Родопсины: структура и функции тема автореферата и диссертации по химии, 02.00.10 ВАК РФ

Абдулаев, Нажмутин Гаджимагомедович АВТОР
доктора химических наук УЧЕНАЯ СТЕПЕНЬ
Москва МЕСТО ЗАЩИТЫ
1985 ГОД ЗАЩИТЫ
   
02.00.10 КОД ВАК РФ
Диссертация по химии на тему «Родопсины: структура и функции»
 
 
Содержание диссертации автор исследовательской работы: доктора химических наук, Абдулаев, Нажмутин Гаджимагомедович

Введение

Светочувствительные мембранные белки - бактериородопсин и родопсин (Литературный обзор)

I. Зрительный пигмент - родопсин

1. Свободный хромофор

2. Спектральные характеристики ретиналя.

3. Связь ретиналя с белком и хромофорные центры ретиналь-содержащих белков.

П. Фотоиндуцированные превращения зрительных пигментов.

1. "Световые" процессы

2. Батородопсин и гипсородопсин.

3. Первичный фотохимический акт в процессе зрительного возбуждения.

4. "Темновые" процессы

Ш. Преобразование энергии света в зрительных клетках.

1. Ионы кальция как внутриклеточный медиатор.

2. цГМФ как внутриклеточный медиатор.

3. Ферменты наружных сегментов зрительной клетки

4. Ферментативный каскад усиления сигнала света.

5. Эталы зрительного процесса.

1У.Бактериородопсин

I. Фотохимический цикл бактериородопсина.

Результаты и обсуждение

I. Зццеление и характеристика бактериородопсина и родопсина.

П. Методология определения первичной структуры интегральных мембранных белков.

1. Ферментативные и химические методы расщепления мембранных белков

2. Разделение гидрофобных пептидов.

3. Определение первичной структуры мембранных белков.

Ш. Первичная структура бактериородопсина.

1У. Структурная модель бактериородопсина в пурпурной мембране.

1. Ограниченный протеолиз.

2. Связь хромофора с белком.

3. Упаковка бактериородопсина в мембране

У. Структурно-функциональный анализ бактериородопсина

У1. Первичная структура родопсина.

УД. Структурная модель организации полипептидной цепи родопсина в фоторецепторной мембране

I. Ограниченный протеолиз

Экспериментальная часть.

1. Материалы.

2. Вццеление, характеристика и определение первичной структуры бактериородопсина

3. Структурно-функциональное изучение бактериородопсина.

4. Выделение, характеристика и определение первичной структуры родопсина

5. Топография родопсина в фоторецепторной мембране

Выводы.

 
Введение диссертация по химии, на тему "Родопсины: структура и функции"

В настоящее время изучение физиологических основ функционирования биологических мембран становится одним из быстро развивающихся направлений биоорганической химии и молекулярной биологии. Стремительный прогресс в развитии этих дисциплин позволил подойти к глубокому исследованию таких важнейших проблем мембранологии как транспорт ионов через биологические мембраны, нервная проводимость гормональная рецепция и т.д. Качественно новый характер приобрело и изучение давно уже ставшей классической проблемы фоторецепции. Исследование структуры и функции фоторецепторных мембран зрительных клеток представляет особо большой интерес, поскольку в этой мембране совершается один из важнейших физиологических процессов - процесс поглощения и трансформации энергии света. Очевидно, изучение механизма фоторецепции на молекулярном уровне представляет собой одну из актуальных задач современной физико-химической биологии. Именно этим определяется интерес к детальному изучению родопсина -светочувствительной антенны фоторецепторной клетки, а также белков, принимающих непосредственное участие в усилении и преобразовании энергии света.

Проблемам фоторецепции и утилизации энергии света уделено большое внимание в постановлениях ЦК КПСС иСовета Министров СССР от 19 апреля 1974 года |!0 мерах по ускорению развития молекулярной биологии и молекулярной генетики и использовании их достижений в народном хозяйстве" и от 24 июня 1981 года "О дальнейшем развитии физико-химической биологии и биотехнологии и использовании их достижений в медицине, сельском хозяйстве и в промышленности".

Ключевым вопросом в структурно-функциональных исследованиях зрительных пигментов является изучение механизма передачи сигнала от молекулы родопсина, локализованной в морфологически изолированных мембранах фоторецепторных дисков, на плазматическую мембрану и далее на синаптическое окончание зрительной клетки.

Известны две гипотезы, объясняющие механизм этого процесса. Первая из них рассматривает молекулу родопсина как активируемый светом ионный канал, обеспечивающий поступление ионов кальция из внутридискового пространства в цитоплазму и тем самым регулирующий степень поляризации плазматической мембраны. Суть второй гипотезы состоит в том, что молекула родопсина, поглотившая квант света, участвует в регуляции активности ферментативного комплекса, контролирующего уровень внутриклеточного медиатора - циклического гуанозинмонофосфата.

Несмотря на неоднозначность физиологических трактовок механизма зрительной фоторецепции, не вызывает сомнения трансмембранный характер расположения молекулы родопсина. Следовательно, архитектура этого белка в мембране на молекулярном уровне может определять истинный механизм его функционирования. Во многих лабораториях в нашей стране и за рубежом получена обширная информация о свойствах зрительных пигментов, охарактеризована каждая отдельная стадия фотолиза,установлена структура и функциональная значимость хромофора этих пигментов - ретиналя. Однако, сам механизм функционирования родопсинов остается не выясненным. В частности, практически ничего не известно о том, какие аминокислотные остатки белка образуют активный центр, какой аминокислотный остаток отвечает за связывание хромофора и, наконец, какова природа конформационных изменений белка, приводящих к активации ферментативного каскада. Дальнейший прогресс в изучении этих вопросов в значительной степени тормозится отсутствием данных о первичной структуре родопсина.

Не менее интересным в плане понимания функционирования родопсина представляется изучение близкого аналога зрительных пигментов - бактериородопсина, функционирующего в клетках некоторых галофильных микроорганизмов по принципу активируемого светом протонного насоса. Исследования бактериородопсина представляется важным не только для понимания механизма функционирования ионных каналов, его сходство по ряду физико-химических характеристик (наличие связанного ретиналя, светочувствительность и т.д.) со зрительным родопсином делает привлекательным сравнительное изучение обоих белков с целью познания общих принципов работы фотоактивируемых мембранных систем.

Основной целью настоящего исследования явилось определение полных аминокислотных последовательностей бактериородопсина и зрительного родопсина. Главная сложность в решении этой задачи заключалась в высокой гидрофобности этих белков и, как следствие, плохой растворимости их в водных средах. Следовательно, определение первичной структуры родопсина и бактериородопсина не могло базироваться на известных методах исследования первичной структуры гидрофильных белков. Это обстоятельство вццвинуло в качестве первостепенной задачи необходимость разработки новых методических приемов к структурному анализу интегральных мембранных белков.

Продолжением работ по определению структуры этих белков явилось установление их топографий в нативных мембранах, равно как выяснение строения их активных центров и размещение функционально важных группировок, что явилось основой для решения ряда вопросов, связанных с выяснением механизмов функционирования этих пигментов.

Автор выражает свою глубокую признательность академику Ю.А.Овчинникову за постоянное внимание к этой работе.

ЛИТЕРАТУРНЫЙ ОБЗОР

СВЕТОЧУВСТВИТЕЛЬНЫЕ МЕМБРАННЫЕ БЕЛКИ -БАКТЕРИОРОДОПСИН И РОДОПСИН

Процесс зрительного возбуждения как у позвоночных так и беспозвоночных запускается посредством поглощения света зрительными пигментами. Биохимические исследования показали, что во всех пигментах хромофором является П-цис-ретиналь, образующий с белком - опсином основание Шиффа. Важнейшей химической реакцией, имеющей место в зрительных пигментах всех позвоночных, является разрыв связи между белком и хромофором, приводящий к образованию свободного ретиналя и опсина. Этот процесс обычно называют "обесцвечиванием", поскольку зрительный пигмент, поглощает в видимой области, а свободный ретиналь - в УФ-области. Обесцвечивание сопровождается рядом зависимых от температуры процессов и завершается в пределах миллисекунд с момента поглощения света. В живом организме вслед за фотореакциями протекают ферментативные процессы, регенерирующие исходный пигмент. В случае беспозвоночных фотохимический цикл не приводит к разрыву связи между ретиналем и опсином.

Зрительные пигменты являются мембранными белками, локализованными в фоторецепторных клетках - так называемых палочках и колбочках сетчатки (рис. I). Пигменты погружены в дископодобные мембранные образования, локализованные в наружном сегменте палочки (НСП). В НСП диски образуют своеобразную стопку, плоскость которой перпендикулярна длинной оси клетки (т.е. перпендикулярна падающему лучу света).

Основная функция зрительных пигментов состоит в том, чтобы превращать энергию света в изменение электрического потенциала на клеточной мембране. Этот сигнал через соответствующий синапти-ческий процесс передается далее по зрительному нерву в мозг.

Описанию физиологических и биохимических аспектов фоторецепторных мембран посвящен ряд обзоров (I-I4). Белковый компонент пигмента дисков - родопсин состоит из одной полипептидной цепи.

Данные по переносу энергии флюоресценции (15), нейтронной дифракции (16) и дифракции электронов (17) показали, что родопсин имеет форму эллипса и пронизывает липидный бислой. Вопрос о том, выступает ли какая-либо часть молекулы родопсина во внутридисковое пространство, до недавнего времени оставался открытым.

Под действием света происходит гиперполяризация клетки, что обусловлено уменьшением потока ионов натрия в НСП. Этот процесс связан с изменением проницаемости плазматической мембраны зрительной клетки. Хотя свет и влияет на ряд ферментативных процессов в клетке, ясно, что фактором, определяющим изменение проницаемости плазматической мембраны для ионов натрия, является медиатор, высвобождающийся из внутридискового пространства и диффундирующий к клеточной мембране. Возможность выполнения такой роли ионами кальция находит все больше экспериментальных подтверждений. Роль родопсина в регуляции концентрации медиатора в цитоплазме палочки остается неясной. Тот факт, что родопсин пронизывает толщу фоторе-цепторной мембраны, дает основание предполагать, что пигмент может функционировать в качестве светочувствительного трансмембранного ионного канала. Однако не исключается возможность и того, что свет вызывает освобождение связанных с поверхностью диска ионов кальция. Действительно, экспериментальные данные, полученные с использованием спиновых меток, электронной микроскопии и нейтронной дифракции (18-20) говорят в пользу значительных светоиндуциро-ванных конформационных изменений родопсина. Однако до сих пор нет четкого объяснения взаимосвязи между этими конформационными изменениями, обусловленными фотохимическими превращениями хромофора, и уровнем внутриклеточного медиатора, с одной стороны, и поляризацией плазматической мембраны зрительной клетки - с;; другой.

Открытие бактериородопсина - белкового пигмента пурпурных мембран гало фил ьных микроорганизмов Halobacterium halobium позволило .по-новому посмотреть на процесс зрительного возбуждения (8,13,21-24).

При выра1цивании в недостатке кислорода, когда нормальный процесс дыхания становится слишком неэффективным для его нормального роста, Halobacterium halobium вырабатывают фиолетовые бляшки. Эти бляшки являются частью плазматической мембраны клетки. Необычный фиолетовый цвет бляшек обусловлен присутствием в них белкового пигмента - бактериородопсина.

Роль бактериородопсина состоит в том, чтобы превращать энергию света в градиент ионов водорода через клеточную мембрану. Энергия этого градиента используется микроорганизмом для синтеза АТФ.

Неожиданное открытие, свидетельствующее о том, что бактерио-родопсин содержит в качестве хромофора остаток ретиналя, придало новый мощный импульс изучению этой системы. Выяснилось, что рети-налевый хромофор принимает непосредственное участие как в транспортном цикле, так и моторных функциях бактерий. Биологические функции бактериородопсина (преобразователь энергии света) и родопсина (счетчик квантов) не имеют ничего общего, и нет ничего удивительного в том, что бактериородопсин содержит в качестве хромофора смесь (50:50) 13-цис и полностью - транс изомеров ретиналя, а родопсин адаптирует только П-цис изомер. Между этими двумя системами существуют и другие различия, связанные с их структурной организацией в мембране (25-31). Но,несмотря на различия, этим системам присущ ряд сходств принципиального характера (фотохимический цикл, механизм первичного фотохимического акта и т.д.), что дает логическую основу для их обсуждения в общих точек зрения.

В настоящем литературном обзоре основное внимание будет уделено результатам,полученным за последнее время, а из ранних работ будут упоминаться наиболее важные исследования. Будут анализированы современные представления о структуре и механизме функционирования родопсина и бактериородопсина. Основное внимание будет уделено изучению хромофоров этих белков, их спектральных характеристик, а также фотохимических превращений, имеющих первостепенное значение при функционировании родопсина и бактериородопсина.

I. ЗРИТЕЛЬНЫЙ ПИГМЕНТ - РОДОПСИН I. Свободный хромофор

Образование родопсина из опсина и ретиналя сопровождается значительным сдвигом спектрального максимума полосы поглощения ретиналя. Следовательно, можно предположить, что хромофор, связанный с белком, обладает иными свойствами, чем свободный ретиналь. Изучению свободного ретиналя посвящен ряд прекрасных обзоров (6, 8,11,32,33). Здесь же мы рассмотрим некоторые спектральные и структурные характеристики изомеров ретиналя, которые имеют важное значение для понимания тонких механизмов процесса зрительного возбуждения.

Различные изомеры ретиналя приведены на рис. 2. Они состоят изр -иононового кольца и полиеновой цепи, на конце которой расположена альдегидная группировка. Изомеризация вокруг двойных связей, как правило, приводит к образованию стабильных стериоизо-меров. Хотя возможно и образование стериоизомеров посредством вращения вокруг одинарных связей, они не стабильны из-за низкого энергетического барьера таких переходов. Наиболее стабильным из таких стериоизомеров ретиналя является так называемая S -транс форма (рис.2).

