров модели, при Т > СД-1 для всех достаточно малых Л > 0
У(х,Т)-У{х,Т, Л)|<сЛ.
Доказательства теорем 3.1-3.3 основаны на использовании разложения
У(х, Т) - У(х, Т, Л) = [У(х, Т) - У(х)} +[У(х) - У(х, Л)] + [У(х, Л) - У{х, Г, Л)] и оценивания по модулю каждого из членов суммы в правой части равенства.
Структура диссертации следующая. Первая глава состоит из трех частей: первая часть является введением, кроме того, в ней сформулированы основные результаты главы; во второй части основные результаты главы доказываются; в третьей части доказываются вспомогательные утверждения. Вторая глава состоит из четырех частей: первая часть является введением, во второй формулируются и доказываются основные результаты главы, в третьей доказываются вспомогательные утверждения и четвертая посвящена численным расчетам в модели фрактального финансового рынка. Третья глава состоит из следующих трех частей: введения, основных результатов, доказательств. В конце приведен полный список использованной литературы.
§3.2 Основные результаты
Предполагается, что эволюция цен безрискового и рискового активов В = (Д)*>о и 5 = (5<)<>о подчиняется уравнениям модели Блэка и Шоулса ( [5], [47] ), т. е. с1В% = гВг<И, г > 0, (80) + о" > о.
В условиях данной модели мы обсуждаем хеджирование опционов Американского типа, т. е. таких, которые могут быть предъявлены в любой момент действия контракта. Пусть выплаты по контракту определяются набором функций / = {/< = еА<<7(£<)}<>0) гДе А > 0 и р(5<) = — К)+ или (К — в случаях опционов покупателя и продавца, соответственно.
Положим £о = х. Тогда по определению ценой опциона Американского типа на интервале [0,Т] называется ( [70], гл. 6, §5а-5с )
У(х,Т) = У(я,Т,/) = тЦу : Этг: X? = > /гУт 6 Ш^}, где 9Ло есть множество всех моментов остановки со значениями в [0,Т]. Отметим, что в случае опциона на бесконечном временном интервале ( Т = оо ) рассматриваются в том числе и моменты остановки, принимающие значение оо с ненулевой вероятностью. Множество всех таких моментов, согласно сложившейся терминологии, будет обозначаться как 971о°. Т. о., цена опциона Американского типа на бесконечном временном интервале будет определяться как
У(х) = У(х,/) = т£{у : Зтг: ХЦ = у, Х*т > /г1{т < оо} Уг 6 £Ю§°}.
Как известно, в задаче о нахождении цены У(х) опциона на бесконечном временном интервале существует оптимальный момент т* 6 имеющий вид т* = \пЩ : = ж*} ( мы предполагаем т£{0} = оо ), где х* = т£{ж : У(х) = &(х)}, и при этом ( см. [73] и [70], гл. 8, §2а-2Ь )
У(х) = В0Е^1{т* < оо}, т. е. задача имеет явное решение. В случае конечного временного интервала, однако, подобный результат оказывается уже невозможным в силу резкого усложнения собственно задачи об оптимальной остановке ( см. подробнее [70], гл. 8, §3а ).
В данной работе предлагается аппроксимация цены опциона Американского типа на конечном интервале ценой соответствующего опциона в дискретном времени, которая, в свою очередь, может быть установлена, как обычно и делается на практике, методом обратной индукции ( см. [70], гл. 6, §2а). В случае дискретного времени мы рассматриваем биномиальную Л-модель Кокса-Росса-Рубинштейна ( см., например, [70], гл. 6, §3d ), полагая
ЯпД - В(п- 1)Д = гАВ?п1)а,
SnA ~ S(n- 1)Д = (е<Т£п ~ где £%,п = 1,2,. - н. о. р. с. в., такие, что P{s% = у/Ж} = р, р{£п = -VZ} = 1-р с р = Т. е. исходная мера - мартингальная. Мы полагаем также /„д = (1 + АД)~п#(5пд), Л > 0, и = {t(lo) : г = 0, Л,., [Т/Д]Д}. Цены опционов на конечном и бесконечном интервалах обозначаются как У(ж,Т, Л) и V(x, Л), соответственно. Отметим, что в случае дискретного времени в задаче о нахождении цены V(x, Д) также существует оптимальный момент т G Ш?о°(Д), который есть т = inf{к : S£A > х}, где х = infjz: V(x, Д) = д{х)} см. подробнее [72], [70], гл. 6, §5а-5Ь и [49] ). Сформулируем следующую теорему. 2
Теорема 3.1 Пусть в модели Блжа и Шоулса г < Тогда существуют такие положительные константы Cue, зависящие только от параметров модели, что при Т > Clog Д-1 для всех достаточно малых Д > 0
V(x,T) -V(x,T,A)\ < с А.
