Темы авторефератов и диссертаций по математике из каталога библиотеки ФизМатХим. Математическая логика, алгебра и теория чисел
Код ВАК 01.01.06| Тема работы | Автор | Год | 
|---|---|---|
| Применение J-функтора к исследованию конечных групп Далее т пользуемся стандартными обозначениями и терминологией, принятии в теории конечных групп ^. Отметим только, что р - это простое число, к если Р есть р-группа, то А(Р) (Ае(Р)) - множество абелевых (элементарных абелешх) подгрупп максимального порядка в Р, J(P), Je(P) ~ характеристические подгруппы (введенные Д.Томпсоном) в Р, порожденные… | Пальчик, Эдуард Михайлович | 1991 | 
| Разрешимые и локально нильпотентные линейные группы В конце 40-х годов нашего столетия было обнаружено, что разрешите линейные группы являются важным инструментом в исследовании абстрактных разрешишх и локально нильпотентшх линейmix групп (см. по этому поводу работу Л.И. Мальцева £5] ). Такие группы играют татае важную роль в теории Пикара-Вессио - акатоге теории Г^луа для дифференциальных… | Конюх, Владимир Сергеевич | 1991 | 
| Совместные диофантовы приближения элементами регулярных систем Размерность Хаусдорфа, с момента применения её ?рниион н Везиковичем (1929, 1931),для описания множества действительных чисел имеющих заданный порядок аппроксимация рациональными ста» новится ваяого инструментом метрической теории чисел. Это объло-няется прежде всего тем, что для различения шс-яеств, удовлетворяющих определённом диофантовцм… | Домбровский, Игорь Ромуальдович | 1991 | 
| Сплетения, изометрии полуконечных бэровских метрик и финитно аппроксимируемые группы Уже поверхностный анализ показывает, что упомянутые конструкции , вплоть до языка описания, можно интерпретировать как подгруппы определенных "универсальных" финитно аппроксимируем«: групп Класс таких групп представляет интерес и с других точек зрения. В частности, они обладают различными свойствам! универсальности относительно различных других… | Сущанский, Виталий Иванович | 1991 | 
| Строение изотропных ортогональных групп В § 1' гш напоминаем определение ортогональной группы .Пусть Я - кот/мутатнвноэ кольцо с 1, такое, что 2 € Я* , где Я* - мультипликативная группа кольца Л . Пусть - невырожденная… | Голубовски, Вальдемар | 1991 | 
| Структурные свойства алгебраической сводимости конструктивизаций Бурное развитие теории конструктивных моделей, ттоследовашев за основополагающей работой л.И.Мальцева "Конструктивнее алгебры" и визванное прежде всего наличием многочисленных алгоритмических массовых проблем алгебры и теории моделей,- а а последние год! и задачами создашь логических систем программирования (где теория конструктивных м' челей… | Федоряев, Сергей Тимофеевич | 1991 | 
| Топологические фильтры на полугруппах, группах и кольцах В первой главе, состоящей из четырех -параграфов, изучаются мультипликативные фильтры на полугруппах с идемлотентами. Пусть С 5, е) - полугруша £ с фиксированным вдемпо-тентом е . Фильтр <р на £ называется мультипликативным ( Н -фильтром), если… | Хромуляк, Олег Михайлович | 1991 | 
| Целевые точки в областях на плоскости Н.И. Лобачевского Научная новизна. Получены равномерные по параметру конгруэнц-подгрупп асимптотические формулы для количества орбит точки, попадающих внутрь круга большого радиуса. Решена задача о попадании орбит точки при действии модулярной группы в узкое кольцо… | Суги, Муса | 1991 | 
| Числовые характеристики многообразий алгебр Ли Основная столика выполнеивя иссдддомшкй. У {»аСюте развиты и широко использованы новые методы при.лохе.4ил теории представлений симметрической группы к исследования многообразий линейных алгебр. Построена и используется теория роста многообразии алгебр Ли. Применяются комбинаторные приоми… | Мищенко, Сергей Петрович | 1991 | 
