Термодинамические свойства двухкомпонентных расплавленных галогенидных систем. Модельные представления и расчеты тема автореферата и диссертации по химии, 02.00.04 ВАК РФ
Ратнер, Аркадий Хаимович
АВТОР
|
||||
кандидата технических наук
УЧЕНАЯ СТЕПЕНЬ
|
||||
Ленинград
МЕСТО ЗАЩИТЫ
|
||||
1990
ГОД ЗАЩИТЫ
|
|
02.00.04
КОД ВАК РФ
|
||
|
ьз ш ? о
ЛЕНИНГРАДСКИЙ ОРДЕНА ОКТЯБРЬСКОЙ Ь^ОЛЩИИ
И ОРДЕНА ТРУДОВОГО 'ФАСНОГО ЗНАМЕНИ ТЕХНОЛОГИЧЕСКИЙ ИНСТИТУТ имени ЛЕНСОВЕТ
На прарах рукописи
РАТНЕР Аркадий Хаимович
ТЕРШДИНАШЧЕСЮГ СВОЙСТВА ДВУХКОШОК-ЛТНЫХ РАСПЛАВЛЕННЫХ ГАЛОГЕНА Ж "СИСТЕМ. МОДЕЛЬНЫЕ ПРЕДСТАВЛЕНИЯ И. РАСЧЕТЫ
Специальность- 02.00.04 - физическая хаиия
АВТОРЕФЕРАТ диссертации на соискание ученой степенч' Кандидата хииическшс наук
Ленинград 1990
Работа выполнена во Всесоюзной ордена Октябрьской Револвдви научно-исследова эльском и проектном институте алюминиевой, магниевой и электродной промышленности (ВАШ).
Н-учннй руководи^ль - доктор технических наук, профессор
Роалъд Александрович Сандлер|
Официальные оппоненты: доктор технических няук, профессор
Андрей Георгиевич ЬЬрачевоквй;
кандидат химических наук, доцент ^эрис Николаевич Ощерин
Ведущее предприятие - Урал: кий государственный
университет (г,Свердловск. '
Защита состоится " в __час.,
в ау^т. _' на заседании спеца ализирова: лого совета;'
К 063.25.09 в Ленинградской технологическом института имени Ленсовета по адресу: .198013, Ленинград, Загород- ■ ный пр., д.49.- _ ...
'С диссертацией ш&сно ознакомиться в библиотеке. ЛИ им.Ленсов1,га.
Отзывы п'замечания в одном экземпляре, заверенный гербовой печатью, просим нащ- влять по адресу; 198013, Ленинград, Загородннй пр., д.'49, 1ТИ им.Ленсове:.а, Ученый совет. * - - - *-•■•. ■ •
Автореферат разослан "¡С м /еОс&^Л 1990 г. * *
Ученый секретарь специализированного совета
кандидат химических наук,доцент У <■ В.В.Сьеоева
- 3 -
ОБДАЯ ХАРАКТЕРИСТИКА Р.ЛЛГ
Актуальность работа. Расг авленные со ли. в частно-
"1МГГггалогвш1Ды являются особым классом гчдкостеи, представляющим большой теоретический ч практический нн.ерес.Это, по-видимому, наиболее концентрированные равновесные высоко те шора ту рнке ионные системы. Проце .¡к с нспользоь.лшом галогенвдиых расплавов являются основными в производстве легких и ряда редких металлов а сплавов на х основе, при тер;,, обработке, легировании и рафинпрсэгшн этих металл' и сплавов; а также перспективны лрп очистке л изв-еченпл радиоактивных элементов и в ряде других про: зодств. Знание термодинамических свойств компонентов расплава необходимо для расчетов ран .ззесий в ¡клщсой фазь и в {азах с ней сосуществующих; для составление энергетических батан-сов п.-- проектировании новых и анализе работы существуо-щих аппаратов. Замена экспериментальных методов определения термодинамических свойств расчетными позволяет 'достичь значительного зь-.^рша во времени, что особенно ва-ЕЛО В условиях рыг^чной конкуре!ЩИИ.
В настоящее время собра.. значительный экспериментальный материал по термодинамике смежная в ки. гекпдшвс расплавах, однако он недостаточно систематизирован. Прак-гачосщц огсутсг-'ют попытки установить коллче. л'веннуы связь меяду термодинамикой расплава и физическими свойствами ионоз, образующих расплав.