Отметим, что в существующих приближениях для цены Американского опциона на конечном временном интервале, а именно для стандартного опциона продавца в случае Л = 0 ( связь стоимости стандартных опционов-ри1 Европейского и Американского типа, см. [70], гл. 8, §3(1 и ссылки в нем ), размер погрешности также зависит от Г, возрастая в данном случае при росте Т. У нас, вообще говоря, присутствует зависимость константы с от Г, а именно, при росте Т константа с = с(Т) убывает, оставаясь при этом больше некоторой константы со ( она определяется из (81), см. следующую часть ), не зависящей от
Взглянем на результат теоремы 3.1 с несколько иной точки зрения. Предположим, что наш интервал [0,Т] на га частей с шагом Д, то есть Л = Тогда теорема говорит о том, что существуют константы С, с, для достаточно больших га. Эта оценка соответствует оценке для опционов Европейского типа. торых положительных констант С и с, зависящих только от параметров модели, при Т > СД-1 для всех достаточно малых Д > 0
Очевидно, что во втором случае мы имеем сходимость существенно более низкого порядка. Это объясняется различными методиками осуществления доказательств, учитывающими структуру оптимального момента остановки т* на бесконечном временном интервале, кото
Т. со, такие, что при га < СТесТ 2
Теорема 3.2 Пусть в модели Влэка-Шоулса г = Тогда для неко
У(х,Т) — У(х,Т, Д)| < сД^. рый при г > y является конечным, и мы имеем
V(x) = jDt* см. [70], гл. 8, §2a-2b и [71], гл. 8, §9 ). При этом, в случае г > у удается установить лучшую, чем при г = у, сходимость.
Теорема 3.3 Пусть в модели Влэка-Шоулса г > у. Тогда для некоторых положительных констант Cue, зависящих только от параметров модели, при Т > СД-1 для всех достаточно малых Л > 0
V(x,T) — V(x,T, Д)| < сЛ.
Вначале мы докажем вспомогательную лемму о связи между ценами опционов в дискретном и непрерывном времени на бесконечном временном интервале, которая справедлива при любых соотношениях между г и а, затем последовательно утверждения теорем 3.1, 3.2 и 3.3.
§3.3 Доказательства
Мы рассматриваем только случай опциона-са11, а именно g(St) = (St — К)+. Доказательства для опциона-put проводятся аналогично.
Лемма 3.1 Пусть шаг дискретной модели Кокса-Росса-Рубинштейна есть Д > 0. Тогда для некоторой константы с > 0 при всех достаточно малых Д > 0
У(я)-У(я,Д)|<сД. (81)
Доказательство леммы 3.1. Обозначим = е0"^. Согласно (23)-(26) §5Ь, гл. 6 [70], функция V(x, Д) должна удовлетворять уравнению
У{х,А) =
А) + (1 -р)У(х/#А), А], Х<х, где граничная точка х 6 Е = {1,е±<г"^,.} также неизвестна, и частные решения (82) ищутся в виде С(х,А) = х7д. Из (82) следует, что 7д должна удовлетворять уравнению
1=(ГТ^Г+М)И1' + (1-,,)ЛГ'1- (83)
Решая это уравнение относительно , можно заключить ( см. (31)-(34) §5, гл. 6 [70] ), что искомая функция
1д(х). х > х,
84)
С£7л, X < X, где константы сих подлежат определению.