| Эквивариантная алгебраическая К-теория Следующий шаг сделал Дж. Милнор определив группу КрСЮ, описывающую соотношения между элементарными матрицами над кольцом Р. Оказалось, что группа Милнора связана с символами и законами взаимности… | Давыдов, Алексей Александрович | 1991 | 
| Эквиварная алгебраическая К-теория Следующий шаг сделал Дж. Милнор определив ipynny КрС Ю, описывающую соотношения между элементарными матрицами над кольцом R. Оказалось, что группа Милнора связана с символам и законами взаимности… | Давыдов, Алексей Александрович | 1991 | 
| Эндочистые подмодули Абелевых групп Ф.Гельми , в которой определено чисто полупростое кольцо, но уже в другом - категорном смысле (чистота также в смысле П.Кона), в также изучается категория модулей над таким кольцом. В этой же работе в несколько иной, чем обычно, форме определяется чисто полупростые модули и чисто полупростые категории. Изучение колец, обладавших тем или иным… | Турманов, Мадин Аскарович | 1991 | 
| Алгебраическая теория проективных плоскостей Международном конгрессе математиков (г.Беркли, СиА, 19с6), на Международной алгебраической конференции, посвященной памяти А.И.Мальцева (Новосибирск, 19с9… | Никитин, Александр Александрович | 1990 | 
| Базируемость стабильных теорий и свойства счетных моделей с мощными типами Одним из следствий теоремы 1.4.5 является стабильность теорий оез полуконтуров (это также следует из [8]). Для доказательства стабильности пиводится признак стабильности теории, представляющий самостоятельный интерес: , если Ä - некоторое множество стабильных формул и теория Т Д-базируема, то Т -стабильная теория. Этот признак используется и в… | Судоплатов, Сергей Владимирович | 1990 | 
| Базисы тождеств некоторых простых неассоциативных алгебр над бесконечным полем Ваз к с- гождеств, ¿к.паннуЯ б теорс-:/е 1.3.8, уинюозлеы. Я случс-е нул. :;ой хар?.ктц:"стики тогдоства (ОЛ)-(О.З) обряпувг минчк-тльнгГ базис тождеств йордановой алгебры & г1 ^ И<! с3… | Василовский, Сергей Юрьевич | 1990 | 
| Базисы тождеств некоторых простых неассоциативных алгебр над бесконечным полем Пусть - И -мерное векторное пространство над полем характеристики ^ 2 с невырожденной симметрической билинейной формой < ос) и > ^ 2 3 ел . На пространства Ь (., " К + \'\1 ^ определим умножение о по правилу… | Насиловский, Сергей Юрьевич | 1990 | 
| Группы вычислимых автоморфизмов С самого начала изучения понятия алгоритма это понятие изучается также в связи с не менее фундаментальным понятием симметрии. В математике симметрия обычно понимается как преобразование, сохраняющее определенную математическую структуру, то есть, как автоморфизм этой структуры [11]. Ввиду этого мы здесь будем говорить об автоморфизмах… | Морозов, Андрей Сергеевич | 1990 | 
| Группы конечного неабелева ранга Понятие ранга группы первоначально возникло в теории абелевых групп как аналог размерности векторного пространства. А.И.Мальцевым (1943 г.) оно было распространено на произвольные группы двумя способами - посредством введения понятий общего и специального рангов. По определению, группа имеет конечный общий ранг X , если 1 - такое наименьшее число… | Дашкова, Ольга Юрьевна | 1990 | 
| Квазимногообразия и предмногообразия представлений групп В § 3 главы I изучаются операции на квазимногообразиях представлений групп,'вытекающие из связей квазишогообразий представлений с квазймногообразияш абстрактных групп. Э'^о операции и -.со" ; для заданного класса… | Матвеев, Александр Александрович | 1990 | 
| Классическая алгебраическая К-теория моноидных и полиномиальных алгебр КЗГОДИКА ИСС.ДЦОЛАМ!. Все основные результаты получена существенном срименением комбинаторно-геометрической интерп&ра-цик »¡оноидов к 1.;ою идных алгебъ. Используются методы коммутативной алгебры, гомологической алгебры, а также методы, развитые при изучении проективных модулс-ц над алгебрам? полиномиального происхождения (локально-глобальная… | Губеладзе, Иосиф Джимшерович | 1990 | 







