Волны деформаций в нитевых системах тема автореферата и диссертации по механике, 01.02.04 ВАК РФ
Эфендиев, Айдын Ниязи оглы
АВТОР
|
||||
кандидата физико-математических наук
УЧЕНАЯ СТЕПЕНЬ
|
||||
Баку
МЕСТО ЗАЩИТЫ
|
||||
1985
ГОД ЗАЩИТЫ
|
|
01.02.04
КОД ВАК РФ
|
||
|
ВВЕДЕНИЕ
ГЛАВА I. УДАР КОНУСОМ ПО НИТЕВОЙ СЕТИ.
§ I Вывод уравнений движения сети.
§ 2 Вывод уравнений характеристик.
§ 3 Автомодельное движение и частный случай.
ГЛАВА П. ПЛОСКОЕ ДВИЖЕНИЕ ДЕ&ОРМИРУЕМОЙ СЕТИ.
§ I Уравнбйия формы фронтов
§ 2 Волновые схемы движения
§ 3 ' Волны в сетях с предварительным натяжением.
ГЛАВА Ш. ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ ЯВЛЕНИЙ,
ПРОИСХОДЯЩИХ ПРИ УДАРЕ ПО СЕТЯМ.
§ I Экспериментальная установка.
§ 2 Постановка эксперимента
§ 3 Картины движения сети при поперечном ударе.
Г Л А В А 1У. РЕШЕНИЕ АВТОМОДЕЛЬНЫХ ЗАДАЧ.
§ I Одномерное движение сети в пространстве
§ 2 Удар тупым конусом по сети.
§ 3 Косой удар конусом по мембране
ВЫВОДЫ И ЗАКЛЮЧЕНИЯ.
Исследование явления удара по нитевым системам и мембранам занимают важное место в динамики деформируемого твердого тела. Изучение распространения волн деформаций в нитевых системах и мембранах при воздействии на них интенсивных кратковременных нагрузок представляет интерес как с теоретической точки зрения,,так и с практической - в связи с возрастающими требованиями современной техники.
Во многих отраслях встречаются действия интенсивных кратковременных нагрузок на сетчатые системы. В частности: в наземных и подводных сетях заграждения, ударные волны и порывы ветра, сейсмические и всевозможные взрывные нагрузки на большепролетные сетчатые перекрытия и т.д.
Сетчатые системы используются в различных областях современной техники, авиации, рыболовстве, строительстве и т.д. Явления удара по мембранам также представляет немалый интерес. С практической точки зрения задачи по мембранам связаны с проблемами пробивания тонких преград, торможением быстро движущихся тел, штамповкой и т.д.
Представленная работа посвящена теоретическому и экспериментальному исследованию распространения волн деформаций по орто-тропным нитевым сетям, а также исследованию задачи о косом ударе по упругой мембране гладким конусом.
Задача распространения волн в деформируемых нитевых системах с учетом значительного отклонения формы нитей от первоначального прямолинейного в математическом отношении весьма сложная задача, так как уравнения движения представляют собой систему нелинейных дифференциальных уравнений в частных производных.
Вопросам динамики мембран в последнее время в литературе уделено немалое внимание и получен определенный прогресс, однако большинство их посвящено плоскому движению мембраны при ударе по ней заданным телом. Решение же задачи косого удара конусом по мембране (решение на конусе в случае полного облегания мембраной конуса) представлено разными авторами в весьма ёмком виде. "Соседство" нитевых сетей и мембран можно объяснить некоторой общностью методов исследования их динамики как математических, так и экспериментальных.
Ниже приводится краткий обзор работ по проблемам непосредственно, либо косвенно связанными с теорией распространения волн в нитевых сетях и мембранах с их приложениями.
Широкие теоретические исследования задач распространения волн были начаты в 40-х годах. Рахматулин Х.А. [40J впервые ввел понятие о волне разгрузки и решил обратным методом задачу. Рахматулин, Карман и Дюве [42] исследовали распространение упруго-пластических деформаций, используя координаты Лагранжа. Та же задача в эйлеровых координатах рассматривалась Тейлором.