Цель и мото^пяд дкттюлненгл работа. Г.,;, работы - создание методов расчета термодинамических функций смеп^ния для расплавленных ионных систем галогонид одноэарядного-гачогенид г-зарядного иона ). 3 работе, приме-
нен аппарат мл те мат:: ческой физики, комбинаторного анализа, статистической термодинатаю. Для проверки достоверности полученных результатов использовалась информация из научной литературы за 1965-1989 и, выборочно, предыдущие годы.
Научная 1;о§.тзнд. Предложена новая классификация г.: -елей галогенядных расплавленных солей, включагазая 4 типа обобщенных .моделей, показаны их преимущества и надоегчткп.
Один из типов моделей практически разработан вновь.
На осново модели сред-чх состояний ионов обнаружены в математически описаны неизвестные ранее закономерности концентрационной зависимости термодинамических функций смепения от состава „ля систем с сильным взаимодействием компонентов.
Сформулиров. m и для случая соосного расположения ионов решена задача расчета энергии дшюльной поляризации сферы в поле двух точечных источников. Проанализирован вклад кулоновской и поляризационной составляющих в энергию смешения, выявлен механик . появления эндоэффектов при смешении.
Разработаны метода расчета: термодинамических функций смешения в системах с однозарядными ионами, чсходя радиусов и по: ризуемос^й ионов; энтальпии смешения и активностей в системах с мног чаряднши ионами, исходя из данных по энтчльпиям смешения в двух-трех точкам (для 70$ сис. jt.i) ; оцопки предельных коэффициентов активности в расплавах с сильна взаимодействием по энергиям ио,тизации 5 томов.
, арктическая данность. Разработаны ме^ды оценки термодинамических свойств двухкошонентных галогениднь.. расплавов, дающие воз:...ясность дополнить отсутствующие экспериментальные, данные с точностью, отвечающей точности технологических расчетов. Применение этих методов позволяет провести разработку новых и усовершенствование существующих' технологических процессов с применением расплавленных солей в более короткие сроки и со значительно меньшими затратами, чем в настоящее время.t
Реализация работы. Результаты диссертационной работы использованы при разработке способов получения счандийсо-, зржащих л..гатур. Материалы работы использованы в двух учебных пособиях для студентов металлургических специальностей Ленинградского горного института.
Апробация работы. Основные положения и результаты работы докладывались н& УП, УШи П всесоюзных конференциях по физической химии (и электрохимии) ионных распла-
вов и твердых электролитов (Свердлове.-, Т^Э и 1938 гг., Ленинград, 1983 г.), II Всеоопяном семинаре по электрохимии тугоплавких редких металлов (Апатиты, 1978) 17 уральской конференции по высокотемперг урной Ъ.зт-"ег--ой хкдии и электрохимии (Пермь, 1985 г \ республиканской конфе- • секции по физико-химическим основам производства ме?~тля-чеясих сплавов (Алма-Ата, 1990 г.), межведомственном совещании "Пути иятонспфивадии процессов элзктрохямпческо? технологии" (Ленинград, 1989 г.) и на семзь^ре секции физической химии ионных расплавов комиссии по ион'-:гл расплавам л твердил олектролятам Аи СССР (Ленинград, 1988г.).
Объем я структура диссертации. Работа состоит из введения, трех глав, заключения, выводов, сг"ска литературы, насчитывающего "Си названий, ч приложения. Материал изложен на 182 с,, включая текст диссертации - 149 е., 8 рпсуш^в, 19 таблиц,' 9 с. прилегания.'
СОДЕРЖАНИЕ РАБОТЫ
Во введении обоснована актуальность темы, оформули-рована цель работы и обознач :о направление рвиэяяя поставленных задач.
Па ту; я я главд "Анализ современных моделей галогонпд-ных расплавов" обстоит из двух частей. В перв^ части (п.1.1) моделирование расплава определяется, как замена его истинной структуры - непрерывной случайной функции времена условной структурой (у.с.) - диегч ой функцией времени. 7.с мотсат на соответствовать строешзз расплава, однако приводить к адеква-.юму описанию термодинамическая функций смепеяия. Различают полное моделирование - расчог функций смев^ния о использованием только данных об внда-л-дуальпых веществах, обрезуюсях расплав, а неполное, прэ котором концентрационная зависимость Функций смешения включает небольшое число констант» которые находят из экспериментально определенных Функций смешения дал ограниченного числа то^ек.
Дачее анализируется достоверность эясперЕ.^пталт.чш: данных, ююлъзуемнх при проверка адекватности шделвй.