Конформационные и спектральные свойства изомеров ретиналя в основном определяются подвижными -электронами. Так, например, боковые цепи ретиналей, как впрочем и других полиенов, имеют пла-нарную структуру, поскольку все связи в цепи носят характер двойных связей. Однако планарность структуры ретиналя и особенно его полиеновой цепи может быть нарушена стерическими препятствиями. По данным спектров ядерного магнитного резонанса и теоретических расчетов, наиболее предпочтительной для ретиналя в растворах явля

CHj CH3 CHj oll-trons

CHj CHj CHJ

9-cis, 6-s-cis

CHj CHj CHJ

Ф12 -13 ll-cis, б-s-cis, l2-s-cis

СН3СН3 CH3 CH:i

I3-Cis, 6-$-ci$

Рис. Z. Изомеры ретиналя ется 6-£-цис конформация (34). Такая же конформация ретиналя сохраняется и в кристаллах (35). Данные спектров ядерного магнитного резонанса и рентгеноструктурного анализа свидетельствуют о достаточной гибкости связи при углеродных атомах gC -^С (32).

Структура с некопланарной конформацией иононового кольца и полиеновой цепи характерна для всех изомеров ретиналя. Однако наличие различных стерических препятствий в полиеновой цепи обуславливает уникальные свойства П-цис изомера. Так, полиеновая цепь П-цис ретиналя скручена для того, чтобы снять стерические препятствия между метильной группой при атоме углерода jgC и атомом водорода jqH. Согласно данным ЯМР в П-цис ретинале такое стери-ческое препятствие снимается путем скручивания связи при углеродных атомах jgC - jgC (34,36). Гибкость этой связи обеспечивает образование как 5 -цис, так и 5 -трале конформации ретиналя. Имеющиеся в настоящее время экспериментальные данные позволяют утверждать, что 6 -S-цис, 12-£-транс, П-цис конформации являются предпочтительными конформациями хромофора зрительных пигментов (8,37-41).

 
Заключение диссертации по теме "Биоорганическая химия"

вывода

1. Определены аминокислотные последовательности бактериородопсина и-родопсина - двух важнейших представителей целого класса светочувствительных ретинальсодержащих белков; на примере бактериородопсина и родопсина впервые экспериментально установлены принципы построения полипептидных цепей интегральных мембранных белков. Идентифицированы аминокислотные остатки этих белков, ответственные за связывание хромофора.

2. В ходе изучения аминокислотных последовательностей бактериородопсина и родопсина разработана методология структурного анализа мембранных белков, сочетающая в себе использование как хорошо известных классических, так и нетрадиционных приемов белковой химии.

3. На основании данных аминокислотной последовательности, результатов ограниченного протеолиза нативных белков и расчета гидрофобности полипептидных цепей предложены модели организации молекул бактериородопсина и родопсина в мембране, лежащие в основе структурных особенностей функционирования этих белков.

4. С целью выяснения механизма функционирования бактериородопсина и родопсина проведен структурно-функциональный анализ этих белков. Показано, что §-аминогруппы остатков лизина не принимают участие в образовании протон-проводящего пути в молекуле бактериородопсина. Установлены участки возможного контакта молекулы родопсина с регуляторными белками системы ферментативного каскада усиления сигнала света.

 
Список источников диссертации и автореферата по химии, доктора химических наук, Абдулаев, Нажмутин Гаджимагомедович, Москва

1. Handbook of Sensory Physiology. Vol. V1./1. Photochemistry of Vision. Ed. Dartnall H.J.A. Berlin-Heidelberg-New York: Springer-Verlag, 1972.

2. The Eye. Vol. 2B. The Photobiology of Vision. Eds. Davson H., Graham L.T., Jr. New York: Academic Press, 1977.

3. Visual Cells in Evolution. Ed. Westrall J.A. New York: Raven Press, 1982.

4. Methods of Enzymology. Vol 81. Biomembranes. Part H. Visual Pigment and Purple Membranes, I. Ed. Packer L. New York: Academic Press, 1982.

5. Ostroy S. Rhodopsin and the visual preeess. Biochim. et biophys. acta, 1977» v. 463» p. 91-125.

6. Honig B. Light energy transduction in visual pigments and bacteriorhodopsin. In: Annu. Rev. Phys. Chem. Vol 29» Palo Alto, Calif., 1978, p. 31-57.

7. Uhl R., Abrahamson E.W. Dynamic precesses in visual transduction. Chem. Rev., 1981, v. 81, p. 291-312.

8. Birge R.R. Photophysics of light transduction in rhodopsin and bacteriorhodopsin. In: Annu. Rev. Biophys. and Bioeng.

9. Vol 10, Palo Alto, Calif., 1981, p. 315-354.

10. Bridges C.D.B. The rhodopsin porphyropsin visual system. -In: /1/, p. 417-480.

11. Beatty D.D. Visual pigments of the American eel Anguilla rost-rata. Vision. Res., 1975, v. 15, p. 771-776.

12. Ebrey T.G., Honig B. Molecular aspects of photoreceptor function. Q. Rev. Biophys., 1975, v. 8, p. 129-184.

13. Wald G. Molecular basis of visual excitation. Science, 1968, v. 162, p. 230-239.

14. Zurer P.S. The chemistry of vision. Chemical and engineering news, 1983» November 28, p. 24-35.

15. O'Brien D.F. The chemistry of vision. Science, 1982, v. 218, p. 961-966.

16. Wu C.W., Stryer L. Proximity relationships in rhodopsin. -Proc. Natl. Acad. Sci. USA., 1972, v. 69. p. 1104-1108.

17. Yager M.J., Brookhaven Symp. Biol., 1975» v. 27» p. 3-7.

18. Sardet С.» Tardieu A., Luzzati V.» Shape and size of bovine rhodopsin: a small-angle-X-ray scattering study of a rhodopsin-detergent complex. J. Mol. Biol., 1976, v. 105» p. 383-407.

19. Hong K., Hubbell W.L. Preparation and properties of phospholipid bilayers containing rhodopsin. Proc. Natl. Acad. Sci.» USA, 1972, v. 69» p. 2617-2621.

20. Liebman P., Jagger J., Kaplan М.» Bargoot F. Membrane structure changes in rod outer segments associated with rhodopsin bleaching. Nature, Lond., 1974. v. 251» p. 31-36.

21. Hubbel W.L. Characterization of rhodopsin in synthetic systems»-Acc. Chem. Res., 1975» v. 8, p. 85-90.

22. Oesterhelt D., Stoeckenius W. Rhodopsin-like protein from the purple membrane of Halobacterium halobium. Nature (New Biol.), 1971» v. 233» p. 149-152.

23. Henderson R. The purple membrane from Halobacterium halobium.-Ann. Rev. Biophys. Bioengineer., 1977» v. 6, p. 87-109.

24. Stoeckenius W.» Lozier R.H., Bogomolni R.A. Bacteriorhodopsin and the purple membranes of Halobacteria. Biochim. Biophys. Acta, Bioenerg. Rev., 1979» v. 505» p. 215-278.

25. Stoeckenius W., Purple membranes of Halobacteria. A new light energy converter. Accounts of Chem. Res., 1980» v. 18,1. Р. 337-344.

26. Brown Р.К. Rhodopsin rotates in the visual receptor membrane. -Nature New Biol., 1972, v. 236, p. 35-38.

27. Cone R.A. Early receptor potential: photoreversible charge displacement in rhodopsin. Science, 1967» v. 155»p. 1128-1131.

28. Poo M.» Cone R. Lateral diffusion of rhodopsin in the photoreceptor membrane. Nature, Lond., 1974, v. 247, p. 438-441.

29. Liebman P.A., Entine G. Lateral diffusion of visual pigment in photoreceptor disk membranes. Science, N.Y., 1974,v. 185, p. 457-459.

30. Blaurock A.E., Stoeckenius W. Structure of the purple membrane.-Nature (New Biol.), 1971, v. 233, p. 152-155.

31. Henderson R. The structure of the purple membrane from Halo-bacterium halobium: Analysis of the X-ray diffraction pattern. -J. Mol. Biol., 1975» v. 93, p. 123-138.

32. Blaurock A.E. Bacteriorhodopsin: A trans-membrane pump containing -helix. J. Mol. Biol., 1975» v. 93, p. 139-158.

33. Honig В., Ebrey T.G. The structure and spectra of the chromo-phore of the visual pigments. A. Rev. Biophys. Bioeng., 1974, v. 3» p. 151-177.

34. Honig В.» Warshel A., Karplus M. Theoretical studies of the visual chromophore. Accts. Chem. Res., 1975» v. 8, p.92-100.

35. Honig B, Karplus M. Implications of torsional potential of retinali isomers for visual excitation. Nature, Lond., 1971» v. 229» p. 558-560.

36. Gilardi R., Karle I.L., Karle J., Sperling W. Crystal structure of the visual chromophores, II-cis and all-trans retinal.-Nature, Lond., 1971, v. 232, p. 187-189.

37. Patel D. 220 MHz proton nuclear magnetic resonance spectra of retinals. Nature, Lond., 1969, v. 221, p. 825-828.

38. Rowan R., Warshel A., Sykes B.D., Karplus M. Conformation of retinal isomers. Biochemistry, N.Y., 1974, v. 13, p. 970-980.

39. Honig В., Dinur U., Nakanishi K., Balogh-Nair V., Gawinowicz M.A., Arnaboldi M., Motto M.G. An external poit-charge model for wave length regulation in visual pigments. J. Am. Chem. Soc., 1979, v. 101, p. 7084-7086.

40. Schaffer A.M., Waddell W.H., Becker R.S. Visual pigments in Experimental and theoretical investigation of the absorption spectra of retinal schiff bases and retinals. J. Am. Chem. Soc., 1974, v. 96, p. 2063-2068.

41. Warshel A., Karplus M. Calculation of Jt excited state conformations and vibronic structure of retinal and related molecules. J. Am. Chem. Soc., 1974, v. 96, p. 5677-5689.

42. Ottolenghi M. The photochemistry of rhodopsins. Advances in photochemistry, 1980, v. 12, p. 97-200.

43. Hamanaka Т., Mitsui Т., Ashida Т., Kakudo M. The crystal structure of all-trans retinal. Acta crystallogr., 1972, v. 28, p. 214-222.

44. Birge R.R., Schulten K., Karplus M. Effect of temperature on the stability of 11-cis-retinal. Chem. Phys. Lett., 1975, v. 31, p. 451-456.

45. Birge R.R., Sullivan M.J., Kohler B.E. The effect of temperature and solvent enviroment on the conformational stability of 11-cis-retinal. J. Am. Chem. Soc., 1976, v. 98,p. 358-367.

46. Das P.K., Becker R.S. Interconversion of retinals as a function of solvent polarity. J. Phys. Chem., 1978, v. 82,p. 2081-2088.

47. Pitt G.A.J., Collins F.D., Morton R.A., Stok P. Studies on rhodopsin. 8. Retinylidenemethylamine, an indicator yellow analogue. Biochem. J., 1955» v. 59» p. 122-128.

48. Suzuki H.» Komatsu T., Kato T. Theory of the optical property of petinal in visual pigments. J. Phys. Soc. Jap., 1973,v. 34, p. 156-165.

49. Suzuki H., Komatsu Т., Kitajima H. Theory of the optical property of visual pigment.- J.Phys.Soc.Jap.,1974, v.37,p.177-185.

50. Blatz P.E., Mohler J.H., Navangul H.V. Anion-induced wavelength regulation of absorption maxima of Schiff bases of retinal. Biochemistry, 1972, v. 11, p. 848-855.

51. Platz P.E., Mohler J.H. Effect of selected hydrogen-bonding solvents on the absorption maxima of N-retinylidene-n-butil-ammonium salts. Biochemistry, 1972, v. 11, p. 3240-3242.

52. Kliger D.S., Milder S.J., Dratz E.A. Solvent effects on the spectra retinal Schiff bases. I. Models for the bathochromic shift of the chromophore spectrum in visual pigments. -Photochem. and Photobiol., 1977, v. 25, p. 277-286.

53. Kakitani H., Kakitani Т., Yomosa S. Molecular mechanism for the initial process of visual excitation. II. Theoretical analysis of optical activity in rhodopsin and bathorhodopsin. -J. Phys. Soc. Jap., 1977, v. 42, p. 996-1004.

54. Kakitani Т., Kakitani H. Mechanism of photoconversion among rhodopsin, bathorhodopsin and isorhodopsin. J. Phys. Soc. Jap., 1978, v. 44, p. 1403-1404.

55. Irving Ch.S., Byers G.W., Leermakers P.A. Effect of solvent polarizability on the absorption spectrum of all-trans-reti-nylpyrrolidinium perchlorate. J. Amer. Chem. Soc., 1969, v. 91, p. 2141-2143.

56. Irving С.» Byers G.» Leermakers P. Spectroscopic model for the visual pigments. Influence of microenvironmental polari-zability. Biochemistry, 1970, v. 9, p. 858-864.

57. Milder S.J., Kliger D.S. Solvent effects on the spectra of retinal Schiff bases. II. Models for convergence and clustering of visual pigment spectra. Photochem. and Photobiol., 1977, v. 25, p. 287-291.

58. Rosenberg В., Krigas T.M. Spectral shifts in retinal Schiff base complexes. Photochem. and Photobiol., 1967, v. 6,p. 769-773.

59. Tabushi I., Shimokawa K. Model approach to retinal pigments. Remarkable red shift due to proximal ammonium ion. J. Amer. Chem. Soc., 1980, v. 102, p. 5400-5402.

60. Nanasawa M., Kamogawa H. Models for visual pigments. The effect of imidazolyl group on the absorption maxima of the retinal Schiff base. Bull. Chem. Soc. Jap., 1981, v. 54, p. 1101-1104.

61. Raudino A. Polarizability variations in protonated molecules. Chem. Phys. Lett., 1981, v. 82, p. 360-364.

62. Salem L., Bruckmann P. Conversion of a photon to an electrical signal by sudden polarization in the N-retinylidene visual chromophore. Nature, 1975, v. 258, p. 526-528.