Основы теории поперечного удара по гибким связям были заложены Рахматулиным[41]. Созданная им теория продольно поперечного удара по гибким связям отлична от обычно принятой "линейной", учетом значительного отклонения формы связи от первоначальной прямолинейной, нелинейностью зависимости напряжений от деформаций, а также спецификой условий в области соприкосновения с ударяющим телом. Дальнейшее развитие теория гибких связей получила в работах [7,11,12,18,20,21,22,31,36,39,43,64,69,75 3 и др. Решению динамических задач посвящены труды ^42,5,46,24,1^] и другие.
За последнее время большое внимание привлек класс как плоских, так и пространственных форм гибких связей. В работах fI,зз} аналитически было найдено точное решение уравнений движения нити на поверхности абсолютно гладкого конуса и решены различные автомодельные задачи. Было выявлено новое волновое явление: двойной излом нити.
В последнее время большое внимание привлекли постановка и методика решений задач механики деформируемого твердого тела с широким применением математического аппарата |j5,10,4,17,22,30, 39],
Однако если в изучениях и исследованиях движения нитей картина достаточно ясна, то изучению поведения сетчатых систем и мембран в последнее время уделено немалое внимание в связи с множеством различных проблем как научного, так и технического характера.
О широком и разнообразном применении сеток в технике свидетельствует работа [ei], в которой отмечая успехи в области решения задач статики и устойчивости, указываются на не решенные проблемы: динамика сетчатых систем, влияние начальных деформаций, предельная нагрузка на решетчатую структуру и ряд других проблем.
В работе [в] , используя дельта-функцию Дирака для представления распределенных усилий, нагрузки и массы , вантовая сетка моделируется мембраной с нулевой сдвиговой жесткостью. Собственные частоты и формы нелинейных колебаний плоской предварительно напряженной вантовой сетки определяются методом кратных масштабов времени теории возмущения.
В работе [7бЗ автор, развивая общие уравнения для двумерных волокнистых сред, моделирует фиброзную среду, как континуальную модель рам и решеток. Используя их, автор получает уравнения волокнистой среды, волокна которой проводят осевые силы сдвига и изгибающие моменты. Обсуждаются частные случаи, в которых предполагается, что тело составлено из трех семейств, параллельных волокн равномерной жесткости, два семейства которых образуют ортогональную сеть и семейство волокн образующих параметрические линии. Выводятся выражения для перемещения в случае волокнистой среды, образующей плотную, многократно статически неопределенную решетку. В £77] исследуется устойчивость плотных плоских стержневых решеток. Критические нагрузки вычисляются для прямоугольных решеток с прямоугольными, шестиугольными решетчатыми сетями.
Работа [57] посвящена колебанию перекрестной системы тросов при наличии постоянной поперечной нагрузки. До приложения нагрузок тросы образуют ортогональную систему линий, лежащих в одной плоскости. Решение задачи разбивается на две части. Сперва решается задача статики в нелинейной постановке, далее рассматривается задача о малых колебаниях в линейной постановке. Для описания характеристик рассматриваемой системы авторы вводят дельта-функцию Дирака. Система разрешающих уравнений в частных производных по методу Бубнова заменяется бесконечной системой обыкновенных дифференциальных уравнений. Результаты счета сравниваются с опытными данными и приводится график изменения значений первой собственной частоты от величины статического прогиба.
В книгерЗб] рассматриваются малые свободные и вынужденные колебания сетчатых оболочек и пластин наиболее часто встречающихся на практике: пологих, цилиндрических и оболочек вращения.
Теория построена на основе континуальной расчетной модели. Используя в основном линейную теорию, автор где необходимо учитывает и геометрическую нелинейность.
Модальный метод в нелинейном динамическом анализе канатных сеток применяется в работе[б5]. Рассматриваются случаи, когда пространственное представление нагрузки остается неизменным, а интенсивность нагрузки изменяется со временем. Приводится распространение теории сосредоточенных масс дискретного метода анализа на канатные сетки. Дифференциальные уравнения равновесия для смещений в направлении X , ^ и Z представляются в матричной форме. Составлены программы расчета на ЭВМ плоскостной сетки, кольцевой конструкции и гиперболической сетки. Надо отметить, что метод модальной характеристики пригоден только для сеток, обладающих большой симметрией. Кроме того, для плоскостной реакции сетки эффективность этого метода несколько ограничена.