понятия ионных констант - радиусов и поляризуемосте? по- / нов, обсуждается природа с т мевчастичного взаимодействия в расплаве. Первая часта завершается изложением некоторых положений статистической термодинамики в форме, методически отличающейся о- принятой в классическом курсе, „в приспособленной к решению конкретных задач моделирования.
Во второй части первой главы (п.п.1.2-1.4) нами си- , .стемагазированы, обобщены и доработаны три финципиальные модели, к которым практически сводится абсолютное большинство из многообразия разработанных в насгоягоа время моделей галогени^чых смесей. Дора^тка обобщенных моделей позволила расширить область их применения и уменьшить математические сложности. используются следующие обозначения: дН - энтальпия смешения, ^ - коэффицпе' т активности, СС; - мс-ьная доля компонента, I = I для йЬ или Л+ и ¿=п для МЬг или Нг* .
Согласно простейшей модели парных взаимодействий,или оборонной модели Гуггенгейма-Кожвурова энергетика смешения определяется: появлен"вм взаимодействий й-Мп^и одно-зременной ликвидс ли опред тайного числа пар Й-Й и М-М. Для случая 2~1 нами .получены зависимость..
лИ = ±^' г.ух,хп (I)..
' ■ ■ (2)
где ^ - энергия образования в условной структуре двух зза- • имодейств}лцах пар/)-М при одновременной ликвидации по одной паре А-А и М-М; - число Авогадро.
В мола расплавов ЙЬмМЬ 'содержатся, схгтва тс: зон- • нои ^Ъ''//''пар взаимодействующих катионов.
(мг.г1 и Р) ^
где Т - температура, К; Я - газовая посто-
янная.
Ограничивая число слагаемых ряда (3), задавая определенные соотношения мэкду г" и и р складывая в ряд
выражение под логарифмом в правой час^ легко получить выражения для конкретных моделей (регулярных расплавов, Ван-Лаара. квазихлмическои Гуггенгейла и г.".).
Модель сложных соединений ил. идеат но "со*чиирован--ных расплавов предполагает пр. екание в пасплава реакций: jЙL*Mbp==ffljMLгt}
Активности компонентов отождестзляют о остаточными мольными долями соответствующих компоненте? ( ^ ). Нами полу:ны уравнения, позволяющие по изеротнш значениям констант равновесия реакций (4) - К) - рассчитать активности.
' г зс
£ К;¿[¡хь-ъ+у.Оу^^-у,; ^ £ (5)
Мэдель сложных соединений используют исключительно при неполном моделировании. Одна из экспериментальных величин, по которой целесообразно вычислять константы равновесия - коэффициент активности МЬг в бесконечно разбавленном расплаве: . , ,
/ . К] = ~ I
/»/ о»
В диссертации рассмотрен случай, когда отличны от ну-.ля К, и Кг (улучшешшя модель Маркова). Есяй в к., шетве второй экспериментальной величины брать коэффициент активности МЬг д; расплава эквкмольного состав ( у'"' ),
Модель Маркова мояет использоваться для оцеьочных расчетов и интегрирования урав лтя Гиббса-Дюгека.
С помощь» модели сяожных соединений можно рассчитывать потенци" я Гиббса неравновесного плавления. Так. приняв для расплавов Фторид щелочного металла - фторид алшв-ния отличЛми от нуля К, в , мы по известным из литературы значениям у, рассчитали константы равновесия а далее цп в точке равновесия расплав - твердый Л//^ .Другой способ расчета взотермо-изобарзческого потенциала плавления А1/$ состоит в определении разности "ехду ИТ1пКл ч справочным значением потенциала Гиббса обра„ова-
ния криолита из твердого фторида алюминия. Этими способами для 1300 К получено £ 24,8+1,7 иД ж/моль. Данная величина используется далее для оценки термодинамических свойств жидкого ДО} , которые в настоящее время не известны.
Предельный случай модели сложных соединений - приближение частично упорядоченных расплавов - иллюстрирован , на примере системы хлорид щелочного металла - хлорид алюминия (модель Лянга). Полагают, что при хп 1/2 весь хлорид алюминия связан в соединение АА1С^ . не входящий в соединение хлорид щелочного к-галла образует со сложным соединением р£~плав, описываемый моделью Ван-тЛаара, являющейся частным случаем рассмотренной выше модели парных взаимодействий. Было показано, что формально кс ^фаодент активности Й1.обращается в бесконечность в расплаве зквимольного состава. Шли- э точки разрыва непрерывности второго рода или области, где предельный случай модели за-В9Д..Л0 не является адекватным - фундаментальный недостаток приближения частично упорядоченных расплавор
Модель ело; шх соеда ений в общем случае применима дяя систем кш' с неспецифическим, так и со специфическим • взаимодействием.