Устремим в (83) Л -> 0. Используя разложение Тейлора, мы получаем, что 7д удовлетворяет уравнению
7272 + (2г - (72)7д - 2(г + Л) + О(А) = 0 (85) при Л —> 0. Уравнение (85) имеет единственное положительное решение
ЧННЙ-Й'^-^ и, полагая у = 70, мы получаем так называемое "непрерывное" решение задачи д(х), х > х*,
У(х)
86)
X < X*. где х 7 с* = -П7-1
7-1)
7-г -- ^ и х* может и не принадлежать Е ( см. [70], гл. 6, §5Ь, (36)-(39) ). Заметим, что в нашей модели V(х) совпадает с ценой V (х), определяемой формулами [70], гл. 8, §2а. Согласно [70], гл. 6, §5Ь, (40)-(43), параметры решения У(:г, Л) есть с = тт(с1,с2), где с2 = (^] и
77 Д 5
X = 5 если с = С1, если с = ¿2 при любых Л > 0.
Из (86) и (88) следует, что
88) тах|У(я)-У(я,Д)| х£Е
Доказательство теоремы 3.1. Пусть т* - оптимальный момент остановки для задачи в непрерывном времени на бесконечном временном интервале ( см. [70], гл. 8, §2а ), т. е.
У{х) = Ее~(г+Х^д{8т>)1{т* < оо}. 68
Заметим, что т* = inf{£ > 0 :St = x*} = inf{i > 0 : + - |) * = а*}, где а* = Аналогично, для оптимального момента г в Д дискретной модели с бесконечным временным горизонтом имеем к f = inf{fcA > а}, г=1 где а = log
Далее, мы имеем
Ее~{Х+г)т* g(ST*)I{r* < Г}, и, следовательно, получаем, что
V{x) - V(x,T) < Ee~^Ttg(ST*)I{T < т* < оо] и аналогично для Л - дискретной модели
V(x, Л) - V(x,Т, Л) < Е[( 1 + АД)(1 + гД)]-^(5?)/{Г < f < оо}.
Отсюда и из леммы 3.1 очевидным образом получаем
V(x,T)-V(x,T,A)\ (89) сД + С\ тах{Р{Т < т* < оо}, Р{Т <т< оо}}.
Оценим вначале Р{Т < т < оо}. Здесь мы используем метод [49], т. 3. Итак, обозначим ф(1,А) =\ogEel£*.
Мы имеем ф(1, Д) = \og{pe1^ + (1 - р)е~и при Л —> 0, и поэтому существует такое Iq > 0, что ф(1о, Л) < 0. Заметим, что процесс к exp {k^sf ~кф(10, Д)} i=i является положительным мартингалом с математическим ожиданием, равным 1, поэтому мы можем определить новую вероятностную меру РХ(А) на множествах А £ ,.), полагая для каждого к > 0 и множества A G (?{£%) к
РХ(А) = EXI{A) ехр{/0 4 ~ А)} i=i преобразование Эшера ). Отсюда мы получаем т/А]
ЕХ1{Т < т < оо} ехр{/ Y, £i ~ А)} г=1 оо к £ Ех1{т = кА}ехр{10^4~кф(к,А)} к=[Т/А]+1 г= 1 оо £ = кА> = P'V < f <
Г/Д]+1
Т. к. £i ^ мы получаем, что р{т < т < оо} <е-1о-ае[т/аж10а)р{т < f < оо} (91) с(х)е~сТ в силу (90) для всех достаточно малых Л > 0 и положительных констант с(х) и с.
Далее, рассмотрим Р{Т < т* < оо}. Фиксируем п 6 N и определим последовательность н. о. р. с. в. таких, что ef" ~ N ^ — yJ и рассмотрим задачу об оптимальной остановке для последовательности Sn = (Sk2-")k=i,2,-i гДе = хе"^^6' , и набора функций /" = (/¿2-")fc=i,2,., где /и-„ = е~Хк2~п g(Sk2-»). Определим оператор Qn,
Qn(g(x)) = max{g(x),e~/?2'nFxg(S2-n)}.