63. Callender R., Honig B. Resonance Raman studies of visual pigments. In: Annu. Rev. Biophys. and Bioeng. Vol. 6, Palo

64. Alto, Calif., 1977» p. 33-55.

65. Aton В., Doukas A.G., Callender R.H., Becher В., Ebrey T.G. Resonance Raman studies of the purple membrane. Biochemistry, 1977, v. 16, p. 2995-2999.

66. Heyde М.» Gill D., Kilponen R., Rimai L. Raman spectra of Schiff bases of retinal (models of visual photoreceptors). -J. Amer. Chem. Soc., 1971, v. 93, p. 6776-6780.

67. Callender R.H., Crouch R., Doukas A., Nakanishi K. Molecular flow resonance Raman effect from retinal and rhodopsin. -Biochemistry, 1976, v. 15, p. 1621-1629.

68. Oseroff A.R., Callender R.H. Resonance Raman spectroscopy of rhodopsin in retinal disk membranes. Biochemistry, 1974, v. 13, p. 4243-4248.

69. Doukas A.G., Aton В., Callender R.H., Ebrey T.G. Resonance Raman studies of bovine metarhodopsin I and metarhodopsin II. Biochemistry, 1978, v. 17, p.2430-2435.

70. Kitagawa Т., Tsuda M. Resonance Raman spectra of octopus acid and alkaline metarhodopsins. Biochim. et biophys. acta, 1980, v. 624, p. 211-217.

71. Lewis A., Spoonhower J., Bogomolni R.A., Lozier R.H., Stoeckenius ¥. Tunable laser resonance Raman spectroscopy of bacte-riorhodopsin. Proc. Natl. Acad. Sci. USA, 1974, v. 71,p. 4462-4466.

72. Terner J., Hsieh C.L., Burns A.R., El-Sayed M.A. Time-resolved resonance Raman spectroscopy of intermediates of bacteriorho-dopsin: The bK^gQ intermediate. Proc. Natl. Acad. Sci. USA, 1979, v. 76, p. 3046-3050.

73. Terner J., Hsich Chung-Lu, El-Sayed M.A. Time-resolved resonance Raman characterization of the bLccr. intermediate and1. DAthe two dark-adapted of bacteriorhodopsin. Biophys.

74. J.» 1979» v. 26, p. 527-541.

75. Stockburger М.» Klusmann W.» Gattermann H.» Massig G., Peters R. Photochemical cycle of bacteriorhodopsin studied by resonance Raman spectroscopy. Biochemistry, 1979» V. 18,p. 4886-4900.

76. Terner J., Hsieh Chung-Lu, Burnes A.R., El-Sayed M.A. Time-resolved resonance Raman characterization of the O^q intermediate of bacteriorhodopsin. Reprotonation of the Schiff base. Biochemistry, 1979» v. 18, p. 3629-3634.

77. Greenberg A., Gonig В.» Ebrey T. Wavelength dependence of the bandwidths of visual pigment spectra. Nature, 1975» v. 257» p. 823-824.

78. Mathies R., Freedman T.B., Stryer L. Resonance Raman studies of the conformation of retinal in rhodopsin and isorhodopsin. J. Mol. Biol., 1977» v. 109» p. 367-372.

79. Warshel A. Resonance Raman of biological molecules. In: Annu. Rev. Biophys. and Bioeng. Vol. 6, Palo Alto, Calif., 1977» p. 273-300.

80. Kropf A., Hubbard R. The mechanism of the bleaching of rhodopsin. Ann. N.Y. Acad. Sci., 1958» v. 74, art 2, p. 266-280.

81. Waleh A., Ingraham L.L. A molecular orbital study of the protein-controlled bathochromic shift in a model of rhodopsin. -Arch. Biochem. and Biophys., 1973» v. 156» p. 261-266.

82. Komatsu Т.» Suzuki H. On the carbonium ion model for visualpigments. J. Phys. Soc. Jap., 1974, v. 37» p. 1436-1444.

83. Suzuki H., Kobayashi H. Quantum-chemical calculations on photoreceptor pigments. Photochem. and Photobiol., 1978, v. 27,p. 815-818.

84. Honig В., Greenberg A.D., Dinur U., Ebrey T. Visual pigment spectra: implications of the protonation of the retinal Schiff base. Biochemistry, 1976, v. 15, p. 4593-4599.

85. Arnaboldi M., Motto M.G., Tsujimoto K., Balogh-Nair V., Naka-nishi K. Hydroretinals and hydrorhodopsins. J. Amer. Chem. Soc., 1979, v. 101, p. 7082-7084.

86. Nakanishi K., Balogh-Nair K., Gawinowicz M.A., Arnaboldi M., Motto M., Honig B. Double point charge model for visual pigments; evidence from dihydrorhodopsins. Photochem. and Photobiol., 1979, v. 29, p. 657-660.

87. Nakanishi K., Balogh-Nair V., Arnaboldi M., Tsujimoto K., Honig B. An external point-charge model for bacteriorhodopsin to account for its purple color. J. Amer. Chem. Soc., 1980, v. 102, p. 7945-7947.

88. Matsumoto H., Asato A.E., Denny M., Baretz В., Yen Y.-P., Tong D., Liu R.S.H. Aromatic retinal analogues and their interaction with cattle opsin. Biochemistry, 1980, v. 19,p. 4589-4594.

89. Motto M.G., Sheves M., Tsujimoto K., Balogh-Nair V., Nakanishi K. Opsin shifts in bovine rhodopsin and bacteriorhodopsin. Comparison of two external point-charge models. J. Amer. Chem. Soc., 1980, v. 102, p. 7947-7949.

90. Kropf A., Whittenberger B.P., Goff S.P., Waggoner A.S. The spectral properties of some visual pigment analogs. Exp. Eye Res., 1973, v. 17, p. 591-606.

91. Nakanishi К., Yudd A.P., Crouch R.K., Olson G.L., Cheung H.-C., Govindjee R., Ebrey T.G., Patel D.J. Allenic retinals and visual pigment analogues. J. Amer. Chem. Soc., 1976, v. 98, p. 236-238.

92. Sen R., Carriker J.D., Balogh-Nair V., Nakanishi K. Synthesis and binding studies of a photoaffinity label for bovine rhodopsin. J. Amer. Chem. Soc., 1982, v. 104, p. 3214-3216.

93. Crouch R.K. A synthetic isorhodopsin formed with a retinal derivative lacking an intact ring. J. Amer. Chem. Soc., 1982, v. 104, p. 4946-4948.

94. Ito M., Kodama A., Tsukida K., Fukuda Y., Shichida Y., Yoshi-zawa T. A novel rhodopsin analogue possesing the cyclopenta-trienylidene structure as the 11-cis-locked and the full planar chromophore. Chem. and Pharm. Bull., 1982, v. 30,p. 1913-1916.

95. Grouch R., Renk G., Scott R., Мао В., Ebrey T.G. Spin labled, halogenated, and 5,6-dihydro pigment analogues of the purple membrane. Biophys. J., 1979» v. 25, part 2, p. 313a, abstr. W-AM-P085.

96. Renk G., Grover Т., Crouch R., Мао В., Ebrey T.G. A spin labeled retinal pigment analogue of the purple membrane. Photochem. and Photobiol., 1981, v. 33, p. 489-494.

97. Серебряный В.А., Мвднер Б.И., Закис В.И., Цетлин В.И. Аналоги бактериородопсина на основе 4-замещенных ретиналей. Биоорган. химия, 1981, т. 7, с. I73I-I733.

98. Marcus М.А., Lewis A., Racker Е., Crespi Н. Physiological and structural investigations of bacteriorhodopsin analogs. -Biochem. and Biophys. Res. Commun., 1977, v. 78, p. 669-675.

99. Mowery P.C., Lozier R.H., Chae Q., Treng Y.-W., Taylor M. Effect of acid pH on the absorption spectra and photoreactions of bacteriorhodopsin. Biochemistry, 1979, v. 18,p. 4100-4107.

100. Moore T.A., Edgerton M.E., Parr G., Greenwood C., Perham R.N. Studies of an acid-induced species of purple membrane from Halobacterium halobium. Biochem. J., 1978, v. 171,p. 469-476.

101. Fischer U., Oesterhelt D. Chromophore equilibria in bacteriorhodopsin. Biophys. J., 1979, v. 28, p. 211-230.

102. Edgerton M.E., Moore T.A., Greenwood C. Salt reversal of the acid-induced changes in purple membrane from Halobacterium halobium. FEBS Lett., 1978, v. 95, p. 35-39.

103. Crescitelli F. The gecko visual pigment: a pH indicator with a salt effect. J. Physiol. (Gr. Brit.), 1981, v. 321,p. 385-399.

104. Knowles A. The effects of chloride ion upon chiken visual pigments. Biochem. and Biophys. Res. Commun., 1976, v. 73,p. 56-62.

105. Fager L.Y., Fager R.S. Halide control of the chicken cone pigment iodopsin. Exp. Eye Res., 1979, v. 29, p. 401-408.

106. Bogomolni R.A., Belliveau J.W., Weber H.J. Salt dependent spectral transition of Halobacterium pigment P533. Biophys. J., 1981, v. 33, part 2, p. 217a, abstr. T-PM-F4.

107. Denny M.i Chun M., Liu R.S.H.,9-cis,11-cis-Retinal from direct irradiation of all-trans-retinal. New geometric isomers of vitamin A and carotenoids 9. Photochem. and Photobiol., 1981, v. 33, p. 267-269.

108. Pepperberg D.R. Sensitizing activity of 9,13-dicis retinalin bleached photoreceptors of the skate. Invest. Ophthalmol, and Visual Sci., 1978, v. 17, p. 1024-1029.

109. Matsumoto H., Asato A.E., Liu R.S.H. 7-cis-Porphyropsin from 7-cis-3-dehydroretinal and cattle opsin. Photochem. and Photobiol., 1979, v. 29, p. 695-698.

110. Shichida Y., Kropf A., Yoshizawa T. Photochemical reactions of 13-demethyl visual pigment analogues at low temperatures. Biochemistry, 1981, v. 20, p. 1962-1968.

111. Kropf A., Sweeney M. «С -Rhodopsin and -isorhodopsin: visual pigments formed from 4,5-dehydroretinal. Biophys. J., 1978, v. 21, part 2, p. 171a, abstr. W-AM-G5.

112. Jungalvala F.B., Cama H.R. Preparation and properties of 5,6-monoepoxy vitamin A acetate, 5,6-monoepoxy vitamin A alcohol, 5,6-monoepoxy vitamin A aldehyde and their corresponding 5»8-monoepoxy(furanoid) compounds. Biochem. J., 1965, v. 95, p. 17-26.

113. Ebrey Т., Govindjee R., Honig В., Pollock E., Chan W., Grouch R., Yudd A., Nakanishi K. Properties of several ste-rically modified retinal analogs and their photosensitive pigments. Biochemistry, 1975, v. 14, p. 3933-3941.

114. Asato A.E., Matsumoto H., Denny M., Liu R.S.H. Fluorinated rhodopsin analogues from 10-fluoro- and 14-fluororetinal. -J. Amer. Chem. Soc., 1978, v. 100, p. 5957-5960.

115. Blatchly R.A., Carriker J.D., Balogh-Nair V., Nakanishi K.

116. Adamantyl allenic rhodopsin. Leniency of the ring binding site in bovine opsin. J. Amer. Chem. Soc., 1980, v. 102, p. 2495-2497.

117. Gartner W., Oesterhelt D., Towner P., Hopf H.f Ernst L. 13-(Trifluoromethyl)retinal forms an active and far-red-shifted chromophore in bacteriorhodopsin. J. Amer. Chem. Soc., 1981, v. 103» p. 7642-7643.

118. Towner P., Gaertner ¥., Walekhoff 5.» Oesterhelt D., Hopf H.-Retinal as a prosthetic group in bacteriorhodopsin. -FEBS Lett., 1980, v. 117» p. 363-367.

119. Iwasa Т., Tokunaga F., Ebrey T.G., Yoshizawa T. The photoreac-tions and photosensitivity of 3,4-dehydro-bacteriorhodopsinat low temperatures. Photochem. and Photobiol.» 1981» v. 33» p. 547-557.

120. Tokunaga F., Govindjee R.» Ebrey T.G., Crouch R. Synthetic pigment analogues of the purple membrane protein. Biophys. J.» 1977» v. 19» p. 191-198.

121. Мао В., Govindjee R., Ebrey T.G., Arnaboldi M., Balogh-Nair V., Nakanishi K., Crouch R. Photochemical and functional properties of bacteriorhodopsin formed from 5,6-dihydro- and 5»6-dihydrodesmethylretinals. Biochemistry, 1981, v. 20,p. 428-435.

122. Bayley H., Radhakrishan R., Huang K.-S., Khorana H.G. Light-driven proton translocation by bacteriorhodopsin reconstituted with the phenyl analog of retinal. J. Biol. Chem., 1981, v. 256, p. 3797-3801.

123. Towner P., Gaertner W., Walekhoff B., Oesterhelt D., Hopf H. Regeneration of rhodopsin and bacteriorhodopsin. The role of retinal analogues as inhibitors. Eur. J. Biochem., 1981,v. 117, P. 353-359.

124. Tokunaga F., Ebrey T.G., Crouch R. Purple membrane analogs synthesized from C^y-aldehyde. Photochem. and Photobiol., 1981, v. 33, p. 495-499.

125. Kohl K.D. Spectroscopic studies of bacteriorhodopsin isomers. Ber. Kernforschungsalage Juelich 1981, Juel-1734. (Дит. ПО: Chem. Abstr. Biochem. Sec., 1982, v. 96, abstr. 47918c).

126. Maeda A., Iwasa Т., Yoshizawa T. Formation of 9-cis- and 11-cis-retinal pigments from bacteriorhodopsin by irradiating purple membrane in acid. Biochemistry, 1980, v. 19,p. 3825-3831.