Третья обобщенна;, нами модель -.модель сложных-иондв, .также постулирует наличие в расплаве химических равновесий, описываемых однако не. в молекулярной (4), а в ионной форме,- например, * '
Наш показано, что в этой модели простую корреляцию между активностью компонентов и концентрациями ионс^ удае.зя установить только при очень специальном предположении независимости константы равновесия и- зной реакции в 1юрме (6) от состава расплава.
В заключении по первой главе подчеркнуто, ч^о все три модели могут оказаться полезными при решении конкретных задач, поэтому они з диссертации не просто изложены, но существенно доработаны. Однако, по нашему мнению, более перспективной является, так называемая, одель окруженного
иона,.версия которой, разработанная в дпс ртации, названа нами "модель средних состояний ионов".
Вторая глава "Модель средних состояний ио'чв". ¡модель, разработанная нами для сис: лЛЬ- 'Иг. ст-знт в соответствие расплаву условную :руктуру, подчиняющуюся трем перечисленным ниже допущениям.
1. Число ионов, взаимодействующих с ионами противоположного знака (первое координационное число иона), величина постоянная, не зависящая от состава расплава.
2. Два иона одного знака взаимодействуют в том и только в том случав, если они порознь взаимолейс. .уют с одним и тем же гоном противоположного знака.
3. Коэффициент пропорциональности между за^ЗДом иона и его первым координационным число- - минимальная величина, совместимая с отличным от нуля значением энергии смешения. ■
Показано, что при этих допущениях первое координационное число иона равно ого удвоенному заряду
Согласно модели, условной структурой смеси галогенв-дов о однозарядны:,., ионами я^тяетс^ионная цепочка. Двух-зарядннй катион взаимодействует с четырьмя галог^ч-апионами и в смеси мотет взаимодействовать с четырьмя однозарядными катионами. Для него возможно также взаимодействие о меньшим числом однозарядных катионов в некоторым числом двухзарядных в т.п.
Совокупность катионов и анионов, взяпг действующих с данным ионом определяет его энергетическое состояние.Допущения модели ограничила : возможные соотношения ые*..^ числами ионов в различных энергетических состояниях, накладывая на -?х 6 линейных уравнений связи.
. ____ II, ип . .
, »ГОгГ?^- — '
где п - числа молей данного иона в данном энергетическом состоянии в моле распл за. Подстрочные индексы обозначают энергетическое состояние иона, описывая его катион-ное окружение приведенным ниже способом.
Ион А*' и М2*
Число взаимодействующих с ним катионовЯ 0 I 2 0 12 0 0<1<2 2 2
Индекс П1П ип М1 пап /а-п /си п I- с
Мэтодаг" комбинаторного анализа и статистической термодинамика случены нелинейные соотношения, образующие совместно с (10) основную систему уравнений:
_ а
и
Л*
' Ппап
2"-П?
1п[
то (22)1
г г П!Ш '"поп
Л/с'
Л?1
ЙТ
~ ЦТ
1-1, ..,2г-1
(8)
[п ЬпшПтп _ О-г
ЙТ
Выражения для энтальпии смешения и коэффиц..здтов активности:
2г-1
у _ Пи (.эс, + -гос„)
X,
Х,+ 2ЭСПУ я
(9)'
(Ю)
<2, и 4'
так называз-
В соотношениях (8) - (1С/<2, мыа энергетические параметры, оп; зделенные линв1.лыв комбинации энергий переходов ионов между различными энергетическими состояниями в условной структуре. Было показано, что если все взаимодействия в расплаве сводятся к парным, то все энергетичеи зв параметры, кроме а, , обращаются в ноль.
Нами'разработаны два метода решения основной системы
ш-
- II -
уравнений. Один И1 них - метод двух неизвестных позволяет све'ти основную систему к двум уравнениям с двумя неизвестными: £ . и )£
При извэст!__х значениях энергетичес их параметров значения у, и </п находят "шслзкно с помощью да клич, ¿кой итерационной г-оцедург.