Тогда функция цены для этой задачи есть UrriN-iooQn {в{х)) ( см- [69], гл. 2 ), и оптимальный момент остановки т2-п принадлежит Ш?о°(2~"). Согласно результатам [69], гл. 3,
V(x) = lim lim Q%(g(x)), n-> oo N->oo и т2-п —ь т* P - п. н., а, следовательно, и по распределению. Для т2 мы можем установить, следуя процедуре, аналогичной той, которая применялась для получения (91), что
Р{Т < т2-п < оо} < с,(х)е~с*т для некоторых положительных констант с* (я) и с* для всех достаточно больших п. Устремляя п —>■ оо, мы получаем, что
Р{Т < г* < оо} < с*(х)е~с*т. (92)
Из (89), (91) и (92) следует, что
-V{x,T,A)\ < с А + с\е~СгТ для всех достаточно малых А > 0 с некоторыми положительными константами с, ci, С2, зависящими только от параметров модели, откуда следует утверждение теоремы. □
Доказательство теоремы 3.2 Аналогично (89), имеем
У(х,Т)-У(х,Т,Ь)\ (93) сД + С\ тах{Р{Т < т* < оо}, Р{Т < т < оо}} при всех достаточно малых Д > 0.
В данном случае ( г = у ) оптимальный для задачи в непрерывном времени момент т* является конечным, и поэтому Р{Т < т* < оо} = Р{т* > Т}. Поскольку ~4 2 б о ( г' reг а
Д — ^)+0(Д3)>0 2 при Д -> 0, когда г = у, то и оптимальный момент в Д-дискретной модели т также конечен. Итак, нам необходимо оценить тах{Р{т* >Т},Р{т>Т}}. (94)
Мы имеем в обозначениях доказательства предыдущей теоремы
Р{т* >Т} = Р{тахИ^ < а*} (95)
1 - 2Р{У/т > а*} = кт с vf' и к
P{f >Т} = Р{ тах У ef < а]
1 J lk<[T/A}¿-f г J г=1 к
Р{ тах < а} = Р, к<[Т/ A]f где р = Р{гf = у/Е} = У нас Р = 1 - 2ef > й}. Всилу неравенства Берри-Эссеена ( см., например, [71], гл. 3, §11 ), для любого У
Т/А] л
Г Т[т/,
ХуДт/ЩЕ-''}
Положим у = -7===. Мы имеем у/[т/ А]А
Р{Щ > у} у/рЩ
Г/А] 1
WЩ в силу чего, учитывая (93), (94), (95) и факт, что а = а* + О (Л) при Л —> 0, легко получить, что
У(х,Т) - У(х,Т, Д)| < сЛ + -4= + С2 для всех достаточно малых Л > 0 с некоторыми положительными константами с, С1, с2, зависящими только от параметров модели, откуда следует утверждение теоремы. □
Доказательство теоремы 3.3 Аналогично предыдущей теореме, мы имеем
У(х,Т)-У(х,Т,А)\ <сА + С\ тах{Р{г* > Г}, Р{т > Г}}. при всех достаточно малых Д > 0. Т. к.
Р{т > Г} = Р < тах Уе}<а
Р< К
--Р
96)
97)
И 1 [ К] ГТ1
1=1 I I 1=1
ЕЙ1 е} - (Ь -1) д [£] + О(Л) а -(*-;) д [£] + о(д) д Ш А И при Л —> 0, а то, поскольк; Р
99) с некоторыми положительными константами с\ и с2, применяя неравенство Берри-Эссеена к правым частям (97) и (98) и учитывая, что а = а* + О(Д) при А —У 0, мы получаем, что для всех достаточно малых Л с некоторыми положительными константами с, с2, сз, зависящим только от параметров модели откуда следует утверждение нашей теоремы. □
Автор глубоко благодарен своему научному руководителю профессору В. И. Питербаргу за постановку задач глав 1 и 2 и многочисленные ценные обсуждения, а также члену-корреспонденту РАН профессору А. Н. Ширяеву за важные советы по написанию главы 3.