127. Fischer U.Ch., Towner P., Oesterhelt D. Light-induced isome-risation, at acidic pH, initiates hydrolysis of bacteriorhodopsin and bacterio-opsin and 9-cis-retinal. Photochem. and Photobiol., 1981, v. 33, p. 529-537.

128. Maeda A., Iwasa Т., Yoshizawa T. Photoreaction of the acidified form of bacteriorhodopsin and its 9-cis-derivative in purple membrane at low temperatures. Photochem. and Photobiol., 1981, v. 33, p. 559-565.

129. Henselman R.A., Gusanovich M.A. Characterization of the recombination reaction of rhodopsin. Biochemistry, 1976,v. 15, P. 5321-5325.

130. Schreckenbach Т., Walckhoff В., Oesterhelt D. Specificity of the retinal binding site of bacteriorhodopsin: chemical and stereochemical requirements for the binding of retinol and retinal. Biochemistry, 1978, v. 17, p. 5353-5359.

131. Matsumoto H., Yoshizawa T. Existence of a^-ionone ring-binding site in the rhodopsin molecule. Nature, 1975, v. 258, p. 523-526.

132. Kakitani Т., Kakitani H. , Yomosa S. Hydrophobic bond energy of non-polar molecules: application toJb -ionone and 11-cis retinal. Biophys. Struct, and Mech., 1980, v. 7, p. 101106.

133. Heller J., Horwitz J. Interaction of retinol-binding protein with various chromophores and with thyroxine-binding protein. A model for visual pigments. Exp. Eye Res., 1974, v. 18,p. 41-49.

134. Чижевич Е.П., Шуколюков С.А., Тюрин В.А., Мицнер Б.И., Соколова Н.А. О некоторых особенностях процесса регенерации родопсина морских костистых рыб в присутствии экзогенного 11Z ретиналя. Биохимия, 1978, т. 43, с. 1653-1658.

135. Hubbard R. Absorption spectrum of rhodopsin: 280 nm absorption band. Nature, 1969, v. 221, p. 432-435.

136. Wagner J., Smith E., Cusanovich M.A. The circular dichroism of sodium cholate solubilized rhodopsin. Photochem. and Photobiol., 1981, v. 33, p. 929-932.

137. Becher В., Tokunaga F., Ebrey T.G. Ultraviolet and visible absorption spectra of the purple membrane protein and the photocycle intermediates. Biochemistry, 1978, v. 17,p. 2293-2300.

138. Rehorek M., Heyn M.P. Binding of all-trans-retinal to the purple membrane. Evidence for cooperativity and determination of the extinction coefficient. Biochemistry, 1979, v. 18,p. 4977-4983.

139. Rafferty C.N., Shichi H. The involvement of water at the retinal binding site in rhodopsin and early light-induced intramolecular proton transfer. Photochem. and Photobiol.» 1981, v. 33, p. 229-234.

140. Crespi H.L., Ferraro J.R. Active site structure of bacteriorhodopsin and mechanism of action. Biochem. and Biophys. Res. Commun., 1979, v. 91» p. 575-582.

141. Lazarev Yu.A., Terpugov E.L. Effect of water on the structure of bacteriorhodopsin and photochemical processes in purple membrane.- Biochim. et biophys. acta, 1980, v.590, p.324-338.

142. Yoshihara Т., Suzuki H., Maeda A. Theory of the optical absorption of light-adapted bacteriorhodopsin and its acidified forms. Photochem. and Photobiol., 1981, v. 33, p. 501-510.

143. Ovchinnikov Yu.A. Rhodopsin and bacteriorhodopsin: structure and functional relationships. FEBS Lett., 1982, v. 148,p. 179-191.

144. Khorana H.G., Gerber G.E., Herlily W.C., Gray C.P., Anderegg R.J., Nihei K., Biemann K. Amino acid sequence of bacteriorhodopsin. Proc.Nat.Acad.Sci.USA, 1979» v.76, p.5046-5050.

145. Rothshild K.J., Clark N.A. Polarized infrared spectroscopy of oriented purple membrane.- Biophys. J., 1979» v.25, p.473-488.

146. Bayley H., Hunag K.S., Radhakrishnan R., Ross A.H., Takagaki Y., Khorana H.G. Site of attachment of retinal in bacteriorhodopsin. Proc. Natl. Acad. Sci. USA, Biol. Sci., 1981, v. 78, p. 2225-2229.

147. Kouyama Т., Kimura Y., Kinosita K., Jr., Ikegami A. Immobility of the chromophore in bacteriorhodopsin. FEBS Lett., 1981, v. 124, p. 100-104.

148. King G.I., Stoeckenius W., Crespi H.L., Schoenborn B.P. Thelocation of retinal in the purple membrane profile by neutron diffraction. J. Mol. Biol., 1979» v. 130, p. 395-404.

149. King G.I., Mowery P.C., Stoeckenius W., Crespi H.L., Schoen-born B.P. Location of the chromophore in bacteriorhodopsin. -Proc.Nat.Acad.Sci.USA.Biol.Sci., 1980, v.77» p.4726-4730.

150. Huang K.S., Bayley H.» Khorana H.G. Orientation of retinal in bacteriorhodopsin. Fed. Proc.» 1981, v. 40, p. I659»abstr.691.

151. Tristram-Nagle S., Packer L. Effects of arginine modification on the photocycle and proton pumping of bacteriorhodopsin. -Biochemistry International., 1981, v. 3» p. 621-628.

152. Katsura Т., Lam E., Packer L., Seltzer S. Light dependent modification of bacteriorhodopsin by tetranitromethane. Interaction of tyrosine and a tryptophan residue with bound retinal. Biochemistry International, 1982, v. 5» p. 445-456.

153. Lam E., Packer L. Effect of fluorescamine modification of purple membranes on exiton coupling and light-to-dark adaptation.» Biochem. and Biophys.Res.Commun., 1981, v. 101, p. 464-471.

154. Harris G., Renthal R., Tuley J., Robinson N. Dansylation of bacteriorhodopsin near the retinal attachment site. Biochem. and Biophys. Res. Commun.» 1979» v. 91, p. 926-931.

155. Konishi Т., Tristram S., Packer L. The effect of cross-linking on photocycling activity of bacteriorhodopsin. Photochem. and photobiol., 1979» v. 29» p. 353-358.

156. Takeuchi Y., Ohno K.» Yoshida M., Nagano K. Light-induced proton dissociation and association in bacteriorhodopsin.

157. Photochem. and Photobiol., 1981, v. 33, p. 587-592.

158. Maeda A., Takeuchi Y., Yoshizawa T. Absorption spectral properties of acetylated bacteriorhodopsin in purple membrane depending on pH. Biochemistry, 1982, v. 21, p. 4479-4483.

159. Campos-Cavieres M., Moore T.A., Perham R.N. Effects of modification of the tyrosine residues of bacteriorhodopsin with tetranitromethane. Biochem. J., 1979, v. 179, p. 233-238.

160. Lemke H.-D., Oesterhelt D. The role of tyrosine residues in the function of bacteriorhodopsin. Specific nitration of tyrosine 26. Eur. J. Biochem., 1981, v. 115, p. 595-604.

161. Scherrer P., Packer L., Seltzer S. Effect of iodination of the purple membrane on the photocycle of bacteriorhodopsin. -Arch. Biochem. and Biophys., 1981, v. 212, p. 589-601.

162. Grip W.J. de, Daemen J.M., Bonting S.L. Biochemical aspects of the visual process. XXII. Amino group modification in bovine rod photoreceptor membranes. Biochim. et biophys. acta, 1973, v. 323» p. 125-142.

163. Nemes P.P., Miljanich G.P., White D.L., Dratz E.A. Covalent modification of rhodopsin with imidoesters: evidence for transmembrane arrangement of rhodopsin in rod outer segment disk membranes. Biochemistry, 1980, v. 19, p. 2067-2074.

164. Слободянская E.M. Модификация карбоксильной группы в молекуле родопсина. Биоорган, химия, 1978, т. 4, с. 1054-1057.

165. Malone Р.С., Lam D.M.K., Wilson Т.Н. Light-triggered proton movements in retinal discs from the frog. Biochem. and Biophys. Res. Commun., 1980, v. 93» p. 420-426.

166. Chapron Y. Rhodopsin-induced transient photopotentials in retinal and vesicle membranes. Photobiochem. and Photobio-phys., 1980, v. 1, p. 297-304.

167. Tsukamoto Y., Horiuchi S., Yoshizawa T. Photic reactions of chicken iodopsin and rhodopsin at liquid helium temperature.-Vision Res., 1975, v. 15, p. 819-823.

168. Gupta B.D., Goyal I.C. The possible presence of a third intermediate for iodopsin at -195°C. Photochem. and Photobiol. 1979, v. 29, p. 619-623.

169. Tokunaga F., Shichida Y., Yoshizawa T. A new intermediate between lumirhodopsin and metarhodopsin in squid. FEBS Lett., 1975, v. 55, p. 229-232.

170. Suzuki Т., Uji K., Kito Y. Studies on cephalopod rhodopsin: photoisomerization of the chromophore. Biochim. et biophys. acta, 1976, v. 428, p. 321-338.

171. Tsuda M. Transient spectra of intermediates in the photolyticsequence of octopus rhodopsin. Biochim. et biophys. acta, 1979, v. 545, p. 537-546.

172. Shichida Y., Tokunaga F., Yoshizawa T. Squid hypsorhodopsin. Photochem. and Photobiol., 1979, v. 29, p. 343-351.

173. Tsuda M. Kinetic study of photoregeneration process of digi-tonin-solubilized squid rhodopsin. Biochim. et biophys. acta, 1978, v. 502, p. 495-506.

174. Naito Т., Nashima-Hayama K., Ohtsu K., Kito Y. Photoreactions of cephalopod rhodopsin. Vision Res., 1981, v. 21,p. 935-941.

175. Кронгауз В.А., Шифрина P.P., Федорович И.Б., Островский М.А. Фотохимия зрительных пигментов. I. Образование изохромных продуктов при обратимых превращениях родопсина лягушки. -Биофизика, 1975, т. 20, с. 219-224.

176. Becher В. Low temperature studies of the early intermediates of rhodopsin illumination. Biophys. J., 1979» v. 25» part 2, p. 315a, abstr. W-AM-Po93.

177. Maeda A., Ogurusu Т., Shichida Y.» Tokunaga F., Yoshizawa T. Formation of 7-cis retinal pigment by irradiating cattle rhodopsin at low temperatures. FEBS Lett., 1978, v. 92, p. 77-80.

178. Maeda A., Shichida Y., Yoshizawa T. Formation of 7-cis- and 13-cis-retinal pigments by irradiating squid rhodopsin. -Biochemistry, 1979» v. 18, p. 1449-1453.

179. Suzuki Т., Makino M. Specific photoisomerization of retinal in squid rhodopsin and metarhodopsin. Biochim. et biophys. acta, v. 636, p. 27-31.

180. Minke B., Hochstein S., Hillman P. Early receptor potential evidence for the existence of two thermally stable states in the barnacle visual pigment. J. Gen. Physiol., 1973, v. 62183.184.185.186.p. 87-104.

181. Minke В., Hochstein S., Hellman P. Derivation of a quantitative kinetic model for a visual pigment from observations of early receptor potential. Biophys. J., 1974, v. 14,p. 490-512.

182. Cornwall М.С.» Gorman A.L.F. Wavelength dependent changes in sensitivity related to rhodopsin metarhodopsin photointer-conversion in scallop photoreceptor. Biophys. J., 1979»v. 25» part 2, p. 317a, abstr. W-AM-Po9'9.

183. Cooper A. Energy uptake in the first step of visual excitation. Nature, 1979» v. 282» p. 531-533.

184. Cooper A. Rhodopsin photoenergetics: lumirhodopsin and the complete energy profile. FEBS Lett., 1981, v. 123» p. 324326.

185. Yoshizawa Т., Kito Y. Studies on rhodopsin illuminated at low temperature. A. Rev. Sci. Works. Fac. Sci. Osaka Univ., 1958, v. 6, p. 27-41.

186. Yoshizawa T. Photophysiological functions of visual pigments.- Adv. Biophys., 1984, v. 17, p. 5-67.

187. Rosenfeld T.A., Alchalel A., Ottolenghi M. Nanosecond laser photolysis of rhodopsin in solution. Nature, 1972, v. 240, p. 482-483.

188. Cone R.A. Rotational diffusion of rhodopsin in the visual receptor membrane. Nature New Biol., 1972, v. 236, p. 3943.

189. Shichida V.» Tokunaga F., Yoshizawa T. Squid hypsorhodopsin.- Photochem. Photobiol., 1979, v. 29, p. 343-351.

190. Applebury M.L. Dynamic processes in visual transduction. -Vision Res., 1984, v. 24, p. 1445-1454.

191. Yoshizawa Т., Shichida Y., Matuoka S. Primary intermediates of rhodopsin studied by low temperature spectrophotometry and laser photolysis. Vision Res., 1984, v. 24, p. 14551463.

192. Kliger ,.D.S., Horwitz J.S., Lewis J.W., Einterz C.M. Evidence for a common batho-intermediate in the bleaching of rhodopsin and isorhodopsin. Vision Res., 1984, v. 24, p. 1465-1470.

193. Horiuchi S., Tokunaga F., Yoshizawa T. Formation of hypsorho-rhodopsin in frog retina. Biochem. Biophys. acta., 1978,v. 503, p. 402-404.

194. Shichida Y., Kobayashi Т., Ohtani H., Yoshizawa Т., Nagakura S. Picosecond laser photolysis of squid rhodopsin at room and low temperatures. Photochem. photobiol., 1978, v. 27,p. 335-341.

195. Busch G.E., Applebury M.L., Lamoba A.A., Rentzepis P.M. Picosecond kinetic absorption and fluorescence studies of bovine rhodopsin. Proc. Natl. Acad. Sci. USA, 1972, v. 69,p. 2802-2806.