Другой метод ратания основной системы уравнений -метод поправочных мнонителей состоит в то:-' что набор п для данных энергетических параметров ищут в виде. п'ехр(£с+<£) , гдв п" ~ известные ре эння основной сао-темн уравнений для некоторого чебора парау '•роь; с - .то-ложительная постоянная, задаваемая в -эчале вычислений; уменьшение этой величины увеличивает точность и трудоемкость расчета; . - новые нви.леотнга, причем 4 -целочисленная величина, подбираемая таким образом, что
Такой выбор яеиг~эстят"С позволяет линеаризовать основную систему уравнений относительно с£ . В (7) • . п=п'(1*<Л)е%р(£с) • • " • .
Следующая задача состоит в о'тоядествлбнив модели.
■ -Было показано, «-ю в нулевом прйблвзайи (я.; ),' то ость при. ■ • - '
п „ [/¡.»с,- '
. —. ; . (И)
где(ср.с (3) ). •• ;
Если н.п. ьерно,- то эксшриментальйо найдечная воли' аН' " ■ " '
при^в "определяемому из уравне-тпя 'Н/?Т£п'/5= -лНх,.'2Л ) не должна зависять от состава. Я дей-
ствительности дело обстоит более слоглю. В спстзмах о сильным взаимодействием при мольной доли соли однозарядного катиона _ эльше - — функция Ь г. лшэгся шзначиголь-но. так что этим изменением действительно зачастую могло пренебречь. При дгтьнейшем увеличения конце нотации МЬг возможны разные варианты. Чаще всего наблюдается сперва незначительное, а затем все более резкое изменение, как
правило, возрастание, модуля функции Ь . Энтальпия смешения таклх систем, названных нами системами первого типа, описыьается т •живем:
*н ('--%:> Ы] сю
где Дап ряссчптывас-ся п* уравнению (II).
Параметры уравнения (12) находят по методу наименьших квадратов. Множители, на вторые умнсаются парамет-Р1 1г 33 Т5— соответственно функции п, и л„„ в нулевом приближении (см.(12) ).
К системам пзрв.. о тапа было отнесено 34 системы из 50, для кс ■'орых имелись табличные данные по энтальпиям смешения (табл.1), всего 422 экспериментальные точки.
Таблица I
Значения параметров а-, , аг и Ь, (кДж/мол) в системах первого типа •
Система тк -а, ь, Система тк -а/ аг ь,
хлоюиды аг=о хлориды
Со 1083 35,5. 11,7 На' а- 1143 59,0 -0/84 -9,49
Г/а- Ре 1и83 30,8 -2,68 .гь— 1167 23,4 -г,- -8,9
К'а- Мз 30,8 -15,97 С5 — 5г 1167 26,4 -1,09 -9,54.
Ип •30,0 -14,90 ■фториды
К - Мп. 54,9 .-41,7 Ыа- Ссб 1355 22,9 0 -11,55
К — % 1073 56,8 -47,6 /\/а— 2л 1279146,9 7,4 -45,5
к— О 1083 Зб.о -25,3 бромиды
м- -Мл. 65,6 -58,9 А/а — 1045 27,3 4 2,85 10,7
йЬ- М9 1003 62,3 -74,7 К — -Мд 50,0 3,18 -16,4
«Ь— Са 1083 44,4 -31,0 К-- -Сс. 1083 36,5 0 -27,8
-Со 1163 41,5 -33,5 ЙЬ- - 1045 60.1 4,85 -24,6
С -РЬ 938 37,5 .-20,4 вь-- -Са 1083 37,7 0 -54,6
С*- Ни 1083 76,2 -79,4 ЙЬ~ 1033 24,4 -2.5 -13,3
С$- .Мп 963 74,7 -87,4 с* - 1045 69,5 2,85 -39,8.
а- 1003 72,3 -87,6 с*— Мз 988 68,3 0 -44,5
и 963 69,5 -75,0 с$ - Са 1083 43,3 1.34 -50,9
с$- Са 1083 44,7 -43,5 С4 - Са 1167 42,7 3,60 -46,9
С4- -Са |И36 42,7 -43.8 ¿Г ¡1033 31,0 -1,59 -15.2
I
«g
<D ГЯ й S3
П p*'
p«o
SS
corf
EH
О p"
о
a
8
. о о ^ H О к w с. » » м to ю с- 65
• О- Q » • « «
OHNHlnlDHÖ OOOMÖi-4«toc--
ороооооо
о
.sas о О со 4J о и м ^ Ф
О О Ö Й M
о с? ооо
ООО
Û
Я Ö-
и?