У(х,Т) - У(х,Т,А) | < сА + —е~С2Т +
1. Adler, R. J. An 1.troduction to Continuity, Extrema, and Related Topics for General Gaussian Processes// v. 12 of Lecture NotesMonograph Series, Institute of Mathematical Statistics, 1990.
2. Berman, S. M. The maximum of a Gaussian process with nonconstant variance// Ann. Inst. H. Poincare Probab. Statist., 21 (1985), 383-391.
3. Биллингсли П. Сходимость вероятностных мер// Наука, Москва, 1977.
4. F. Black, М. Scholes The pricing of options and corporate liabilities// Journal of Political Economy, 81 (1973), 3, 637-659.
5. Blackwell D. On optimal systems// Annals of Mathematical Statistics 25 (1954), 394-397.
6. Br'acker, H. U. High boundary excursions of locally stationary Gaussian processes// Ph. D. thesis, University of Bern, 1993.
7. M. Broadie, J. Detemple American option valuation: new bounds, approximations, and a comparison of existing methods// Review of Financial Studies, 9 (1995), 1211-1250.
8. Broadie, M., Glasserman, P. and Kou, S. A continuity correction for discrete barrier options// Mathematical Finance, 7 (1997), 325-348.
9. Broadie, M., Glasserman, P., Kou, S. Connecting discrete and continuous path-dependent options// Finance and Stochastics, 3 (1999), 55-82.
10. R. Carbone Binomial approximation of Brownian motion and its maximum// Statistics and Probability Letters 69 (2004), 271-285.
11. A. P. Carverhill, N. Webber American options: theory and numerical analysis// in Options: Recent Advances in Theory and Practice, Manchester University Press, 1990.
12. Chance, D. M. The pricing and hedging of limited exercise caps and spreads// Journal of Financial Researches, 17 (1994), 561-584.
13. Cheuk, Т., Vorst, T. Currency lookback options and the observation frequency: A binomial approach// Journal of International Money Finance 16 (1997), 173-187.
14. J. Cox, S. Ross, M. Rubinstein Option Pricing: a Simplified Approach// Journal of Financial Economics 7 (1979), 229-263.
15. Гихман И. И., Скороход А. В. Теория случайных процессов// Наука, Москва 1971.
16. Gripenberg, G. and Norros, I. On the prediction of fractional Brownian motion, Journal of Applied Probability, 33 (1996), 400-410.
17. W. Dai, C. Heyde Ito formula with respect to fractional motion and its application// Journal of Applied Mathematical Stochastic Analysis 9 (1996), 439-448.
18. Darling D. A., Liggett T., Taylor H. M. Optimal stopping for partial sums// Annals of Mathematical Statistics 43 (1972), 1363-1368.
19. A. Dasgupta Fractional Brownian motion: Its properties and applications to stochastic integration// Ph. D. thesis, Department of Statistics, University of North Carolina at Chapel Hill, 1997.
20. L. Decreusefond, A. S. Ustiinel Stochastic analysis of the fractional Brownian motion// Potential Analysis 10 (1998), 177-214.
21. Duncan, T. E., Hu, Y and Pasik-Duncan, B. Stochastic calculus for fractional Brownian motion I. Theory// Siam J. Contr. Optim., 38 (2000), 582-612.
22. Elliot, R. and van der Hoek, J. A general fractional white noise theory and applications to finance// Mathematical Finance, 13 (2003), 301330.
23. Gobet, E. and Temam, E. Discrete time hedging errors for options with irregular payoffs// Finance and Stochastics 5 (2003), 357-367.
24. H. He Optimal consumption-portfolio policies: a convergence from discrete to continuous time models// Journal of Economic Theory, 55 (1990), 340-363.
25. Цирельсон, Б. С. Плотность распределения максимума гауссовско-го процесса// Теория вероятностей и ее применения, 20 (1975), 865-873.
26. Jacod, J., Jakubowski, A. and Memin, J. On asymptotic errors in discretization of processes// Annals of Probability, 31 (2003), 2, 592608.