Автором работы [э] изучается распространение волн деформаций по цилиндрической сетчатой оболочке. Предлагается использование такой оболочки в пневмотических шинах.
В работах[б,28] также исследуются свободные колебания и устойчивость сетчатой цилиндрической замкнутой оболочки.
Распространение волн в упругом волокнистом материале, подкрепленным волокнами в двух направлениях, изучается в работе[*6о]. Вариационным методом с помощью принципа Гашльтона-Остроградско-го составлены основные уравнения линейной задачи.
Используя свойства симметрии тросовых сеток, автор[б] для динамических расчетов применяет метод С - инвариантных подпространств. Висячее покрытие рассматривается в виде шарнирно соединенной системы стержней под действием сил в узлах. Методом инвариантных подпространств задача определения амплитуд и частот колебаний системы приобретает блок-диагональную форму в виде суммы подматриц отдельных подпространств. Надо отметить, что этот метод позволяет упростить вычислительные процедуры.
Отражения волн Релея периодическими решетками полосок изучается в[бб]. В случае плоского деформирования задача решается по схеме возмущения. Рассмотрены случаи конечного и бесконечного числа полосок. Поля представлены как свертки функции Грина с неизвестным распределением поверхностных сил сцепления. Уравнения решаются методом сингулярного возмущения. Приведены выражения для коэффициента отражения.
Работа [бв] посвящена вопросам приближенного определения динамических характеристик пространственных стержневых решетчатых конструкций типа мачт высоковольтных электропередач, водонапорных и ретрансляционных башен, мостовых кранов и т.д.
Исследованию движения нелинейных вантовых сетей и мембран посвящена работа [23^. Задача решается численным способом. Пишутся выражения для потенциальной и кинетической энергии, входящие в уравнения Лагранжа, которые затем заменяются конечно-разностными аппроксимациями. На основании этого метода созданы алгоритмы для решения задач статики, динамики и устойчивости.
Движение прямоугольных решеток со свободно вращающимися узлами при узловой нагрузке, произвольно меняющейся во времени и инертной массе, рассматривается в работе[б7]. Дифференциальные уравнения задачи представлены как одно уравнение с матричными коэффициентами, из которых , как частные случаи, следуют уравнения равновесия, гармонических колебаний и движения системы, как твердого тела.
Несмотря на широкое применение сетчатых конструкций и широкое исследование их в последнее время, некоторые важные проблемы динамики сетчатых систем, как например движение при больших деформациях, еще ждут своего эффективного решения.
Наряду с исследованиями нитей и нитевых систем проводились широкие теоретические и экспериментальные изучения явлений, возникающих при ударе по мембранам. В этой области первой была рассмотрена задача о нормальном точечном ударе с постоянной скоростью по неограниченной упругой мембране автор ом [l2^. Задача была решена приближенно без каких-либо ограничений, накладываемых на меридиальное и кольцевое напряжения и было показано, что ни при каких скоростях удара пренебрегать кольцевым напряжением нельзя. Было показано, что в процессе нормального удара конусом по мембране возникают три области движения: область чисто радиального движения, область, где мембрана прогибается, но не контактирует-ся с поверхностью конуса (свободное поперечное движение) и область, где мембрана облегает поверхность конуса. Позднее, было указано, что область облегания разделяется на две: область движения мембраны с проскальзыванием и область без проскальзывания.
Задачи о нормальном ударе при наличие свободной области поперечного движения рассмотрены также и для упруго-пластических волн, возникающих в соответствующих мембранах. В случае схемы Прандтля задача решена методом последовательных приближений [20*].
Немалый интерес представляет случай, так называемого "полного облегания". В процессе соударения с большой скоростью отсутствует область поперечного движения, т.е. граница набегания мембраны на ударяющее тело движется быстрее, чем фронт поперечной волны. В указанной постановке известна задача[3б/ об ударе телом вращения по упругой мембране. Уравнения движения выведены без ограничения на величину деформации и получено точное решение для случая удара конусом с постоянной скоростью. В работе £27] решены задачи при до и сверхзвуковом режиме с учетом силы трения на линии набегания мембраны на ударяющее тело. В задачах об ударе затупленными телами по мембране показано [7], что деформация в окрестности точки удара прямо пропорциональна скорости удара и обратно пропорциональна радиусу кривизны ударяющего тела.