Sä
а в» ftp ГО Еч
во
8« 01Я
tt
<D er
о
со
Я. Я 8 g £ <3
"О О H «О Ю С- f О О О О О о о
8 С5 IO H (О о 'о м w m о
О О О с
s
» • «ь
ООО
■ с
H
Mojco^fioíoc-co oooooooo
-1 -
Исключая япкоторое зывшюние коэффициента активности при мольной лоли' что объясняется прене-
бресением палитре та ,г в Ь3 , расчетные значения коэффициент . активности вполне укладываются в разброс экспериментальных данных, "тодуг'чньк методом э.д.с. Какдый лоточник в таол.2 - независимый.
К системам первого типа относятся хлориды и бромиды дв^хзарядных катионов первой п^лтады Зс/-з„ементов, побоч--ных элементов четвертого периода, системы с галогенидами щелочно-зсмельных эло-"щтов, в том числе радия, системы с гало гонгами натрия. Для систем, не относящихся к этому типу, удалось получать эффективное приблагенве концентрационной сав' ^.'.ас-ц функций ведения для разбавленных расплавов. 'При для всех ионных галогеладных систем
верна Фopt.|^yлa:-4^-=Я + 6•^? . гда А<0 , - кон-
сгапти. Эхо соотношение оЕлсшаег такте энтальпию смешения твердого МЬг и расплавленной оолиЯЬ ; при этом параметр Я , равны.* предельной парциальной мольной энтальпии растворения Н^.шкат 6ц ь как положительным» так и отрицательном;
Модель средних состояний была разработана,в основном, для описания систем с сильным взаимодействием; Однако она приме щма.и .в случае слабого взаимодействия компонентов. В частности, при' г в /а,1<ц7 лН=;е,хл* х[а,-Ь^х,(а-Ь,)].Эха формула полностьв соответствует экспериментальным данным. .
Ттеуьд г^авд. ."Полное моделирование термодинамических функций снесения двухкошюнег ^ных галогебедных, расплавов". До настоящего времена при учете энергии поляризации ион рассматривали-, как точку. Так как основноЗ вклад в энергию поляризации вносят внешние электронные орбитали, ион целесообраз»ве рассматривать, как равномерно поляризуемую оферу. Нами было показано, что энергия поляризации в поле одиночного иона I составит _ А. 51 _!_
-----2 'тР'(1?-фг
в поле двух ионов с и 1ри их соосном располокенва с поляризуеш~1 часть эдарги:- поляризации не сводящая к пар-
- 15 -
ным взаимодействие рассчитывает, как: ^
±Ъсги1;±Юг (И) где знак "+" соответствует случаю, когда поляризующие ионы находятся по разные стороны от поляризуемого, и зна.;
когда .ли Находятся по одну ст рону. В формуле (13) с^ - заряд поляразуюгЛго зона; Ъ° - диэлектричс зкая проницаемость "акуупа; С - расстояние до поляризующего иона; Я0- радиус поляризуемой сферы.
Для ионных цепочек, имитирующих расплав с однозарядными катионами (см.гл.2) были рассчитаны энергии отдельных ионов в условной структуре в завн умости от энергетического состояния и, соответс-,енно, энерг "ичеокиё »раме три. Таким оиразом появилась возмог'эсть рассчитывать • термодинамические Фуи-сции смешения, пользуясь только значениями иорчых рад^'соз и поляразу. ..¡остом. Оказалось, что изменение кулоновской энергия п энергий поляризации анио-ла и меньсего цз катионов вносят отрицательный (экзотермический) вклад в энергию ^чешанпя, а большего из катионов - положительный. В отдельных случаях этот йолозптоль-, ный вь^ад перекрывает отрицательнее, и мы I .зам системы с г-щотермическим сметанием. Мэвяо говорить 6 достаточной ■ сходимости расчетных п экспериментальных дащ: ос (табл.3). Расчеты параметров взаимодействия для систем с. галогеаи-дамз меди ( I) ь серзбра позволили объяс ;ть агчмальнЬ высокие положительные значения энтальпии смешения в системах И • и .СюЦЬ г /Уа л "ильнуи зкзо-термичность .смешения в ^системах ,Си(Щ) ''Ь . 'По— 'ляризуемость катионов Си. д Яд 'значительно выаэ,- чем у катионо9' щелочных металлов. Поэтому, когда эти сони больше катионов щелочного металла /а). то их поляр: -¡ация вносит пологи тельный вклад в 'энергию ' ;э-шения, перекрывающий прочие вклады. И наоборот, когда катионы щелочных металлов ве-пка,.изменение энергии поляризации Си и А? вносм значительный отрицательный вклад в энергию с-гешения.