27. Jacod, J., Protter, P. Asymptotic error distributions for the Euler method for stochastic differential equations// Annals of Probability, 26 (1998), 1, 267-307.
28. Жакод Ж., Ширяев A. H. Предельные теоремы для случайных процессов// Москва, Физматлит, 1994.
29. Heynen, R. С., Kat, Н. М. Lookback options with discrete and partial monitoring of the underlying price// Applied Mathematical Finance, 2 (1995), 273-284.
30. Hu, Y., and 0ksendal, B. Fractional white noise calculus and application to finance// Infinitely Dimensional Anal. Quantum Probability Related Topics, 6 (2003), 1-32.
31. Hiisler, J. Asymptotic approximation of crossing probabilities of random sequences// Z. Wahrsch. Verw. Gebiete, 63 (1983), 257-270.
32. Hiisler, J. Extreme values and high boundary crossings for locally stationary Gaussian processes// Annals of Probability, 18 (1990), 1141-1158.
33. Hiisler, J. A note on extreme values of locally stationary Gaussian processes// J. Statist. Plann. Inference, 45 (1995), 203-213.
34. Husler, J. Extremes of Gaussian processes, on results of Piterbarg and Seleznjev// Statistics and Probability Letters, 44 (1999), 251-258.
35. Husler, J., Piterbarg, V., Seleznjev, 0. On convergence of the uniform norms for Gaussian processes and linear approximation problems// Annals of Applied Probability, 13 (2003), 4, 1615-1653.
36. Иванов P. В. О дискретной аппроксимации опционов Американского типа// Успехи математических наук, т. 61 (2006), вып. 1, с. 179-180.
37. Иванов Р. В. Дискретная аппроксимация опционов Американского типа на конечном временном интервале// Литовский математический сборник, т. 45 (2005), вып. 4, с. 525-536.
38. Иванов Р. В. О дискретной аппроксимации некоторых гауссовских процессов// Вестник МГУ, Серия 1, Математика. Механика (2005), вып. 6, с. 54-55.
39. Иванов Р. В. Об асимптотических ошибках в дискретизации процессов: фрактальное броуновское движение, рукопись// депонирована в ВИНИТИ РАН ном. 1079-В2005, (2005), 12 с.
40. Kurtz, Т. G. and Protter, P. Wong-Zakai corrections random evolutions and numerical schemes for SDEs// Stochastic Analysis 331346, Academic Press, New-York, 1991.
41. D. Lamberton Error estimates for the binomial approximation of American put options// Annals of Applied Probabability, 8 (1998), 206-233.
42. D. Lamberton Brownian optimal stopping and random walks// Appl. Math. Optim., 45 (2002), 283-324.
43. Leadbetter, M. R., Lindgren, G. and Rootzén, H. Extremes and Related Properties of Random Sequences and Processes// Springer, New-York, 1983.
44. S. J. Lin Stochastic analysis of fractional Brownian motions// Stochastics and Stochastics Reports 55 (1995), 121-140.
45. R. C. Merton Theory of rational pricing// Bell Journal of Economic Management Sciences 4 (1973), 141-183.
46. Mordecki E. Optimal stopping and perpetual options for Levy processes// Finance and Stochastics, 6 (2002), 473-493.
47. Новиков А. А., Ширяев A. H. Об одном эффективном случае решения задачи об оптимальной остановке для случайных блужданий// Teopbz вероятностей и ее применения, 49 (2004), 2, 373-382.
48. Norros, I. Busy Periods of Fraction Brownian Storage: A Large Deviations Approach// Advances in Performance Analysis, 2 (1999), 1-20.
49. Norros, I., Manenrsalo, P. and Wang, J. Simulation of Fractional Brownian Motion with Conditional Random Displacement// Advances in Performance Analysis, 2 (1999), 77-101.
50. Norros, I., Valkeila, E., Virtamo, J. On elementary approach to a Girsanov formula and other analytical results on fractional Brownian motion// Bernoulli 5 (1999), 571-578.