196. Sundstrom V., Rentzepis P.M., Peters K., Appleburey M.L., Kinetics of rhodopsin at room temperature measured by picosecond spectroscopy. Nature, 1977, v. 267» p. 645-646.

197. Peters K., Applebury M.L., Rentzepis P.M. Primary photochemical event in vision: Proton translocation. Proc. Natl. Acad. Sci. USA., 1977» v. 74, p. 3119-3123.

198. Tsuda M., Tokunaga F., Ebrey Т., Yue K.T., Marque J., Eisen-stein L. Behaviour of octapus rhodopsin and its photoproducts at very low temperature. Nature, 1980, v. 287, p. 461-462.

199. Yoshizawa Т., Wald G. Pre-lumirhodopsin and the bleaching of visual pigments. Nature, 1963» v. 197» p. 1279-1286.

200. Kakitani T. Molecular mechanism for the initial process of visual exitation. IV. Energy surfaces of visual pigments and photoisomerization mechanism. Biophys. Struct, and Mech., 1979, v. 5, p. 293-312.

201. Birge R.R., Hubbard L.M. Molecular dynamics of cis-trans isomerization in rhodopsin. J. Amer. Chem. Soc., 1980, v. 102, p. 2195-2205.

202. Kakitani Т., Kakitani H. Theoretical study of optical spectra and conformation of the chromophore of hypsorhodopsin. -Photochem. and Photobiol., 1980, v. 32, p. 707-709.

203. Rosenfeld Т., Honig В., Ottolenghi M., Hurley J., Ebrey T.G. Cis-trans isomerization in the photochemistry of vision. -Pure and Appl. Chem., 1977, v. 49, p. 341-351.

204. Honig B. Theoretical aspects of photoisomerization in visual pigments and bacteriorhodopsin. In: Biological Events Probed by Ultrafast Laser Spectroscopy. Ed. Alfano R.R. New York: Academic Press, 1982, p. 281-298.

205. Monger T.G., Alfano R.R., Callender R.H. Photochemistry of rhodopsin and isorhodopsin investigated on a picosecond time scale. Biophys. J., 1979, v. 27, p. 105-116.

206. Kawamura S., Miyatani S., Matsumoto H., Yoshizawa Т., Liu R.S.H. Photochemical studies of 7-сis-rhodopsin at low temperature. Nature and properties of bathointermediate. Biochemistry, 1980, v. 19, p. 1549-1553.

207. Мао В., Ebrey T.G., Crouch R. Bathoproducts of rhodopsin, isorhodopsin I, and isorhodopsin II. Biophys. J., 1980, v. 29, p. 247-256.

208. Shichida Y., Tokunaga F., Yoshizawa T. Circular dichroism of squid rhodopsin and its intermediates. Biochim. et biophys. acta, 1978, v. 504, p. 413-430.

209. Horiuchi S., Tokunaga F., Yoshizawa T. Circular dichroism of cattle rhodopsin and bathorhodopsin at liquid nitrogen temperatures. Biochim. et biophys. acta, 1980, v. 591»p. 445-457.

210. Eyring G., Curry В., Mathies R., Fransen R., Palings I., Lugtenburg J. Interpretation of the resonance Raman spectrum of bathorhodopsin based on visual pigment analogues. -Biochemistry, 1980, v. 19, p. 2410-2418.

211. Eyring G., Curry В., Mathies R., Broek A., Lugtenburg J. Assignment of the anamalous resonance Raman vibrations of bathorhodopsin. J. Amer. Chem. Soc., 1980, v. 102, p. 53905392.

212. Eyring G., Curry В., Broek A., Lugtenbrug J., Mathies R. Assignment and interpretation of hydrogen out-of-plane vibrations in the resonance Raman spectra of rhodopsin and bathorhodopsin. Biochemistry, 1982, v. 21, p.384-393.

213. Green B.H., Monger T.G., Alfano R.R., Aton В., Callender R.H.

214. Cis-trans isomerization in rhodopsin occurs in picoseconds. -Nature, 1977, v. 269, p. 179-180.

215. Doukas A.G., Stefanic V., Suzuki Т., Callender R.H., Alfano R.R. Squid bathorhodopsin forms v/ithin 10 picoseconds. -Photobiochem. abd Photobiophys., 1980, v. 1, p. 305-308.

216. Huppert D., Rentzepis P.M., Kliger D.S. Picosecond and nanosecond isomerization kinetics of protonated 11-cis retinyl-idene Schiff bases. Photochem. and Photobiol., 1977, v.25, p. 193-197.

217. Kliger D.S. Spectroscopic and photochemical studies of model visual pigment chromophores. Int. J. Quantum Chem., 1979» v. 16, p. 809-817.

218. Shichida Y., Yoshizawa Т., Kobayashi T.» Ohtani H.» Nagakura S. Squid hypsorhodopsin and bathorhodopsin by a picosecond laser photolysis. FEBS Lett., 1977, v.80, p. 214-216.

219. Kobayashi T. Hypsorhodopsin: the first intermediate of the photochemical process in vision. FEBS Lett., 1979» v. 106, p. 313-316.

220. Kobayashi T. Existence of hypsorhodopsin as the first intermediate in the primary photochemical process of cattle rhodopsin. Photochem. and Photobiol., 1980, v. 32, p. 207-215.

221. Birge R.R.» Hubbard L.M. Molecular dynamics of trans-cis isomerization in bathorhodopsin. Biophys. J., 1981, v. 34, p. 517-534.

222. Warshel A. Bicycle-pedal model for first step in the vision process. Nature, 1976, v. 260, p. 679-683.

223. Schaffer A.M., Yamaoka Т., Becker R.S. Visual pigments. V. Ground and excited-state acid dissociation constants of protonated all-trans retinal Schiff base and correlation withtheory. Photochem. and Photobiol., 1975» v. 21, p. 297-301.

224. Sazai A., Kakitani Т., Kakitani H. Proton transfer in the primary process of vision. Photochem. and Photobiol., 1981, v. 33, p. 875-881.

225. Tokunaga F., Sasaki N., Yoshizawa T. Orientation of retinyl-idene chromophore of hypsorhodopsin in frog retina. Photochem. and Photobiol., 1980, v. 32, p. 447-453.

226. Applebury M.L., Peters K.S., Kobayashi Т., Rentzepis P.M. Picosecond kinetic studies of an early "blue-shifted" intermediate in the photochemistry of rhodopsin. Biophys. J., 1979, v. 25, part 2, p. 317a, abstr.W-AM-Po97.

227. Van der Meer K., Mulder J.J.C., Lugtenburg J. A new facet in rhodopsin photochemistry. Photochem. and Photobiol., 1976, v. 24, p. 363-367.

228. Fransen M.R., Luyten W.C.M.M., Van Thuijl J., Lugtenburg J., Jansen P.A.A., Van Breugel P.J.G.M., Daemen F.J.M. Structure of the chromophoric group in bathorhodopsin. Nature, 1976, v. 260, p. 726-727.

229. Harosi F.I., Favrot J., Leclerco J.M., Vocelle D., Sandorfy C. Photochemistry of visual pigments: an interpretation of spectral changes in terms of molecular asociations and iso-merization. Rev. can. biol., 1978, v. 37» p. 257-271.

230. Sulkes M., Lewis A., Marcus M.A. Resonance Raman spectroscopy of squid and bovine visual pigments: the primary photochemistry in visual transduction. Biochemistry, 1978, v. 17, p. A712-4722.

231. Narva D., Callender R.H. On the state of chromophore proto-nation in rhodopsin: implication for primary photochemistry in visual pigments. Photochem. and Photobiol., 1980, v. 32,p. 273-276.

232. Kropf A. Is proton transfer the initial photochemical process in vision? Nature, 1976, v. 264, p. 92-94.

233. Honig В., Ebrey Т., Callender R.H., Dinur U., Ottolenghi M. Photoisomerization, energy storage, and charge separation model for light energy transduction in visual pigments and bacteriorhodopsin. Proc. Nat. Acad. Sci. USA. 1979» v. 76, p. 2503-2507.

234. Suzuki Т., Callender R.H. Primary photochemistry and photoisomerization of retinal at 77°K in cattle and squid rhodopsin. Biophys. J., 1981, v. 34, p. 261-270.

235. Мао В., Tsuda M., Ebrey T.G., Akita H., Balogh-Nair V., Naka-nishi К.» Flash photolysis and lov; temperature photochemistry in bovine rhodopsin with a fixed 11-ene. Biophys. J., 1981, v. 35» p. 543-546.

236. Lewis A. The structure of the retinylidene chromophore in bathorhodopsin. Biophys. J., 1978, v. 24, p. 249-254.

237. Lewis A. The molecular mechanism of excitation in visual transduction and bacteriorhodopsin. Proc. Nat. Acad. Sci. USA, 1978, v. 75, p. 549-553.

238. Warshel A. Charge stabilization mechanism in the visual and purple membrane pigments. Proc. Nat. Acad. Sci. USA, 1978, v. 75, p. 2558-2562.

239. Hara R., Нага Т., Tokunaga F., Yoshizawa T. Photochemistry of retinochrome. Photochem. and Photobiol., 1981, v. 33» p. 883-892.

240. Brown K.T., Murakami M. A new receptor potential of the monkey retina with no detectable latency. Nature, 1964, v. 201,p. 626-628.

241. Siebert F., Mantele W., Investigations of the rhodopsin/Meta I and rhodopsin/Meta II transitions of bovine rod outer segments by means of kinetic infrared spectroscopy. Biophys. Str. and Mech., 1980, v. 6, p. 147-164.

242. Ratner V.L., Bagirov I.G., Fesenko E.E., Metarhodopsin I can react with hydroxylamine. Vision Res., 1981, v. 21, p.251-254.

243. Ratner V.L., Orlov N.Y., Lubarskiy A.L., Fesenko E.E., Effect of hydroxylamine on the rate of metarhodopsin decay. -Stud, biophys., 1978, v. 71, p. 129-131.

244. Bennett N. Evidence for differently protonated forms of metarhodopsin II as intermediates in the decay of membrane-bound cattle rhodopsin. Biochem. and Biophys. Res. Commun.» 1978, v. 83, p. 457-465.

245. Spalink J.-D., Stieve H. Direct correlation between the R2 component of the early receptor potential and the formation of metarhodopsin II in the excited bovine retina. Biophys. Str. and Mech., 1980, v. 6, p. 171-174.

246. Rapp. J. The kinetics of intermediate processes in the photolysis of bovine rhodopsin-II. The intermediate decay sequence from lumirhodopsin 497 to metarhodopsin 380-11 . Vision Res., 1979, v. 19, p. 137-141.

247. Attwood R.V., Gutfreund H. The application of pressure relaxation to the study of the equilibrium between metarhodopsin I and II from bovine retina. FEBS Lett., 1980, v. 119, p. 323-326.

248. Trissl H.-W. Light-induced conformational changes in cattle rhodopsin as probed by measurements of the interface potential. Photochem. and Photobiol., 1979, v. 29, p. 579-588.

249. Chiba Т., Asai H., Suzuki H. Slow bleach-induced cooperative fluorescence changes in bovine photoreceptor disk membranes.- Biochem. and Biophys. Res. Commun., 1978, v. 85, p. 551557.

250. Chabre M., Breton J. Orientation of aromatic residues in rhodopsin. Rotation of one tryptophan upon the Meta I Meta II transition after illumination. Photochem. and Photobiol., 1979» v. 30, p. 295-299.

251. Lamola A.A., Yamane Т., Zipp A. The metarhodopsin I metarhodopsin II equilibrium: effects of detergents and pressure.- Exp. Eye Res., 1974, v. 18, p. 19-27.

252. Korenbrot J.I., Pramik M.-J. Formation, structure, and spectrophotometry of air-water interface films containing rhodopsin. J. Membrane Biol., 1977, v. 37, p. 235-262.

253. Schnitzkewitz G., Riippel H. The meta-transition of the rhodopsin photolysis sequence as result of protein-lipid-interactions in the receptor membrane surface. Biophys. Struct, and Mech., 1980, v. 6, suppl., p. 126.

254. Bennett N. Optical study on the light-induced protonation changes associated with the metarhodopsin II intermediate in rod outer segment membranes. Eur. J. Biochem., 1980, v. 111, p. 93-103.

255. Darszon A., Strasser R.J., Montal M. Rhodopsin-phospholipid complexes in apolar environments: photochemical characterization. Biochemistry, 1979, v. 18, p. 5205-5213.

256. Montal M. Rhodopsin in model membranes. Biochim. et biophys. acta, 1979, v. 559, p. 231-257.

257. Emeis D., Hofmann K.P. Shift in the relation between flash-induced metarhodopsin I and metarhodopsin II within the first 10% rhodopsin bleaching in bovine disc membranes. FEBS Lett., 1981, v. 136, p. 201-207.

258. Cieslik J., Riippel H. Comparison between light pulse and temperature Jump induced meta transitions in the rhodopsin photolysis sequence. Biophys. Struct, and Mech., 1981, v. 7» p. 292.

259. Bennett N. The decay of metarhodopsin II in cattle rod outer segment membranes: protonation and spectral changes. Biochem. and Biophys. Res. Commun., 1980, v. 96, p. 1695-1701.

260. Rotmans J.P., Daemen F.J.M.» Bonting S.L. Biochemical aspects of the visual process. XXVI. Binding site and migration of retinaldehyde during rhodopsin photolysis. Biochim. et biophys. acta, 1974» v. 357» p. 151-158.

261. Tsuda М.» Shirotani I.» Minomura S., Terayama Y. Pressure induced intermediates in the photochemical reaction of squid rhodopsin. Biochem. and Biophys. Res. Commun., 1977» v. 76, p. 989-994.

262. Kusumi A., Ohnishi S.-I., Tsuda M. Light-induced conformational change of octopus rhodopsin as detected by a spin label method. Biochem. and Biophys. Res. Commun., 1980, v. 95»p. 1635-1641.

263. Tsuda M.» Akino T. Lipid-protein interaction in the photolysis of octopus rhodopsin. Biochim. et biophys. acta, 1981, v. 643, p. 63-75.