• Кулонов екая с ^ ставлявдая параметра, пр: г= 2;3 пропорциональна выраязяию
а, ЦС(2г-1Н,-и
21,1, (Ып) (14)
ГДв До. ,
Прл ? = 2 коэффициент про эрциональности составляет 872,9*Ю-10 кДк-м.
Таблица 3
Энтальпия смешения в эюп.'иг чых смесях фторидов и лорпдов щелочных шта-тов расчет )
эксперимент моль
я -м
и о о ь о
и Ыа.. к Си -
и: \ -1.14 -\52 -4,44 -4.43 -5.01
-1.Г7 -5.32 -6,36
На. к ¿ь -1^93 -¿,02 -0.41 -0.66 -1.34
-0,54 -0,85 -1,02
-0.33 -0.02 -0.03 +0.20
-4,8Г 1-5.22- -0,03 +0,02
-0.34 +0.01
-5,07 +0,02. +0.09 ■■+0,09
Сь -Л.С +о:С9 +о;и
-4,04 -
Существующие в-литературе системы'ионных радиусов двухзар^йных ионов заметно различаются. Применение вырагз-1шя (1*4) особенно. эффективно при использовании найденной -шыи корреляции мекду ионным радиусом и суммой двух первых цотенцвалов ионизации соответствующих атомов. (Е )
где а в Ь . соответственно равны: -0,293 и 0,0757 для ца-лочно-земельных.элементов. -0.003 и 0,0595 для двухзардд-ных 3с1 -элемент з. +0,215 и 0,0453 для 4с1 -элементов.
Сравнение с опытными ддшшг.ш показало, что соогнопе-ние (14) эффективно при ¡{^Яп- Этим соотнесением целесообразно пользоваться для си :ем с сильным взаимодействием •компонентов.
Исполь^я формулу (К;, мы, в частности, оценили ко-
эффицпеяты акгдБнс ш ScCL в смеси с хлорьдами щелочных металлов, что позволило разработать способ получения алю-мо-скандиевой лигатуры.
В Ы В О Д -J
1. Проаналязиро: по современг~>е состояние лроблелш расчета те^ ^динамических функций смешения галогенидных ионных расплавов путем их модб,*ироваиия. Все модели разделены на четыре типа, причем для каждого ипа рассмотрела обобщенная модель.
2. Разработана обобщенная модель ларных взаимодействий, частным случаем которой тяготея моде. . регуляр._лх расплавов, квазихдмическое прибликени Гуггаяге?*^, моде ■
' ли Н-'таурова л Ван^Даара.
3. В с 'щем вид- проанализировала мог^ль сяогных со-1ди"они2, или идеально ассоциированных расплавов. Показано. что активности компонентов в той модели могут быть найдены, как корень а гебр- 'ческоГо уравнения целочисленного порядка. Улучшены алгоритмы определения энергетичес-
. ких параметров для частных случ'асв модели.
4. На примера фторида алюминия полазана еозмояеость ■ использования мс зла слоеных соединений д^я определения
термодинамически" свойств индивидуальных расплавленных солей, кидк_э состояние которых в опыте _^удно ,,остипзмо.
5. В общеи вида проанализирована модель сяояных ло-. нов, частным сл: аем которо'' является моде' ь вдеальпых
ионных расплавов Темки на.'. •■ ' ■
6. Разработана новая версия модели округленного иона - модель средних состояний ионов. Предлоген метод расчета терггодзнамлчег сих функций решения по данным об эп-талыгиях мешения в двух точках, в доказана работосп об-ность этого метода.
7. Обсугу'на пришда ?л менчастпчного взаимодействия в расплаве. Показано, что энергия поляризации не сводима к сумм по поляризующим ионам. Ълучепы формуля д-i расчета энергии равномерно поляризуемой сферы в поле одиночного иона и двух ионов, соосных поляризуемому.
. - 18 -
8. В приближении жестких равномерно поляризуемых сфер с использованием литературных значений иошшх радиусов и поля>..зуемог-и рассчитаны термодинамические функции синения для сорока систем галогенидов щелочных металлов с общим анионам. Ре^улыаты расчетов в болышнст-ве случаев близки к экспериментальным.