Впервые неодномерную задачу об ударе по мембране рассмотрел автор [ 5l] , где задача решалась методом последовательных приближений. Точное решение было получено авторами[43] и сформулированы некоторые результаты с позиции теории аналитических функций. В работе [3l] исследовалась неодномерная задача о косом ударе нормально ориентированным конусом по упругой мембране. Позже было найдено решение на конусе в виде гипергеометрических функций.
В области динамики мембран изучалась картина движения резиновых, полиэтиленовых и металлических мембран при нормальном и косом ударе заданными телами [21]. Теоретическому и экспериментальному исследованию динамики мембран посвящены работы [l8,37].
В работе[45] , исследуя однородные задачи динамики мембран, автор доказывает возможность применения метода конформного отображения в автомодельных задачах. Показана схема построения решений. в[4б] , используя эту схему, решена задача об поперечном нормальном ударе эллиптическим конусом по упругой мембране. Приведен численный расчет для мембран из различных материалов.
Хотелось бы отметить также, что между сетчатыми системами и мембраной существует и более общая зависимость. Многие авторы, исследуя различные сетчатые системы, рассматривают их как некую модель сплошной среды. Об этом свидетельствуют работы авторов [l4,48,78,2,19] . В книге[l4] , посвященной изучению анализа деформаций с использованием муара, указано, что для более точного изучения деформаций, возникающих в природе и технике, удобнее всего явление, либо элемент конструкции представить в виде мелкой сетки или нанесением сетки на исследуемую деталь. Этот метод, основы которого были заложены в работе [59], получил бурное развитие в дальнейших трудах [48,14]. В исследованиях деформаций используется метод муара и показывается возможность и необходимость его дальнейшего применения.
Муар - сравнительно новое пополнение в арсенале экспериментальных методов изучения деформаций. Это одно из наиболее тонких и точных средств измерения. Обычно под словом муар подразумевают-интерференцию, возникающую при наложении сеток. Однако муаровый эффект можно рассматривать по разному: геометрически, результат сложения двух функций, выраженных в параметрическом виде; интерпретировать как линии одинакового смещения. Однако наиболее применимым является геометрический способ, который впервые получил свое истолкование в [74], и использован для определения деформаций в работе[б2^]. Геометрический подход позволяет изучать образование муаровых полос как результат пересечения двух систем линий эталонной сетки и сетки образца.
Представленная работа посвящена теоретическому и экспериментальному изучению распространения волн деформаций, возникающих в нитевых сетях при поперечном ударе , и исследованию задачи о косом ударе по упругой мембране гладким конусом.
Следует отметить, что все исследования в области теории сетчатых конструкций можно отнести к одному из двух направлений: исследования, основанные на дискретной расчетной модели и исследования, основанные на континуальной расчетной модели. Работы, относящиеся к каждому из этих двух направлений, удачно дополняют друг друга.
В представленной работе упругая нитевая сеть рассматривается как некоторая континуальная система: напряженно деформированное состояние, перемещения и скорости описываются функциями непрерывно меняющихся аргументов. Такая модель,впервые предложенная в работе [23, достаточно успешно исследовалась в работах [2,3,193 » где были выведены уравнения плоского движения, исследован класс автомодельных задач, решена задача нормального удара по границе полубесконечной сети и проведен ряд экспериментов. Опыт показал, что такой подход к исследованию сетчатых систем позволяет эффективно использовать методы механики деформируемого твердого тела и аппарат уравнений математической физики.
Диссертационная работа состоит из введения, четырех глав и заключения.
ВЫВОДЫ И ЗАКЛЮЧЕНИЯ
1. Впервые в рамках общей теории поперечного удара по гибким связям рассмотрено движение нитевой сети в пространстве при больших деформациях.
2. Построена система уравнений, описывающая движение сети на конусе. Сеть представлена как некоторая континуальная система.
3. Выведены уравнения характеристик и показано, что волны в сетях не расщепляются.