264. Kito Y., Nashima K. Retinal-opsin linkage of cephalopod rhodopsin. Photochem. and Photobiol., 1980, v. 32, p. 443-445.

265. Nachima K., Kawase N., Kito Y. Effect of phospholipid and detergent on the schiff base of cephalopod rhodopsin and metarhodopsin. Biochim. et biophys. acta, 1980, v. 626, p. 390-396.

266. Goldsmith T.R. The natural history of invertebrate visual pigments. In /1/, p. 685-719.

267. Kuhn H., Cnabre M. Phosphorilated cattle rhodopsin. Biophys. Str. and Mech., 1983, v. 9, p. 231-234.

268. Hagins W.A. The visual process: excitatory mechanisms in the primary photoreceptor cells. Ann. Rev. Biophys. Bioeng., 1972, v. 1, p. 131-158.

269. Stryer L., Hurley J.В., Fung B.K.-K. First stage of amplification in the cyclic-nucleotide cascade of vision. In: "Current Topics in Membranes and Transport" N.-Y.-Lond., 1081, v. 15» p. 93-108.

270. Yoshikami S., Hagins W.A. Light, calcium and the photocurrent of rods and cones. Biophys. J., 1971, v. 11, p. 47a.

271. Yoshikami S., Hagins W.A. Kinetics of control of dark current of retinal rods by Ca2+ and by light. Fed. Proc., Fed. Am. Soc. Exp. Biol., 1980, v. 39, p. 1092-1094.

272. Yoshikami S., Hagins W.A. Sodium-calcium exchanges and the kinetics of the rod response, "Biophys. J.H, 1981, v. 33» p. 288a.

273. Fatt P. An extended Ca2+-hypothesis of visual transduction with a role for cyclic GMP. FEBS Lett., 1982, v. 149,p. 159-166.

274. Korenbrot J.I., Cone R.A. Dark ionic flux and the effects of- 205 light in isolated rod outer segments. J. Gen. Physiol., 1972, v. 60, p. 20-45.

275. Hagins W.A., Yoshikomi S. Ionic mechanisms in excitation of photoreceptors. Ann. N.Y. Acad. Sci., 1975» v. 264, p. 314325.

276. Hagins W.A. Excitation in vertebrate photoreceptors. In: The neurosciences: Fourth study program (ed. Schmitt F.O., Worden F.G.), 1979» p. 183. MIT Press, Cambridge, Massachusetts.

277. Yoshikami S., Hagins A.H. Control of the dark current in vertebrate rods and cones. Biochem. and physiol. of vis. pigments, Berlin, New-York, 1973» p. 245-255.

278. Hagins W.A., Yoshikami S. A role for Ca2+ in excitation of retinal rods and cones. Exp. Eye Res., 1974, v. 18, p. 299305.

279. Cone R.A. The internal transmitter model for visual excitation: some quantitative implications. In Biochemistry and Physiology of Visual Pigments, ed. Langer H., 1973, p. 275282. New York: Springer, 366 pp.

280. Gold G.H., Korenbrot J.L. Light- evouked calcium fluxes across native and reconstituted rod disk membranes. "Invest. Ophtalmol. Vis. Sci.", 1979, v. 18, p. 4-6.

281. Kaupp U.B., Junge W. Rapid calcium release by passively loaded retinal discs on photoexcitation. FEBS Lett., 1978, v. 81, p. 229-232.

282. Baylor D.A., Lamb T.D., Yau K.W. The membrane current of rod outer segments. J. Physiol. London, 1978, In press.

283. Lipton S.A., Ostroy S.E., Dowlong J.E. Electrical and adaptive properties of rod photoreceptors in Bufo marinus I.

284. Effects of altered extracellular Ca2+ levels. J. Gen. Physiol., 1977, v. 70, p. 747-770.

285. Bertrand D., Fuortes M.G.F., Pochobradsky J. Action of EGTA and calcium on the cones in the turtle retina. J. of Physiol., 1978, v. 275, p. 419-425.

286. Gorldis C.N., Virmaux H.L., Cailla, Delaage M.A. Rapid, light-induced changes of retinal cyclic GMP levels. FEBS Lett., 1974, v. 49, p. 167^171.

287. Woodruff M.L., Bownds M.D. Amplitude, kinetics and reversibility of a light-induced decrease in guanosine 3',5'-cyclic monophosphate in frog photoreceptor membranes. J. Gen. Physiol., 1979, v. 73, p. 629t634.

288. Bitensky M.W., Wheeler G.L., Yamazaki A., Rasenick M.M., Stein P.J. Cyclic nucleotide metabolism in vertebrate photoreceptors: A remarkable analogy and an unraveling enigma. -Curr. Top Membr. Transp., 1981, v. 15, p. 237т247.

289. Stryer L. Tranducin and cyclic GMP phosphodiesterase: amplifier proteins in vision. In: "Cold Spring Harbor Symposia on Quantitative Biology" N.-Y, 1983, v. 158, p. 841-852.

290. Miller W.H., Nicol G.D. Evidence that cyclic GMP regulates membrane potential in rod photoreceptors. Nature, 1979, v. 280., p. 64т66.

291. Kilbride P., Ebrey T.G. Light-initiated changes of cyclic guanosine monophosphate levels in the frog retina measured withquick-freezing techniques. J. Gen Physiol., 1979» v. 74, p. 415-429.

292. Berger S.I., DeVries G.M., Carter J.G., Schulz D.W., Passonneau P.N., Lowry O.H., Ferrendelli J.A. The distribution of the components of the cyclic GMP cycle in the retina.

293. J. Biol. Chem., 1980, v. 255, p. 3128-3133.

294. Miki N., Baraban J.M., Keirns J.J., Boyce J.J., Bitensky M.W. Purification and properties of the light-activated cyclic nucleotide phosphodiesterase of rod outer segments. J. Biol. Chem., 1975, v. 250, p. 6320-6327.

295. Baehr W.» Devlin M.J., Applebury M.L. Isolation and characterization of cGMP phosphodiesterase from bovine rod outer segments. J. Biol. Chem., 1979, v. 254., p. 11669-»11677.

296. Wheeler G.L., Bitensky M.W. A light-activated GTPase in vertebrate photoreceptors: Regulation of light-activated cyclic-GMP phosphodiesterase. Proc. Natl. Acad. Sci., 1977, v. 74 » P- 4238-4242.

297. Godchaux W, Zimmerman W.F. Membrane-dependent guanine nucleotide binding and GTPase activities of soluble protein from bovine rod cell outer segments. J. Biol. Chem., 1979, v.254, p. 7874-7884.

298. Ktihn H. Light- and GTP-regulated interaction of GTPase and other proteins with bovine photoreceptor membranes. Nature, 1980, v. 283, p. 587-589.

299. Fung B.K.-K., Hurley J.В., Stryer L. Flow of information in the light-triggered cyclic nucleotide cascade of vision. -Proc. Natl. Acad. Sci., 1981, v. 78, p. 152-156.

300. Fung B.K.-K., Stryer L. Photolyzed rhodopsin catalyzes the exchange of GTP for bound GDP in retinal rod outer segments.

301. Proc. Natl. Acad. Sci. USA., 1980, v. 77, p. 2500-2504.

302. KUhn H., Bennett N., Michel-Villaz M., Chabre M. Interactions between photoexcited rhodopsin and GTP-binding protein: Kinetics and stoichiometric analyses from light-scattering changes. Proc. Natl. Acad. Sci., 1981, v. 78, p. 6873-6877.

303. Hurley J.В., Barry В., Ebrey T. Isolation of an inhibitory protein for the cyclic GMP phosphodiesterase of bovine rod outer segments. Biochim. Biophys. Acta, 1981, v. 675,1. P. 359-365.

304. Dumler I, Etingof R. Protein inhibitor of cAMP phosphodiesterase in retina. Biochim. Biophys. Acta, 1976, v. 429,p. 474-484.

305. Hurley J.В., Stryer L. Purification and characterization of the regulatory subunit of the cyclic GMP phosphodiesterase from retinal rod outer segments. J. Biol. Chem., 1982,v. 257, p. 11094-11099.

306. Fukada Y., Kawamura S., Yoshizawa Т., Miki N. Activation of phosphodiesterase in frog rod outer segment by an intermediate of rhodopsin photolysis. Biochim. biophys. acta, 1981,v. 675, p. 188-194.

307. Yoshizawa Т., Fukadu Y.Activation of phosphodiesterase byrhodopsin and its analogues. Biophys. Str. and Mech., 1983» v. 9» p. 245-258.

308. Fung B.K.-K. Characterization of transducin from bovine retinal rod outer segments. I. Separation and reconstitution of the subunits. J. Biol. Chem., 1983, v. 258, p. 10495

309. Hughes S.M., Brand M.D. Size changes of phosphodiesterase in bovine rod outer segments on illumination. Biochemistry, 1983, v. 22, p. 1704-1708.

310. Robinson W.E., Hagins W.A. GTP hydrolysis in intact rod outer segments and the transmitter cycle in visual excitation. -Nature, 1979, v. 280, p. 398-400.

311. KUhn H. Interactions of rod cell proteins with the disk membrane: Influence of light, ionic strength, and nucleotides. -In: Current Topics in Membranes and Transport, 1981, v. 15, p. 171-201.

312. Robinson P.R., Kawamura S., Abramson В., Bounds M.D. Control of the cyclic GMP phosphodiesterase of frog photoreceptor membranes. J. Gen. Physiol., 1980, v. 765, p. 631-645.

313. KUhn H., Dreyer W.J. Light dependent phosphorylation of rhodopsin by ATP. FEBS Lett., 1972, v. 20, p. 1-6.

314. McDowell J.H., KUhn H. Light-induced phosphorylation of rhodopsin in cattle photoreceptor membranes-substrate activation and inactivation. Biochem., 1977, v. 16, p. 4054-4060.

315. Kuhn H. Light-regulated binding of rhodopsin kinase and other proteins to cattle photoreceptor membranes. Biochem., 1978, v. 17, p. 4389-4395.

316. Swarup Ch., Garbers D.L. Stimulation of rhodopsin phosphorila-tion by guanine nucleotides in rod outer segments. Biochem., 1983, v. 22, p. 1102-1106.

317. KUhn H. Light-dependent phosphorylation of rhodopsin in living frogs. Nature, Lond., 1974, v. 250, p. 588-590.

318. Frank R.N., Buzney S.M. Mechanism and specificity of rhodopsin phosphorylation. Biochemistry, v. 14, p. 5110-5117.

319. Wilden U., Kuhn H. Light-dependent phosphorylation of rhodopsin: Number of phosphorylation sites. Biochem,, 1982, v. 21, p. 3014-3022.

320. Paulsen R., Betrop J. Activation of rhodopsin phosphorylation is triggered by the lumirhodopsin metarhodopsin I transition.-Nature, 1983, v. 302, p. 417-419.

321. KUhn H. Light dependent phosphorylation of rhodopsin in living frogs. Nature, 1974, v. 250, p. 588-592.

322. Miller J.A., Paulsen R., Bownds M.D. Control of light-activated phosphorylation in frog photoreceptor membranes. Biochemistry, 1977, v. 16, p. 2633-2639.

323. Liebman P.A., Pugh E.N. ATP mediates rapid reversal of cyclic

324. GMP phosphodiesterase activation in visual receptor membranes.-Nature, 1980, v. 287, p. 734

325. Sitaramayya A., Liebman P.A. Mechanism of ATP quench ofphosphodiesterase activation in rod outer membranes. J. Biol. Chem., 1983, v. 258, p. 1205-1209.

326. Farber D.B., Brown B.M., Lolley R.N. Cyclic nucleotide dependent protein kinase and the phosphorylation of endogenous proteins of rod outer segments. Biochemistry, 1979, v. 18, p. 370-378.

327. Lee R.H., Brown B.M., Lolley R.N. Protein kinases of retinal rod outer segments: identification and partial characterisation of cyclic nucleotide dependent protein kinase and rhodopsin kinase. Biochemistry, 1981, v. 20, p. 7532-7535.

328. Lolley R.N., Farber D.B. Light induced reduction of cyclic GNP of retinal photoreceptor cells. J. Neurochem., 1977» v. 28, p. 1089-Ю95.

329. Polans A.S., Hermonn J., Bownds D. Light induced dephospho-rylation of frog rod outer segment proteins. J. Gen. Physiol., 1978, v. 59» p. 630-648.

330. Yee R.» Liebman P.A. Light-activated phosphodiesterase of the rod outer segment. J. Biol. Chem., 1978» v. 253»p. 8902-8909.

331. Woodruff M.L., Bownds D., Green S.H., Morriscy J.L., Shed-lovsky A. Guanosine 3'»5'-cyclic monophosphate and the in vitro physiology of frog photoreceptor membranes. J. of Gen. Physiol., 1977, v. 69, p. 667-679.

332. Liebman P.A., Pugh E.N. Control of rod dick membrane phosphodiesterase and a model for visual transduction. Curr. Top. Membr. Transp., 1981, v. 15, p. 157-163.

333. Fukui H., Shichi H. Soluble 5'-nucleotidase: purification and reversible binding to photoreceptor membranes. Biochemistry, 1982, v. 21, p. 3677-3681.

334. Mueller P., Pugh E.N. Protons block the dark current of isolated rod outer segments. Proc. Natl. Acad. Sci., 1983,v. 80, p. 1892, p. 189-196.

335. Hermolin J., Karell M.A., Hamm H.E., Bownds M.D. Calcium and cyclic GMP regulation of light-sensitive protein phosphorylation in frog photoreceptor membranes. J. Gen. Physiol., 1982, v. 79, p. 633-656.

336. Biernbaum M.S., Bownds M.D. Influence of light and calcium on GTP in isolated frog rod outer segments. J. Gen Physiol., 1979, v. 74, p. 649-669.

337. Cohen A.J., Hall J.A., Ferrendelli J.A. Calcium and cyclic nucleotide regulation in incubated mous retinas. J. Gen. Physiol., 1978, v. 71, p. 595-612.