9. Разработан метод оценки энтальпий смешения и ак- ■'• тивностей компонентов в разбав. -нных расплавах двухза-' рядных галогенидов элементов второго-четвертого периодов . в соответствующих галтонидах щелочных металлов по перв../. двум энергиям ионизации л положению элемента в периодически сястеш.'
Основшз сод ркание ди^ортации опубликовано в следующих работах:
1. Сандлер P.A., Ратнер A.Z. Оизическая химия процессов производства магния. - I.: Uli. 1978. - 97 с.
2. Сапдлер P.A., Ратнер A.Z. Электрометаллургия алюминия и магния. - Я.: ЛГИ. 1983. - 95 с.
3. Сандер Г.а).. Ратнер '.X. Термодинамичоокие характеристики тройной сисзх ш из хлоридов натрия, калия, магния//Изв.вузов; Цветная металлургия: - 1976. - .'5 2.-' С.89 92. • • " .
4. Рат.пр А.Х., Ларионов A.A., Сандлер P.A. Термодинамическая активность Хлордстого магния в тройной сио-теме Mq „Ма..К//С. //Груды ВШ. 1976. & 96. С.5-10.
■ 5Ч Ратнер А.Х., Сандлер P.A. Расчет в.зманения энтальпии при образовании двойных расплавов галогенидов// .Изв.вузов:.-Цветная металлургия. - 1979. ]'< 2. - С.32-40.
'6. Сандлер P.A., Ратнор A.I. 0 применении моделей шесей расплавленных галогенидов для расчета их термодинамических: характерасти1с//Кзв.вузов. Цветная металлургия.
- 1982. 1^3. С.53-68.
7. Ратнер д.Х., Каптая Д. Оценка термодинамических свойств жидкого трифторида атшшя/ЛЬви:а ¡те эффективности и надеиюсхи работы алюминиевых электролизеров: Сб.
- Л: ВАМИ, 1988. С.ЮЗ-Ш?.
8. Ратчер А.Х., Сандг-р P.A. Зави"^:.;оста териодпми-
мических функций t-лешвния от состава для расплава галоге-ндг з//П Всесоюз.семинар по электрохимии тугоплавких редких металлов: Тез.докл. - Апатиты, 1978. С.18-20 - Двп. в ВИНИТИ 28.02.79, JS 502.
9. Ра'х.,ер А.Х., Сандлер P.A. 1'->нцентрационные зави-симостл термодинашчг чкях функций смешения дву^компонент- • них распла- -в галогенидов//УП Всесоюз.конф.по фаз.химии ионных расплавов и твердых электролитов. Тез.докл., 4.1.
- Свердловск, 1979. С.91-92.
10. Ратяер А.Х. Расчет-термодинамических свойств га-логанидных расплавов на основе модели средних состояний ионов//УШ Всесоюз.конф.по фаз "шдли и элоь рохпмип ионных расплавов а твердых электролитов: Тез.докл.,-.4.1, -Л., Т983. C.I09-III.
11. Размер А.Х. Некоторыэ вопросы построения термоди-пических моделей галогенпдннх пенных смзсвИ//Высокотем-пературная'физическат хншя и эл^тгрохшлпя: Тез.дел. 17 Уральской конф., 4.1. - Ce-wtobck, 1985. С.30-32.
12. Ратнер А.Х., Лифилц'.А.Н. - Об учете поляризуемо-' стой'при^моделировании энергии 'смотпяХ/В^окотемпоратур-. 1я физическая химия н электрохимия: Х0З.Докл.1У Уральской конф., 4.1. - Свердловск!' 1985. С.97-80, - .
. ' 13.. Ратяер А.Х. Вклад составллхкцпл.экоргпп полярпза-цпп в терме '.ииамичеекпе функции смсмиля галогсдадозс однозарядными катиона;.ж//ГХ Всесоюз.конф.по физ.зетип п -. * •элокгрохимиа яогшх расплав' в -з твёрже:. ¿Л'зктро.тятовгг ^ез.докл., 4.I.. - Свердловск,. 1937, .- С.I3S-I39. ■' - _ 14. Особенности повэденея скандия в алпглосналдпехдсс лнгатурах/А.А.Захаревич, А.Х.Ратнер. М.Б.ГеГг.т;пе.;ал, В.Е.Бажеев//5изико- химические основы' производства метал- , лпческих лшавов': Тез.докл.Росп.конф. - Алад-Ата,
- С. НО.
5.1"'.20 г. Зак.665-100. Босп :атно PTII ЛТИ пм.Ленсовета,Москоасклй пр. .::6