4. Исследовано плоское движение сети и аналитическим путем получены уравнения формы фронтов волн, распространяющихся в невозмущенную область.
5. Уравнения формы фронтов решены как для свободных до удара, так и для предварительно напряженных сетей. На основании полученных решений построены возможные волновые картины движения сетей. Найдено единое решение семейств фронтов и показана их зависимость от предварительного натяга и интенсивности нагружения.
6. Проведены экспериментальные исследования явлений, возникающих при поперечном ударе по нитевой сети с использованием муара. Полученные муаровы картины движения сетей подтверждают теоретические выводы.
7. Решена задача одномерного движения сети в пространстве. Поперечный удар, направленный вдоль прямой линии, производится с постоянной скоростью. Даны формулы, определяющие скорости распространения волн и все необходимые параметры движения.
8. Решена задача поперечного удара тупым конусом по предварительно напряженной линейно-упругой сети. Полученное решение представлено в виде ряда.
9. Решена задача косого удара по гибкой мембране абсолютно гладким конусом. Показано, что решение задачи сводится к отысканию двух аналитических функций в двусвязных областях комплексных плоскостей.
1. Агаларов Д.Г., Нуриев Б.Р., Рахматулин Х.А. Удар конусом по деформируемой нити. ПММ, 1981, т.45, № 2.
2. Агаларов Д.Г. Исследование движения сетей при ударе. Изв.АН Азерб.ССР, сер.физ-техн. и матем.наук, 1982, № 6.
3. Агаларов Д.Г., Гумбаталиев М.А., Касумов O.K., Эфендиев А.Н. Автомодельное плоское движение сети. "Проблемы динамики взаимодействия деформируемых сред", Ереван, 1984.
4. Алиев Г.Г. О точном решении задачи вязкоупругости толстостенной структурно-неоднородной трубы. Изв.АН Азерб.ССР, сер. физ-техн. и матем.наук, 1979, № 5.
5. Амензаде Ю.А. Теория упругости. "Высшая школа", М., 1976.
6. Беликов Г.И., Пшеничнов Г.И. Прочность, устойчивость и колебания сетчатой оболочки отрицательной гауссовой кривизны.
7. В книге "Надежность и долговечность строительных конструкций" Волгоград, ВПИ, 1974.
8. Бектурсунов У. О поперечном ударе по гибкой мембране. Вестник МГУ, $ 6, 1966.
9. Бубнович Э.В. О собственных нелинейных колебаниях вантовой сетки. "Теоретические исследования строительных конструкций". М., 1976.
10. Бухин Б.Л. Распространение волн деформаций по цилиндрической сетчатой оболочке из растяжимых нитей. В сб."Механика пневмотических шин", М., 1976.
11. Гаджиев В.Д., Исаев Ф.К. Некоторые вопросы устойчивости при сложном нагружении. Матер.конф.по матем. и мех. "Элм", 1984.
12. Галин М.П. Удар по гибкой пластине. Сб.статей Института механики АН СССР, 1949.
13. Григорян Д.М. Нормальный удар по неограниченной тонкой мембране. ШМ, 1949, т.13, № 3.
14. Дейвис P.M. Волны напряжений в твердых телах. ИЛ, 1961.
15. Дюрелли А., Парке В. Анализ деформаций с использованием муара. "Мир", М., 1974.
16. Жубаев Н.Ж. Одномерные упруго-пластические волны при сложном нагружении. Изд. "Наука", Казах.ССР, Алма-Ата, 1979.
17. Ильюшин А.А. Пластичность., М., 1949.
18. Ильясов М.Х. О решении неоднородных волновых уравнений линейной вязкоупругости. ДАН Азерб.ССР, 1980, № 12.
19. Карапетрова С.В. Косой удар по гибкой мембране. Диссертация, МГУ, 1973.
20. Касумов O.K. Плоское движение сетей при ударе. Изв.АН Азерб. ССР, сер.физ-техн. и матем.наук, 1983, № 3.
21. Керимов К.А., Баладжаев М.С. О нормальном ударе по гибкой упруго-пластической мембране. Сб. "Механика деформируемого твердого тела, Баку, 1975.