338. Gold H.G., Korenbrot J.L. The regulation of Ca2+ in the intact retinal rod: a study of light-induced Ca2+ release by outer segment. "Curr. Top. Membr. Transp.", 1981, v. 15, P. 307-330.

339. Yoshikami S., George J.S., Hagins W.A. Light-induced calcium fluxes from outer segment layer of vertebrate retinas. -Nature, 1980, v. 287, p. 395-399.

340. Kushwaha S.C., Kates M., Stoeckenius W. Comparison of purple membrane from Halobacterium catirubrum and Halobacterium halobium. Biochem. Biophys. Acta, 1976, v. 426, p. 703-710.

341. Kushwaha S.C., Kates M. Isolation and identification of "bacteriorhodopsin" and minor C^Q-carotenoids in Halobacterium cutirubrum. Biochim. Biophys. Acta, 1973» v. 316,p. 235-243.

342. Bridgen J., Walker J.D. Photoreceptor protein from the purple membrane of Halobacterium halobium. Molecular weight and retinal binding site. Biochemistry, 1976, v. 1 p, P. 792-798.

343. Ovchinnikov Yu.A. Membrane proteins as light-energy trandu-sers. Biopolymers, 1985, v. 24, p. 157-166.

344. Oesterhelt D., Meentzen M. and Schumann L. Reversible dissociation of the purple complex in bacteriorhodopsin and identification of 13-cis and all-trans-retinal as its chro-mophores. Eur. J. Biochem., 1973» v. 4, p. 453-463.

345. Oesterhelt D., Schulmann L. Light-dependent reaction of bacteriorhodopsin with hydroxylamine in cell suspensions of Halobacterium halobium: demonstration of an apo-membrane.

346. FEBS Lett., 1974, v. 44, p. 262-265.

347. Long M.M., Urry D.W., Stoekenius W. Circular dichroism of biological membranes: purple membrane of Halobacterium halo-bium. Biochem. Biophys. Res. Commun., 1977» v. 75, p. 725731.

348. Unwin P.N.Т., Henderson R. Molecular structure determination by electron microscopy of unstrained crystalline specimens. -J. Mol. Biol., 1975, v. 94, p. 425-440.

349. Henderson R., Unwin P.N.T. Three-dimensional model of purple membrane obtained by electron microscopy. Nature, 1975,v. 257, p. 28-32.

350. Korenstein R., Hess В., Kuschmitz D. Branching reactions in the photocycle of bacteriorhodopsin. FEBS Lett., 1978,v. 93, P. 266-270.

351. Edgerton M.E., Greenwood C. Evidence for a model of regeneration of a protonated species, bR, from a phototransient M, in the photochemical cycle of bacteriorhodopsin from Halo-bacterium halobium. — Biochem. Soc. Trans., 1979, v. 7,p. 1075-1077.

352. Ohno K., Takeuchi Y., Yoshida M. On the two forms of intermediate M of bacteriorhodopsin. Photochem. and Photobiol.,1981, v. 33, p. 573-578.

353. Kalisky 0., Ottolenghi M. Branching pathways in the photo-cycle of bacteriorhodopsin. Photochem. and Photobiol.,1982, v. 35, p. 109-116.

354. Hurley J.В., Becher В., Ebrey T.G. More evidence that light isomerises the chromophore of purple membrane protein. -Nature, 1978, v. 272, p. 87-88.

355. Hess В., Kuschmitz D. The photochemical reaction of the 412nm chromophore of bacteriorhodopsin. FEBS Lett., 1977, v. 74, p. 20-24.

356. Балашов С.П., Литвин Ф.Ф. Фотохимические превращения бактериородопсина. Биофизика, 1981, т. 26, с. 557-570.

357. Hsieh C.-L., Nagumo М., Nicol М., El-Sayed М.А. Picosecond and nanosecond resonance Raman studies of bacteriorhodopsin. Do configuration changes of retinal occur in picoseconds? -J. Phys. Chem., 1981, v. 85, p. 2714-2717.

358. Braiman M., Mathies R. Resonance Raman spectra of bacteriorhodopsin primary photoproduct evidence for a distorted 13-cis retinal chromophore. - Proc. Nat. Acad. Sci. USA. Biol. Sci., 1982, v. 79, p. 403-407.

359. Kuschmitz D., Hess B. Trans-cis isomerization of the retinal chromophore of bacteriorhodopsin during the photocycle. -FEBS Lett., 1982, v. 138, p. 137-140.

360. Dinur U., Honig В., Ottolenghi М. Analysis of primary photochemical processes in bacteriorhodopsin. Photochem. and Photobiol., 1981, v. 33, p. 523-527.

361. Gochev A.D., Christov S.G. Quantum-mechanical kinetic study of the primary reaction of the photochemical cycle of Halo-bacterium haiobium. Biophys. Struct, and Mech., 1981, v. 7, p. 187-194.

362. Braiman M., Mathies R. Resonance Raman evidence for all-trans to 13-cis isomerization in the proton-pumping cycle of bacteriorhodopsin. Biochemistry, 1980, v. 19, p. 5421-5428.

363. Tsuda M., Glaccum M., Nelson В., Ebrey T.G. Light isomerizes the chromophore of bacteriorhodopsin. Nature, 1980, v. 287, p. 351-353.

364. Narva D.L., Callender R.H., Ebrey T.G. Low temperature resonance Raman study of the intermediate of bacteriorhodopsin. Photochem. and Photobiol., 1981, v. 33, p. 567-571.

365. Pande J., Callender R.H., Ebrey T.G. Resonance Raman study of the primary photochemistry of bacteriorhodopsin. Proc. Nat. Acad. Sci. USA. Biol. Sci., 1981, v. 78, p. 7379-7378.

366. Borisevitch G.P., Lukashev E.P., Kononenko A.A., Rubin A.B. Bacteriorhodopsin (BRc^q) bathochromic band shift in an external electric field. Biochim. et biophys. acta, 1979, v. 546, p. 171-174.

367. Tsuji K., Neumann E. Electric field-induced pK-changes in bacteriorhodopsin. FEBS Lett., 1981, v. 128, p. 265-268.

368. Tsuji K., Neumann E. Structural changes in bacteriorhodopsin induced by electric impulses. Int. J. Biol. Macromol., 1981 v. 3, p. 231-242.

369. Edgerton Т.Е., Moore T.A., Greenwood C. Investigations into the effect of acid on the spectral and kinetic properties of purple membrane from Halobacterium halobium. Biochem. J., 1980, v. 199, p. 413-420.

370. Lam E., Fry J., Packer L., Mukohata Y. Comparison of the С*640 photo-intermediate and acid-induced species in membrane patches from Halobacterium halobium Sg and R^mW strains. -FEBS Lett., 1982, v. 146, p. 106-110.

371. Herz J.M., Packer L. Structural involvement of carboxyl residues in the photocycle of bacteriorhodopsin. FEBS Lett.,1981, v. 131, p. 158-164.

372. Mantele W., Siebert F., Kreutz W. Effect of Triton X-100 and of deuteration on the amplitude of the O^Q-intermediate in the bacteriorhodopsin photocycle. FEBS Lett., 1981, v. 128, p. 249-254.

373. Mowery P.C., Stoeckenius W. Photoisomerization of the chromophore in bacteriorhodopsin during the proton pumping photocycle. Biochemistry, 1981, v. 20, p. 2302-2306.

374. Yoshida M., Oho K., Takeuchi Y. Altered activity of bacteriorhodopsin in high concentration of guanidine hydrochloride.- J. Biochem., 1980, v. 87, p. 491-495.

375. Childs R.F., Dickie B.D. The photoisomerization of protonated Schiff base derivatives of some enals. J. Chem. Soc. Chem. Commun., 1981, p. 1268-1269.

376. Шкроб A.M., Родионов А.В. Множественность форм релаксирующих молекул бактериородопсина. Биоорган, химия, 1978, т. 4,с. 500-513.

377. Sperling W., Rafferty C.N., Kohl K.-D., Dencher N.A. Isomeric composition of bacteriorhodopsin under different environmental light conditions. FEBS Lett., 1979, v. 97, p. 129-132.

378. Maeda A., Iwasa Т., Yoshizawa T. Isomeric composition of retinal chromophore in dark-adapted bacteriorhodopsin. J. Biochem., 1977» v. 82, p. 1599-1604.

379. Becker В., Cassim J.Y. Effect of light adaptation on the purple membrane structure of Halobacterium halobium. Biophys. J., 1976, v. 16, p. 1183-1200.

380. Tsuda M., Ebrey T.G. Effect of high pressure on the absorption spectrum and isomeric composition of bacteriorhodopsin. -Biophys. J., 1980, v. 30, p. 149-157.

381. Warshel A., Ottolenghi M. Kinetic and spectroscopic effects of protein-chromophore electrostatic interactions in bacteriorhodopsin. — Photochem. and Photobiol., 1979» v. 30,p. 291-294.

382. Gogel G., Lewis A. Effect of iodination on the pK of Schiff base deprotonation and production in purple membrane. Biochem. and Biophys. Res. Commun., 1981, v. 103» p. 175181.

383. Hess В.» Kuschmitz D. Kinetic interaction between aromatic residues and the retinal chromophore of bacteriorhodopsin during the photocycle. FEBS Lett., 1979, v. 100, p. 334-340.

384. Kalisky 0., Ottolenghi M., Honig В., Korenstein R. Environmental effects on formation and photoreaction of the photoproduct of bacteriorhodopsin: implication for the mechanism of proton pumping. Biochemistry, 1981, v. 20, p. 649655.

385. Siebert F., Mantele W., Kreutz W. Evidence for the protona-tion of two internal carboxylic groups during the photocycle of bacteriorhodopsin. Investigation by kinetic infrared spectroscopy. FEBS Lett., 1982, v. 141, p. 82-87.

386. Rothshild K.J., Zagaeski M., Contore W.A. Conformational changes of bacteriorhodopsin detected by Fourier transform infrared difference spectroscopy. Biochem. and Biophys. Res. Commun., 1981, v. 103, p. 483-489.

387. Lemke H.-De., Bergmeyr J., Straub J., Oesterhelt D. Reversible inhibition of proton pump bacteriorhodopsin by modification of tyrosine 64. J. Biol. Chem., 1982, v. 257, p. 9384-9388.

388. Dunker A.K., Marvin D.A. A model for membrane transport through сС-helical protein pores. J. Theor. Biol., 1978, v. 72, p. 9-16.

389. Kayalar C. A model for proton translocation in biomembranes based on keto-enol shifts in hydrogen bonded peptide groups. -J. Membrane Biol., 1979, v. 45, p. 37-42.

390. Krimn S., Dwivedi A.M. Infrared spectrum of the purple membrane: clue to a proton conduction mechanism? Science, 1982,v. 216, p. 407-408.

391. Govindjee R., Ebrey T.G., Crofts A.R. The quantum efficiency of proton pumping by the purple membrane of Halobacterium halobium. Biophys. J., 1980, v. 30, g. 231-242.

392. Nagle J.F., Mille M., Morowitz H.J. Theory of hydrogen bonded chains in bioenergetics. J. Chem. Phys., 1980, v. 72,p. 3959-3971.

393. Knapp E.-W., Schulten K., Schulten Z. Proton conduction'„inlinear hydrogen-bonded systems. Chem. Phys., 1980» v. 46» p. 215-229.

394. Merz H., Zundel G. Proton conduction in bacteriorhodopsin via a hydrogen-bonded chain with large proton polarizability. Biochem. and Biophys. Res. Commun., 1981, v. 101, p. 540546.

395. Warschel A. Conversion of light energy to electrostatic energy in the proton pump of Halobacterium halobium. Photochem. and Photobiol., 1979» v. 30, p. 285-290.

396. Honig B. Photochemical charge separation and active transport in the purple membrane. In: Current topics in membranes and transport, v. 16, Electrogenic ion pumps. Ed. Slayman C.L. New York: Academic Press, 1982, p. 371-382.

397. Smith H.G., Stubbs G.W., Litman B.J. The isolation and purification of osmotically intact discs from retinal rod outer segments. Expl. Eye Res., 1975, v. 20, p. 211-217.

398. Shichi H., Lewis M.S., Irreverre F., Stone A.L. Biochemistry of Visual Pigments. I. Purification and Properties of Bovine Rhodopsin. J. Biol. Chem., 1969, v. 244, p. 529-536.

399. Lewis M.S., Krieg L.C., Kirk W.D. The molecular weight and detergent binding of bovine rhodopsin. Expl. Eye Res., 1974, v. 18, p. 29-40.

400. Osborne H.B., Sardet C., Helenius A. Bovine rhodopsin: characterization of the complex formed with Triton X-100. -Eur. J. Biochem., 1974, v. 44, p. 383-390.

401. Hargrave P.A., Fong S.-L. The amino- and carboxyl-terminal sequence of bovine rhodopsin. J. Supramol. Struct., 1977, v. 6, p. 559-570.

402. Papermaster D.S., Dreyer V.J. Rhodopsin content in the outersegment membranes of bovine and frog retinal rods. Biochemistry, 1974, v. 13, p. 2438-2444.

403. Ovchinnikov Yu.A., Abdulaev N.G., Feigina M.Yu., Kiselev A.V., Lobanov N.A. The structural basis for the functioning of bacteriorhodopsin: an overview. FEBS Lett., 1979, v. 100,p. 219-224.

404. Tsunasawa S., Narita K., Shichi H. The N-terminal residue of bovine rhodopsin in acetylmethionine. Biochim. biophys. acta, 1980, v. 624, p. 218-225.

405. Steck Th.L. The organization of proteins in the human red blood cell membrane. J. Cell Biol., 1974, v. 62, p. 1-19.

406. Wallach D.F.H. The dispositions of proteins in the plasma membranes of animal cells: Analytical approaches using controlled peptidolysis and proteins labels. Biochim. et Biophys. Acta, 1972, v. 265, p. 61-83.