51. Novikov, A. and Valkeila, E. On some maximal inequalities for fractional Brownian motions// Statistics and Probability Letters 44 (1999), 47-54.54. 0ksendal, B. Fractional Brownian motion in finance// Preprint, 2003.
52. Pedersen, J. Convergence of strategies: an approach using Clark-Haussmann's formula// Finance and Stochastics 3 (1999), 323-344.
53. Piterbarg, V. Asymptotic methods in the theory of Gaussian processes and fields// AMS, MMONO 148, Providence, Rhode Island, 1996.
54. Piterbarg, V. I. and Prisyazhn'uk, V. Asymptotic behaviour of the probability of a large excursion of a non-stationary Gaussian process// Theory of Probability and Mathematical Statistics 18 (1978), 121-133.
55. Piterbarg, V. and Seleznjev, O. Linear interpolation of random processes and extremes of a sequence of Gaussian non-stationaryprocesses// Technical Report 1994:446, Center Stochastics Process, North Carolina University, Chapel Hill, 1994.
56. Прохоров Ю. В. Сходимость случайных процессов и предельные теоремы теории вероятностей// Теория вероятностей и ее применения 1 (1956), 2, 177-238.
57. Rootzen Н. Limit distributions for the error in approximations of stochastic integrals// Annals of Probabability 8 (1980), 2, 241-551.
58. Seleznjev, O. Limit theorems for maxima and crossings of a sequence of Gaussian processes and approximation of random processes// Journal of Applied Probability 28 (1991), 17-32.
59. Seleznjev, 0. Limit theorems for maxima and crossings of sequence of nonstationary Gaussian processes and interploation of random processes// Report 1993:8 (1993), Department of Mathematical Statistics, Lund University, Sweden.
60. Seleznjev, O. Large deviations in the piecewise linear approximation of Gaussian processes with stationary increments// Advances in Applied Probability, 28 (1996), 481-499.
61. Seleznjev, 0. Spline approximation of random processes and design problems// Journal of Statist. Plann. Inference 84 (2000), 249-262.
62. Shiryaev, A. N. On arbitrage and replication for fractal models// in A. N. Shiryaev and A. Sulem ( eds ): Workshop on Mathematical Finance, INRIA, Paris, 1998.
63. Shiryaev, A. N., and Valkeila, E. Stochastic analysis of fractional Brownian motion with applications// Working paper, 2004.
64. Talay, D. Simulation of stochastic differential systems// Probabilistic Methods in Applied Physics, Lecture Notes in Physics 451 (1995), 63106, Springer, New-York.
65. Ширяев A. H. Статистический последовательный анализ// Изд.2: Наука, Москва, 1976.
66. Ширяев А. Н. Основы стохастической финансовой математики// ФАЗИС, Москва, 1998.
67. Ширяев А. Н. Вероятность// Изд.З: МЦНМО, Москва, 2004.
68. А. Н. Ширяев, Ю. М. Кабанов, Д. О. Крамков, А. В. Мельников К теории расчетов опционов Европейского и Американского типов. 1. Дискретное время// Теория вероятностей и ее применения 39 (1994), 1, 21-79.
69. А. Н. Ширяев, Ю. М. Кабанов, Д. О. Крамков, А. В. Мельников К теории расчетов опционов Европейского и Американского типов. 2. Непрерывное время// Теория вероятностей и ее применения 39 (1994), 1, 80-129.
70. Temam, Е. Analysis of error with Malliavin calculus: application to finance// Mathematical Finance 13 (2003), 201-214.
71. Valkeila, E. On some properties of geometric fractional Brownian motions// Department of Mathematics, University of Helsinki, Preprint 224, 1999, 12 pages.
72. J. B. Walsh The rate of convergence of the binomial tree scheme// Finance and Stochastics, 2003, 7, 337-361.
73. R. Zhang Couverture Approchée des Options Européennes// Ph. D. thesis, Ecole Nationale des Ponts et Chaussées, http://cermics.enpc.fr/theses/99/zhang-ruotao.ps.gz, 1999.