22. Керимов К.А., Грацкова Н.С., Панахов Ф.С.Исследования поведения мембран в процессе удара. Сб."Механика деформируемого твердого тела", Баку, 1975.
23. Кийко И.А. Цилиндрическая оболочка под действием осевой ударной нагрузки. Изв.АН СССР, МТТ, 1969, № 2.
24. Кислоокии В.Н., Любченко С.Н. Нелинейные вантовые сети мембраны. Матер. У1 Всесоюзн.конф. по теории пластин и оболо• чек.- №
25. Кольский Г. Волны напряжений в твердых телах. ИЛ, 1955.
26. Кузнецов В.В. Свободные колебания пологих сетчатых оболочек. В кн."Надежность и долговечность строительных конструкций", Волгоград, ВПИ, 1976.
27. Курант Р. Уравнения с частными производными. М., 1964.
28. Ленский Э.В. Нормальный удар конусом по упругой мембране. Вестник МГУ, сер.матем. и мех., 1968, $ 5.
29. Луковенко С.А., Пшеничнов Г.И. Колебания и устойчивость сетчатых цилиндрических оболочек с ромбической сеткой. "Строительная механика и расчет сооружении", 1977, № 5.
30. Лурье Ф.М. Об учете условия опирания стержней при динамическом нагружении металлических конструкций. "Строительная механика и расчет сооружений", 1977, $ 5.
31. Максудов Ф.Г., Ильясов М.Х. Об одном методе решения динамических задач линейной вязкоупругости с непропорциональными функциями релаксации. ДАН СССР, 1983, т.273, 3.
32. Муталлимов Ш.М., Агаларов Д.Г. О косом ударе по мембране. Изв.АН Азерб.ССР, сер.физ-техн. и матем.наук, 1975, № 3.
33. Никитин Л.В. Распространение поперечных упруто-вязко-пласти-ческих волн в балках и пластинах. Инженерный сборник, 1966, т.XXX.
34. Нуриев Б.Р. Распространение нелинейных ударных волн при поперечном ударе конусом. ДАН Азерб.ССР, 1980, № 2.
35. Нуриев Б.Р., Эфендиев А.Н. Удар конусом по деформируемой сети. Тезисы П научно-практической конф.мол.учен, по пробл. социально-экономич.развития Баку, Элм, 1983.
36. Нуриев Б.Р., Ширинов С.М. Вязкопластические волны в нитях при поперечном ударе конусом. В сб. "ПДВДС", Ереван, 1984.-
37. Павленко А.Л. Прямой удар по гибкой пластине телом вращения заданного профиля. Диссертация. МГУ, 1952.
38. Панахов Ф.С. Экспериментальное и теоретическое исследование косого удара по гибкой мембране. Диссертация, АТУ", 1976.
39. Пшеничнов Г.И. Теория тонких сетчатых оболочек и пластин. М., Наука, 1982.
40. Рахманов П.А. Решение задачи поперечного удара по гибкой нити, находящейся в сопротивляющейся среде, методом последовательных приближений. Матер.Всесоюзн.симпозиума по распространению упруго-пластических волн в сплошных средах. Баку, 1966.
41. Рахматулин Х.А. О распространении волны разгрузки. ПММ, 1945, т.IX, Л I.
42. Рахматулин Х.А. Об ударе по гибкой нити. ПММ, 1947, т.Х1,Л6.
43. Рахматулин Х.А., Демьянов Ю.А. Прочность при кратковременных интенсивных нагрузках. М., 1961.
44. Рахматулин Х.А., Агаларов Д.Г. К неодномерным автомодельным задачам динамики мембран. Изв.АН Азерб.ССР, сер.физ-техн. и матем.наук, 1977, № 5.
45. Расулова Н.Б. Об однородных задачах динамики мембран. Матер. 17 Конф. по матем. и мех. Элм, 1982.
46. Расулова Н.Б. Поперечный нормальный удар эллиптическим конусом по упругой мембране. Матер. 1У конф. по матем. и мех., Элм, Баку, 1982.
47. Сабодаш П.Ф., Солоненко В.Р. Нестационарная реакция оболочен-ной конструкции с упругим заполнителем. В сб. "ПДВДС", Изд. АН Арм.ССР, Ереван, 1984.