407. Cabantchik Z.I. and Rothstein A. Membrane proteins related to anion permeability of human red blood cells. J. Membr. Biol., 1974, v. 15, p. 227-248.

408. Lepke S., Passow H. Effects of incorporated trypsin on anion exchange and membrane proteins in human red blood cell ghosts. Biochim. et Biophys. Acta, 1976, v. 455, p. 353r370.

409. Jenkins R.E., Tanner M.J.A. The major human erythrocyte membrane protein; Evidence for an S-shaped structure with traverses the membrane twice and contains a duplicated set of sites. Biochem. J., 1975, v. 147, p. 393-399.

410. Jenkins R.E., Tanner M.J.A. The structure of the major protein of the human erythrocyte membrane; Characterization of the intact protein and major fragments. Biochem. J., 1977,v. 161, p. 139-147.

411. Hall R.L., Doorley P.F., Niederman R.A. Trans-membrane localization of reaction center proteins in Rhodopseudomonas sphaeroides chromatophores. Photochem. and Photobiol., 1978, v. 28, p. 273-276.

412. Trumpower B.L., Katki A. Controlled digestion with trypsin as a structural probe for the N-terminal peptide of soluble and membranous cytochrome c^. Biochem., 1975, v. 14,p. 3635-3642.

413. Saari J.C. The accessibility of bovine rhodopsin in photoreceptor membranes. J. Cell Biol., 1974, v. 63, p. 480-491.

414. Breugel P.J.G.M., Daemen F.J.M., Bonting S.L. Biochemical aspects of the visual process. XXIX. Effect of pronase on rod outer segment membranes and rhodopsin. Exp. Eye Res., 1975, v. 21, p. 315-324.

415. Aton В., Barr L. Trypsin digestion of rhodopsin in disc membranes and egg phosphatidyl choline bilayers. Biophys. J., 1976, v. 16, p. 37a.

416. Золотарев A.C., Миталева С.И., Шемякин B.B., Костина М.Б., Фейгина М.Ю., Абдулаев Н.Г. Первичная структура родопсина. П. Пептиды химотриптического гидролиза. Биоорган, химия, т. 9, с. I3I7-I330.

417. Ovchinnikov Yu.A., Abdulaev N.G., Feigina M.Yu., Kiselev A.V., Lobanov N.A. Recent findings in the structure-functional characteristics of bacteriorhodopsin. FEBS Lett., 1977, v. 84, p. 1-4.

418. Abdulaev N.G., Ovchinnikov Yu.A. Some approaches to determining the primary structure of membrane proteins. Methods in Enzymology. L. Packer eds. Acad. Press., New York, 1982,v. 88, p. 723-729.

419. Егоров Ц.А., Шахпаронов М.И., Давидович Ю.А., Лозинский В.И., Заславский Б.Ю., Рагожин С.В. Получение нерастворимого носителя с активированной <, tf-группой и его использование в химии белка. Биоорг. химия, 1977, т. 3, с. IIII-III5.

420. Laursen R.A., Horn M.J., Bonner A.G. Solid-phase Edman degradation. The use of p-phenyldiisothiocyanate to attach lysine and arginine-containing peptides to insoluble resinis.

421. FEBS Lett., 1972, v. 21, p. 67-70.

422. Chang J.Y. N-terminal sequence analysis of polypeptide at the picomole level. Biochem. J., 1981, v. 199, p. 557-564.

423. Li Q.Q., Govinjce R., Ebrey T. Correlation between proton transport and the bacteriorhodopsin photocycle. Proc. Natl. Acad. Sci. USA., 1984, v. 81, p. 7079-7082.

424. Plotkin B.J., Sherman W.V. Spectral heterogeneity in protein fluoresscence of bacteriorhodopsin: Evidence for intraprotein aqueous regions. Biochemistry., 1984, v. 23, p. 3353-3370.

425. Овчинников Ю.А., Абдулаев Н.Г., Фейгина М.Ю., Киселев А.В., Лобанов Н.А., Назимов И.В. К вопросу о первичной структуре бактериородопсина. Биоорг. химия, 1978, т. 4, с. 979-981.

426. Овчинников Ю.А., Абдулаев Н.Г., Фейгина М.Ю., Киселев А.В., Лобанов Н.А., Назимов И.В. Первичная структура бактериородопсина. Биоорг. химия, 1978, т. 4, с. 1573-1574.

427. Gerber G.E., Gray С.P., Wildenauer D., Khorana H.G. Orientation of bacteriorhodopsin in Halobacterium halobium as studied by selective proteolysis. Proc. Natl. Acad. Sci. USA., 1980, v. 77, p. 2023-2028.

428. Govindjee R., Ohno K., Chang Ch., Ebrey T. The C-terminal tail of bacteriorhodopsin its conformation and role in proton pumping. In: "Information and energy transduction in biological membranes'.' - 1984, p. 13-25.

429. Blaurock A.E., Stoeckenius ¥., Oesterhelt D., Scherphof G.L. Structure of cell envelope of halobacterium halobium.

430. J. Cell Biol., 1976, v. 71, p. 1-22.

431. Абдулаев Н.Г., Киселев A.B., Овчинников Ю.А. Действие протео-литических ферментов на пурпурные мембраны Halobacterium halobium. Биоорг. химия, 1976, т. 2, с. II48-II50.

432. Абдулаев Н.Г., Киселев А.В., Фейгина М.Ю., Овчинников Ю.А. Изучение асимметричной ориентации бактериородопсина в пурпурной мембране Halobacterium halobium. Биоорг. химия, 1977, т. 3, с. 709-710.

433. Bridgen J., Walker I.D. Photoreceptor protein from the purple membrane of Halobacterium halobium. Molecular weight and retinal binding site. Biochemistry, 1976, v. 15, p. 792-798.

434. Abdulaev N.G., Tsetlin V.I., Kiselev A.V., Zakis V., Ovchin-nikov Yu.A. Aldimine bond migration in the photochemical cycle of bacteriorhodopsin. Chem. of Pept. and Prot., 1982, v. 1, p. 435-440.

435. Родионов A.B., Баирамашвили Д.И., Куделин А.Б., Фейгина М.Ю., Шкроб A.M., Овчинников Ю.А. Акцепторный остаток лизина при фотоиндуцированной миграции ретиналя в бактериородопсине. -Биоорган, химия, 1981, т. 7, с. 1328-1334.

436. Katre N.V. Wolber Р.К., Stoeckenius W., Stroud R.M. Attachment site(s) of retinal in bacteriorhodopsin. Proc. Natl. Acad. Sci. USA. Biol. Sci., 1981, v. 78, p. 4068-4072.

437. Mullen E., Johnson A.H., Akhtar M. The identification of1. ОЛ f\1.s as the retinal binding residue in bacteriorhodopsin. FEBS Lett., 1981, v. 130, p. 187-193.

438. Lemke H.D., Oesterhelt D. Lysine2l6 is a binding site of the retinyl moiety in bacteriorhodopsin. FEBS Lett., 1981,v. 128, p. 255-260.

439. Rothshild K.J., Argade P.V., Earnest T.N., Huang Kuo-Sen, London E., Liao Mei-June, Bayley H., Khorana H.G., Herzfeld J. The site of attachment of retinal in bacteriorhodopsin. A resonance Raman study. J. Biol. Chem., 1982, v. 257,p. 8592-8595.

440. Овчинников Ю.А., Абдулаев Н.Г., Цетлин В.И., Киселев А.В., Закис В.И. Миграция аяьдиминной связи в процессе фотохимического цикла бактериородопсина. Биоорг. химия, 1980, т. 6, с. 1427-1429.

441. Ovchinnikov Yu.A., Abdulaev N.G. Possible mechanisms of proton transfer in bacteriorhodopsin. In: "Membranes and transport". Martonos A.N., eds. Plenum Press, New York-London. 1982, v. 2, p. 319-322.

442. Wolber P., Stoeckenius W., Retinal migration during dark reduction of bacteriorhodopsin. Proc. Natl. Acad. Sci. USA, 1984, v. 81, p. 2303-2307.

443. Втюрина И.Ю., Курятов А.Б., Киселев A.B., Хоропшлова Н.И., Овечкина Г.В., Абдулаев Н.Г., Цетлин В.И., Василов Р.Г. Ишунохимическое изучение бактериородопсина с помощью моно-кдональных антител. Биоорг. химия, 1984, т. I, с. II6I-II69.

444. Abdulaev N.G. Molecular organization of bacteriorhodopsin and rhodopsin-Journal of cellular biochemistry, 1983, v. 7B, p. 375

445. Ovchinnikov Yu.A., Abdulaev N.G., Kiselev A.V. Bacteriorhodopsin topography in purple membrane. Biological membranes. D.Chapman eds. Acad. Press. London, 1984, v. 3» p. 193-214.

446. Ovchinnikov Yu.A. . Abdulaev N.G., Modyanov N.N. Structural basis of proton-translocating protein function. Annual review of biophysics and bioengineering. L.Mullins eds. Ann. Rev. inc., Palo-Alto, 1982, v. 11, p. 445-462.

447. Engelhart M., Gervert K., Hess В., Kreutz W., Siebert F. Light driven protonation changes of internal aspartic acid of bacteriorhodopsin. Biochemistry, 1985, v. 24, p. 400467.

448. Abdulaev N.G., Feigina M.Yu., Kiselev A.V., Ovchinnikov Yu.A., Drachev L.A., Kaulen A.D., Khitrina L.V., Skulachev V.P. Products of limited proteolysis of bacteriorhodopsin generate a membrane potential. FEBS Lett., 1978, v. 90, p. 190-194.

449. Артамонов И.Д., Золотарев А.С., Костина М.Б., Хорошилова Н.И., Фейгина М.Ю., Абдулаев Н.Г. Первичная структура родопсина.

450. П. Пептиды бромцианового расщепления Биоорг. химия, 1983, , т. 9, с. I30I-I3I6.

451. Pober J.S., Stryer L. Light dissociates enzymatically-cleaved rhodopsin into two different fragments. J. Mol. Biol., 1975, v. 95, p. 477-481.

452. Овчинников Ю.А., Абдулаев Н.Г., Фейгина М.Ю., Артамонов И.Д., Богачук А.С., Золотарев А.С., Еганян Е.Р., Костецкий П.В. Зрительный родопсин. Ш. Полная аминокислотная последовательность и топография в мембране. Биоорг. химия, 1983, т. 9, с. I33I-I340.

453. Corless J.M., McCaslin D.R., Scott B.L. Two-dimensional rhodopsin crystals from disk membranes of frog retinal rod outer segments. Proc. Natl. Acad. Sci. USA, 1982, v. 79, p. 11161120.

454. Mas M.T., Wang J.K., Hargrave P.A. Topography of rhodopsin in rod outer segment disk membranes. Photochemical labeling with N-(4-azido-2-nitrophenyl)-2-aminoethanesulfonate. Biochem., 1980, v. 19, p. 684-692.

455. Kyte J., Doolittle R.F. A simple method for displaying the hydrophobic character of a protein. J. Mol. Biol., 1982, v. 157, p. 105-132.

456. Ovchinnikov Yu.A., Abdulaev N.G. Bacteriorhodopsin and rhodopsin, structure and function. Enzymes of biological membranes. A.N.Martonosi eds. Plenum Press. New York, 1984,v. 4, p. 555-577.

457. Thomas D.D., Stryer L. Transverse location of the retinal chromophore of rhodopsin in rod outer segment disc membranes. J. Mol. Biol., 1982, v. 154, p. 145-157.

458. Pappin D.J.C., Eliopoulos E., Brett M., Findlay J.B.C.

459. A structural model for ovine rhodopsin. Int. J. Biol. Mac-romol., 1984, v. 6, p. 73-76.

460. Liu R.S., Asato A.E., DennyvM., Maeda D. The nature of restrictions in the binding site of rhodopsin. A model study. -J. Am. Chem. Soc., 1984, v. 106, p. 8298-8300.

461. Kawasaki I., Itano H.A. Methanolysis of the pyrrolidone ring of amino-terminal pyroglutamic acid in model peptides. -Anal. Biochem., 1972, v. 48, p. 546-556.

462. Ambler R.P. C-terminal-sequence determination by carboxy-peptidases A and B. In: Methods in Enzymology (Colowick C.P., Kaplan N.O., ed.), Acad. Press, New York, 1967, v. 11, p. 155-174.

463. Tschesche H., Kupfer S. C-terminal-sequence determination by carboxypeptidase С from orange leaves. Eur. J. Biochem., 1972, v. 26, p. 33-36.

464. Ганкина Э.С., Королева E.M., Беленький Б.Г. Пути увеличения чувствительности ручного варианта метода Эдмана в дансил-модификации. Биоорг. химия, 1979, т. 5, с. 485-491.

465. Gray W.R., Dansyl chloride procedure. In: Methods in Enzymol., Hirs C.H.W., eds., New-York and London, Acad. Press, 1967, v. 11, p. 139-147.

466. Беленький Б.Г., Ганкина Э.С., Прянишникова С.А., Эрастов Д.П. Микротонкослойная хроматография динитродинильных и фенидтиопщантоиновьк производных аминокислот. Молек. биол., 1967, т. I, с. 184-189.

467. Wilson K.J., Rodger К., Hughes G.J. Microsequence analysis: ffl. DABITH-amino acid identification by high performance liquid chromatography. FEBS Lett., 1979, v. 108, p. 87-91.

468. Назимов И.В., Левина Н.Б. Использование жидкофазной хроматографии для разделения фенилтиогидантоиновых аминокислот. -Биоорг. химия, 1980, т. 6, с. 398-399.

469. Драчев JI.А., Каулен А.Д., Скулачев В.П., Хитрина Л.В., Чеку-лаева Л.Н. Фазы фотоэлектрического ответа бактериородопсина. Биохимия, 1981, т. 46, с. 998-1005.

470. Crestfield A.M., Moor S., Stein W.H. The Preparation and Enzymatic Hydrolysis of Reduced and S-Carboxymethylated Proteins. J. Biol. Chem., 1963, v. 238, p. 622-627.