48. Сан С.Т., Янг Т.Т. Применение континуального подхода к исследованию динамики решетчатых систем. "Прикладная меха- тника", сер.Е, 1973, т.40, № I.
49. Теокарис П. Муаровы полосы при исследовании деформаций. Мир, М., 1972.
50. Третьяков В.В. Новые аналитические решения волнового уравнения и задача дифракции. ПММ, 1975, вып.1.
51. Филиппов И.Г., Чебан В.Г. Неустановившиеся движения сплошных сжимаемых сред. "Штиница", Кишинев, 1973.
52. Эль-Сакка А.Г. К решению задачи о косом ударе по гибкой мембране. Вестник МГУ, сер.математика и механика, 1968, № 3.
53. Эфендиев А.Н. Распространение цилиндрических волн в анизотропной вязкоупругой среде. Матер. 1У Республ.конф.мол.учен, по матем. и мех. "Элм", Баку, 1982.
54. Эфендиев А.Н. Поперечный удар конусом по сети. ВИНИТИ, Деп. от 05.09.83, В 5167-83.
55. Эфендиев А.Н. Экспериментальное исследование волн деформаций в гибких сетях с применением муара. Матер.У Республ.конф. мол.учен, по матем. и мех. "Элм", Баку, 1984.
56. Эфендиев А.Н. Косой удар по упругой мембране гладким конусом. ВИНИТИ, Деп. от 06.11.84, Л 7191-84.56. jhms К У, Cates L.D. Jhe Cotn/iutatLon. of an axiotiu sutnmetiLc Jгее BouncLaiu ptoiiem
57. NPG,Wi533,V.S.N.P.e. ^ * л „ , 57- Я/shau //., Sotet Л J Vikatiott of CoSte Cudurotks ten tk smatt iKiticit tyefoimatiott 1. Tians jsm," tji, m.
58. Cicloqs T W Wave Motion in PUdic -' UaLstunp.,1Meek.,Ptys. SoU*: vZ, A №4.- № bs.Datitu P. Utilisation de5 Heseauz pout t'Etude, deb
59. Reformation,Lata tat. CenW de Ponh ei Ckausseesf1. Putt .S?-6?W7
60. Нашсек П.Wave Ргоpredion lh it adit Mahiial*
61. У. it ted. fti'tr. йтег. 5ос. &ir dug . /о/, 1№ее. Panayioto/iulos Р.Ъ. 6 fte56 Unilateral Jnalyuc of ftiicretized CaSle and. Метбше Stiutute
62. JUtiuat iu. of Polyteck J. of Mm',Mkeni,197l
63. Гxnatytunam Е.Я. Solution of ftynamit Ptotlemог Latticed НигЫеф^Лик >, У/, /т.
64. Petwvic fftato. Ъшашске naiacteiistuce ceticKO-- reset-ftastin fiomhuciia „Ciadei/inat 2.9, d6, /977.
65. H'LcktezH, Die etabtie-ptusticke Reftezion ernes wAingte&C.O. Motion cuLbStieM of attcLbtic CaSHe due to Impact, Trans J SMC, v 79,1957.
66. K-Sc/iuetjJIA. Laicje byname ^Deformation Caused fy а Гош Tiavef onlx.Stun^/I.lSS")^)196S
67. Srntna H., Spatial Pi. 0Stic janejjwttonatnyck. si ate к ciegonourock lano untadow dyytied nyck1. Jick.in* Lad", 20,M,/№.
68. Taltoi C.l J Just Ш. £пдгь'!, vtt, M6
69. Totienaaz P. MoLu Lbteifeie/ttitreibclUjn-setentabteidiun, Jtrutetdam. In it. Otafice Теск. ffltyf
70. Mete И1Я, GtiffiU L. Жа Ргоtaxation Ptaduy ut Uuziad Completion JppL Htuk'tt^flW
71. UfozmaK-C. Titltous media a* continious modela
72. Wei and tatticei, fatt&ad.Pot.MiWttл/?Ш•j ' / / / /w. &вд f. flfi staMity of dw.cz ptm hi
73. Ш6. Ш. dead. Poioncdu, ШишАЪЖ Ш5.